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Abstract 28 
Aberrant brain network development represents a putative aetiological component in mental 29 
disorders, which typically emerge during childhood and adolescence. Previous studies have 30 
identified resting-state functional connectivity (RSFC) patterns reflecting psychopathology, 31 
but the generalisability to other samples and politico-cultural contexts has not been 32 
established.  33 
 We investigated whether a previously identified cross-diagnostic case-control and 34 
autism spectrum disorder (ASD)-specific pattern of RSFC (discovery sample; aged 5-21 from 35 
New York City, USA; n=1666) could be validated in a Norwegian convenience-based youth 36 
sample (validation sample; aged 9-25 from Oslo, Norway; n=531). As a test of 37 
generalisability, we investigated if these diagnosis-derived RSFC patterns were sensitive to 38 
levels of symptom burden in both samples, based on an independent measure of symptom 39 
burden.  40 
 Both the cross-diagnostic and ASD-specific RSFC pattern were validated across 41 
samples. Connectivity patterns were significantly associated with thematically appropriate 42 
symptom dimensions in the discovery sample. In the validation sample, the ASD-specific 43 
RSFC pattern showed a weak, inverse relationship with symptoms of conduct problems, 44 
hyperactivity, and prosociality, while the cross-diagnostic pattern was not significantly linked 45 
to symptoms.   46 
 Diagnosis-derived connectivity patterns in a developmental clinical US sample were 47 
validated in a convenience sample of Norwegian youth, however, they were not associated 48 
with mental health symptoms.  49 
  50 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 30, 2024. ; https://doi.org/10.1101/2023.10.09.23296736doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.09.23296736
http://creativecommons.org/licenses/by/4.0/


1 Introduction  51 
Childhood and adolescence constitute periods of life characterised by substantial 52 
developmental adaptations. These include rapid physical, hormonal, brain, cognitive, and 53 
psychological changes, adapted to the increasing complexity of our social environment and 54 
expectations with age. For example, during this time, the functional networks of the brain 55 
undergo large-scale reorganisation and maturation (Paus et al., 2008; Power et al., 2010; 56 
Sydnor et al., 2021). Adolescence is also a period with a marked increase in the incidence of 57 
psychopathology (Kessler et al., 2007). The co-occurrence of these phenomena has led to the 58 
hypothesis that increased brain plasticity during this period results in increased susceptibility 59 
to mental illness (Paus et al., 2008). Several studies have identified plausible links between 60 
psychopathology in youth and resting-state functional connectivity (RSFC) derived from 61 
functional magnetic resonance imaging (fMRI). However, the generalisability of such 62 
network patterns to vulnerability for mental illness in non-clinical samples is currently not 63 
well demonstrated.  64 

In the context of generalisability and vulnerability, a related question is whether 65 
RSFC patterns are specific to diagnostic categories of mental disorders or shared across 66 
disorders. Considerable effort has been made to characterise RSFC patterns associated with 67 
both diagnostic syndromes and dimensional symptom scores. Transdiagnostic patterns can be 68 
identified by including participants with a range of (comorbid) diagnoses, or by modelling 69 
dimensional scores of multiple symptom domains. Using these approaches, an increasing 70 
number of studies have reported that RSFC patterns relating to psychopathology are 71 
transdiagnostic or shared across disorders (Elliott et al., 2018; Karcher et al., 2021; Kebets et 72 
al., 2023; Lees et al., 2021; Linke et al., 2021; McTeague et al., 2017; McTeague et al., 2020; 73 
Sha et al., 2019; Voldsbekk et al., 2023; Xia et al., 2018). For example, in a population-based 74 
sample of children (Adolescent Brain Cognitive Development cohort; ABCD), a shared 75 
psychopathology factor was derived and linked to RSFC using both symptom data (Karcher 76 
et al., 2021) and diagnostic data (Lees et al., 2021). 77 

The convergence of studies on a shared factor across disorders from studies using 78 
both symptom scores as well as binary diagnosis information supports the notion of a latent 79 
vulnerability factor on which the diagnostic categories represent extremes (Sprooten et al., 80 
2022). The above-mentioned findings linking a shared latent mental illness factor to brain 81 
measures are promising with regard to detecting neural signatures of psychopathology risk in 82 
the youth brain. However, an important question is whether these clinical RSFC patterns are 83 
sensitive to symptom burden and by extension putative risk in youth samples that are not 84 
enriched with mental disorder diagnoses.  85 

Recently, we estimated both diagnosis-specific and cross-diagnostic RSFC patterns in 86 
a clinical developmental sample. Investigating shared associations across RSFC data and 87 
diagnostic information, we identified a pattern specific to a diagnosis of autism spectrum 88 
disorder (ASD). The other diagnosis categories did not exhibit a significant specific RSFC 89 
pattern, instead they exhibited a shared patterns across attention-deficit hyperactivity disorder 90 
(ADHD), ASD, other neurodevelopmental disorders, anxiety, mood-disorders, and other 91 
diagnoses versus no diagnosis (Voldsbekk et al., 2023). A possible interpretation of this 92 
finding is that cross-diagnostic and ASD-specific patterns represent the two most reliable 93 
RSFC markers of psychopathology. For any such patterns to be clinically relevant, they 94 
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would need to show generalisability to vulnerability for mental illness, expressed as elevated 95 
clinical symptom scores, in non-clinical samples. Thus, in the current study we aimed to 96 
investigate whether the two identified diagnosis-derived RSFC patterns are sensitive to 97 
mental health symptoms in a Norwegian convenience-based sample of youth. To do this, we 98 
investigated whether a) the cross-diagnostic and ASD-specific RSFC patterns previously 99 
identified could be validated in the validation sample, and b) if these RSFC patterns associate 100 
with levels of symptom burden in the validation sample. As a further test of external validity, 101 
we also tested whether c) the RSFC patterns previously identified associate with levels of 102 
symptom burden in the discovery sample.  103 
 104 
2 Material and Methods 105 
2.1 Samples 106 
2.1.1 Discovery sample - HBN 107 
Children and adolescents from New York City, USA were recruited to be part of the HBN 108 
cohort (Alexander et al., 2017). The majority have a least one diagnosed mental disorder. In 109 
the previous study (Voldsbekk et al., 2023), 1880 participants in HBN took part. 1689 of 110 
these were in the discovery sample. Of these, 1666 had available symptom score data used 111 
for the current investigation. Missing values in the symptom data were imputed with 112 
knnimpute in MATLAB (MathWorks, 2020). To check that imputation did not influence the 113 
results, we reran the analysis in the 1610 participants without missing data and no imputation. 114 
This analysis revealed similar associations between RSFC and symptom level as the original 115 
analysis (correlations were r=.99 between imputed and non-imputed result for both the cross-116 
diagnostic and ASD patterns). For more details regarding MRI data cleaning and quality 117 
assurance steps, see Voldsbekk et al. (2023). The final sample consisted of 1666 participants 118 
(641 females, mean ± sd age: 10.91 ± 3.14, range: 5-21). See Figure 1 and table S1 for 119 
distributions of sample characteristics.  120 
 121 
2.1.2 Validation sample – Brainmint  122 
Children and adolescents in the Oslo region were recruited to participate in the Brains and 123 
minds in transition (Brainmint) study. Participants were recruited through convenience 124 
sampling by advertising in social media, aiming to recruit young people from the general 125 
population interested in contributing to a study investigating brain development and mental 126 
health. All participants provided written informed consent prior to their participation in the 127 
study. For participants under the age of 16, both parents/legal guardians provided written 128 
informed consent on their behalf. Per May 4th 2023, 759 participants had undergone magnetic 129 
resonance imaging (MRI) and 697 had responded to questionnaires. Of these, 531 had 130 
available both fMRI and symptom score data. No participants had missing data and so all 131 
were included in the sample used for the current analysis (390 females, mean ± sd age: 17.69 132 
± 2.83, range: 9-25). See Figure 1 and table S1 for distributions of sample characteristics. 133 
 134 
2.2 Mental health measures 135 
In the previous study (Voldsbekk et al., 2023), we investigated diagnosis-derived patterns of 136 
RSFC in HBN (discovery sample). Diagnostic information was collected using a 137 
computerised version of the Schedule for Affective Disorders and Schizophrenia – Children´s 138 
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version (KSADS) (Kaufman et al., 1997), which is a clinician-administered semi-structured 139 
psychiatric interview based on DSM-5. We then labelled diagnoses as belonging to either of 140 
these categories: “ADHD”, “ASD”, “anxiety disorders”, “mood disorders”, “other 141 
neurodevelopmental disorders”, “other disorders” or “no diagnosis”.  142 
 For testing the external validity and generalisability of diagnosis-derived RSFC 143 
patterns, the current study obtained HBN symptom scores from the Strength and Difficulties 144 
Questionnaire (Goodman, 1997), which is a 25-item questionnaire measuring emotional and 145 
behavioural problems. The SDQ has five syndrome measures: emotional symptoms, conduct 146 
problems, hyperactivity/inattention, peer relationship problems, and prosocial behaviour. For 147 
this analysis, we used only the summary syndrome measures. In HBN, the SDQ items were 148 
parent-reported. See Figure S1 for symptom load distributions on SDQ summary measures 149 
across diagnostic categories in HBN. 150 

Symptom scores in Brainmint were investigated using the same approach as in HBN, 151 
only in this sample the SDQ responses were self-reported. 152 
 153 

 154 
Figure 1. Sample distributions. A. Age. B. Sex. C. SDQ summary syndrome scores. HBN; Healthy 155 
brain network sample. Brainmint; Brains and minds in transition sample. SDQ; Strengths and 156 
difficulties questionnaire.  157 
 158 
2.3 MRI acquisition 159 
HBN MRI data were acquired at four different sites: a mobile scanner at Staten Island (SI), 160 
Rutgers University Brain Imaging Centre, Citigroup Biomedical Imaging Centre (CBIC) and 161 
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Harlem CUNY Advanced Science Research Centre. A detailed overview of the MRI protocol 162 
is available elsewhere 163 
(http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/MRI%20Protocol.html). 164 

Brainmint MRI data were acquired at Oslo University Hospital Ullevål, using a 3.0 T 165 
GE SIGNA Premier scanner using a 48-channel head coil. Structural MRI data was acquired 166 
using an T1-weighted MPRAGE sequence (repetition time (TR): 2.526 s, echo time (TE): 167 
2.836 ms, flip angle (FA): 8°, field of view (FOV): 256 mm), slice thickness: 1 mm, locations 168 
per slab: 196 (no overlaps). Resting-state functional MRI (rs-fMRI) data was acquired using 169 
a T2*-weighted blood-oxygen-level-dependent echo-planar imaging (EPI) sequence with a 170 
TR of 800 ms, TE of 30 ms, multiband acceleration factor = 6, number of slices: 60, 750 171 
repetitions and voxel size = 2.4 × 2.4 × 2.4 mm.  172 
 173 
2.4 MRI pre-processing 174 
Rs-fMRI images in HBN were processed with the following pipeline. First, FSL MCFLIRT 175 
(Jenkinson et al., 2002) was applied for motion correction, as well as high-pass temporal 176 
filtering (cut-off: 100s), spatial smoothing (FWHM: 6mm) and distortion correction as part of 177 
FEAT (Woolrich et al., 2001). The rs-fMRI images were registered to a T1-weighted 178 
structural image using FLIRT (Jenkinson et al., 2002) and boundary-based registration 179 
(Greve & Fischl, 2009). Next, for additional removal of artefacts and noise, we performed 180 
non-aggressive ICA-AROMA (Pruim, Mennes, Buitelaar, et al., 2015; Pruim, Mennes, van 181 
Rooij, et al., 2015) and FIX (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). Estimations 182 
of temporal signal-to-noise ratio (tSNR) and mean framewise displacement (FD) were 183 
calculated by MRIQC (Esteban et al., 2017) and used as covariates in subsequent analyses.  184 

In Brainmint, preprocessing of rs-fMRI images were run using fMRIPrep v22.0.1 185 
(Esteban et al., 2019), an automated pipeline consisting of head motion correction, high-pass 186 
temporal filtering, spatial smoothing and distortion correction using MCFLIRT, slice-timing 187 
correction using 3dTshift from AFNI, registration to structural reference image using FLIRT 188 
and boundary-based registration, and, finally, non-aggressive ICA-AROMA. Same as for 189 
HBN, estimations of tSNR and FD were calculated by MRIQC (Esteban et al., 2017). 190 
 191 
2.5 Network analysis 192 
RSFC in HBN were derived using the Schaefer parcellation with 100 parcels and 7 networks 193 
(Schaefer et al., 2018). These networks include visual A, visual B, visual C, auditory, 194 
somatomotor A, somatomotor B, language, salience A, salience B, control A, control B, 195 
control C, default A, default B, default C, dorsal attention A and dorsal attention B. The 196 
connectivity matrix was then estimated as the L2-norm ridge regression partial correlation 197 
between parcel timeseries using FSLNets (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets), as 198 
implemented in MATLAB (MathWorks, 2020). This resulted in 4950 unique partial 199 
correlations (i.e., edges). 200 

RSFC in Brainmint were derived using the same approach as in HBN, making the 201 
edges comparable. 202 
 203 
2.6 Out-of-sample validation 204 
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In the previous work (Voldsbekk et al., 2023), we investigated diagnosis-specific RSFC 205 
patterns by running non-rotated behavioural partial least squares (PLS) in PLS Application 206 
(Krishnan et al., 2011). Non-rotated behavioural PLS yields maximal covariance across two 207 
matrices without rotating the behavioural matrix – in this case, maximal RSFC covariance 208 
across each diagnosis (a behavioural matrix containing either 1 or 0 for each participant for 209 
each diagnosis category). This test was run for each diagnosis category separately, while 210 
controlling for all other diagnosis categories using contrasts. This analysis revealed an ASD-211 
specific pattern, as well as a cross diagnostic case-control pattern. The other diagnosis 212 
categories did not exhibit a diagnosis-specific RSFC pattern.  213 
 214 
2.6.1 Out-of-sample validation 215 
See Figure 2 for an overview of the out-of-sample validation pipeline. First, we decomposed 216 
the Brainmint RSFC data by multiplying them with the brain weights estimated in the HBN 217 
PLS analysis. These Brainmint brain weights were then correlated with the original 218 
Brainmint RSFC data to get Brainmint connectivity loadings. Then, to assess the validation 219 
of the brain pattern across the two samples, we correlated the Brainmint connectivity 220 
loadings with HBN connectivity loadings for each latent variable (LV) using Pearson’s 221 
correlation. Their significance was tested using permutations (n=1000), randomly 222 
shuffling the rows (participants) of the Brainmint RSFC data. We calculated p-values by 223 
dividing the count of permuted maximum R values (including the observed non-224 
permuted value) ≥ the non-permuted R values by the number of permutations. Prior to 225 
analysis, Brainmint RSFC data was adjusted for age, sex, tSNR and FD, same as HBN RSFC 226 
data prior to running PLS. This was done by using FSLNets’ “nets_unconfound” in 227 
MATLAB (MathWorks, 2020). As a proxy for significance, connectivity loadings were 228 
thresholded at Z-scores<|3| in visualisations, akin to the procedure in our previous work using 229 
PLS.   230 
 231 

 232 
Figure 2. An overview of the out-of-sample validation pipeline. RSFC; resting-state functional 233 
connectivity. HBN; Healthy brain network sample. Brainmint; Brains and minds in transition sample.  234 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 30, 2024. ; https://doi.org/10.1101/2023.10.09.23296736doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.09.23296736
http://creativecommons.org/licenses/by/4.0/


 235 
2.6.2 Testing the association of the brain pattern with symptom scores 236 
To assess whether the brain pattern was associated with symptom scores, we correlated the 237 
derived Brainmint RSFC pattern with Brainmint symptom data. Specifically, we investigated 238 
the Spearman’s rank correlation between diagnosis-derived brain weights and symptom 239 
dimensions from SDQ. To assess the reliability of the associations between brain weights and 240 
symptom dimensions, we ran 1000 bootstraps using resampling with replacement. Reliability 241 
was defined as whether bootstrapped (with replacement) 95% confidence interval overlapped 242 
with zero (i.e., not overlapping with zero being considered reliable). Finally, as a test of 243 
external validity, we also ran these correlations between the HBN RSFC pattern and SDQ 244 
symptom dimensions in HBN.  245 
 246 
3 Results 247 
The correlation between Brainmint and HBN connectivity loadings was significant for both 248 
the cross-diagnostic pattern (r=.39, permuted p<.001; see Figure 3A) and ASD (r=.49, 249 
permuted p<.001; see Figure 4A), indicating that both brain patterns were validated across 250 
samples. As shown in Figure 3B, the cross-diagnostic RSFC pattern implicated weaker 251 
connectivity within the control network, in addition to weaker between-network connectivity 252 
between the salience network and control network, as well as between the default mode 253 
network (DMN) and limbic network. In terms of symptom dimensions, this connectivity 254 
pattern exhibited significant positive associations with anxiety, conduct problems, 255 
hyperactivity, and peer problems in HBN, as well as a negative association with prosocial 256 
behaviour (see Figure 3C). In Brainmint, there were no significant associations between the 257 
cross-diagnostic connectivity pattern and symptom dimensions (see Figure 3D).  258 

As shown in Figure 4B, the RSFC pattern for ASD implicated weaker within-network 259 
connectivity in the somatomotor network, dorsal attention (DA) network, salience network 260 
and DMN. In terms of symptom dimensions, this RSFC pattern was significantly associated 261 
with more symptoms of peer problems and hyperactivity in HBN, as well as lower degree of 262 
conduct problems and prosociality (see Figure 4C). In Brainmint, the ASD-specific RSFC 263 
pattern was associated with higher levels of prosocial behaviour and fewer symptoms of 264 
hyperactivity and conduct problems (see Figure 4D).  265 

 266 
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 267 
Figure 3. Validation of the cross-diagnostic connectivity pattern from HBN to Brainmint. A. 268 
Pearson’s correlation of connectivity weights between samples (left) and corresponding permutation 269 
test (right). The dotted line marks the non-permuted R value. B. Visualisation of RSFC pattern in each 270 
sample. Magnitude in this plot reflects summarised edge strength across each network. Depicted are 271 
thresholded edges (Z-scores<|3|). C. Associations between derived brain pattern and SDQ symptom 272 
dimensions in HBN. D. Associations between derived brain pattern and SDQ symptom dimensions in 273 
Brainmint. A positive correlation indicates higher connectivity is associated with higher symptom 274 
level and vice versa. Associations with symptom dimensions are marked in bold green if 95% 275 
confidence interval of the bootstrap distribution did not contain zero. ASD; Autism spectrum disorder. 276 
HBN; Healthy brain network sample. Brainmint; Brains and minds in transition sample. SDQ; 277 
strength and difficulties questionnaire.  278 
 279 
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 280 
Figure 4. Validation of the ASD-specific connectivity pattern from HBN to Brainmint. A. Pearson’s 281 
correlation of connectivity weights between samples (left) and corresponding permutation test (right). 282 
The dotted line marks the non-permuted R value. B. Visualisation of RSFC pattern in each sample. 283 
Magnitude in this plot reflects summarised edge strength across each network. Depicted are 284 
thresholded edges (Z-scores<|3|). C. Associations between derived brain pattern and SDQ symptom 285 
dimensions in HBN. D. Associations between derived brain pattern and SDQ symptom dimensions in 286 
Brainmint. A positive correlation indicates higher connectivity is associated with higher symptom 287 
level and vice versa. Associations with symptom dimensions are marked in bold purple if 95% 288 
confidence interval of the bootstrap distribution did not contain zero. ASD; Autism spectrum disorder. 289 
HBN; Healthy brain network sample. Brainmint; Brains and minds in transition sample. SDQ; 290 
strength and difficulties questionnaire.  291 
 292 
4 Discussion 293 
The current study aimed to investigate whether psychopathology-related RSFC patterns are 294 
informative of vulnerability for mental illness in undiagnosed individuals by validating 295 
connectivity patterns derived in a developmental clinical sample from the US in a Norwegian 296 
convenience-based sample of youth. However, the RSFC pattern was only sensitive to 297 
symptom burden in the discovery sample. Specifically, we found that the RSFC patterns were 298 
associated with symptom dimensions thematically overlapping with core symptom 299 
characteristics in the discovery sample, while in the validation sample we found a weak, 300 
inverse relationship for ASD. This latter association was small at the group-level, with great 301 
variation at the individual level. Taken together, these results show that although diagnosis-302 
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derived RSFC patterns replicate across samples, their utility is greatly limited due to their 303 
lack of sensitivity to symptom burden. 304 
 Replicability and generalisability of neuroimaging findings remain a challenge in the 305 
field (Botvinik-Nezer & Wager, 2022). Historically, small sample sizes and lack of 306 
methodological rigour have resulted in poor replication rates, possibly reflecting that many 307 
published findings are potential false positives (Ioannidis, 2005). To overcome such 308 
challenges, increasing effort has been put into developing procedures for reproducible 309 
science (Niso et al., 2022). With the advent of multivariate machine learning approaches in 310 
neuroscience, issues related to statistical power and extensive univariate testing in small 311 
samples have been improved (Botvinik-Nezer & Wager, 2022). However, these multivariate 312 
approaches come with new challenges, such as data leakage, overfitting and the need for 313 
sufficiently large data sets to ensure robustness (Botvinik-Nezer & Wager, 2022; Davatzikos, 314 
2019; Poldrack et al., 2020; Varoquaux, 2018). Although the current study aimed to 315 
overcome some of these challenges, we still did not obtain generalisable results. 316 

Generalisation of RSFC patterns related to psychopathology has been hampered by 317 
challenges related to the stability and reliability of RSFC results, as well as variations in 318 
mental health profiles across cohorts (Uddin et al., 2017). Data driven approaches to 319 
symptom clustering have to some degree yielded reproducible clusters or hierarchies of 320 
symptom structure across samples (Caspi et al., 2014). Recently, we derived brain-based 321 
latent dimensions of psychopathology using symptom covariance with functional brain 322 
networks in HBN (Voldsbekk et al., 2023). Similar brain-based dimensions of 323 
psychopathology were identified in ABCD, combining measures of both brain structure and 324 
RSFC (Kebets et al., 2023). By decomposing the HBN data using feature weights estimated 325 
in ABCD from Kebets et al., we found that the symptom dimensions replicated, however the 326 
RSFC patterns did not (Voldsbekk et al., 2023). Previous attempts at replication of brain-327 
symptom mapping in independent samples have shown similar findings of replicating latent 328 
clinical dimensions, but weak or non-replicable RSFC patterns (Linke et al., 2021). In light of 329 
this, it is surprising that the current study could validate diagnosis-based case-control and 330 
ASD-specific RSFC patterns from HBN to Brainmint. Of course, the validated RSFC pattern 331 
was not fully overlapping across the two cohorts. For example, notable differences can be 332 
observed in the higher connectivity profile associated with the cross-diagnostic pattern, in 333 
which HBN is exhibiting a greater number of networks involved compared to Brainmint. In 334 
addition, the clinical associations of this pattern in the discovery sample were not reproduced 335 
in the validation sample.  336 

The current validation effort is conducted across two widely different samples, both in 337 
terms of age, sex distribution, and other demographical variables, and in their mental health 338 
profile. While the HBN sample consists of mainly children with diagnosed 339 
neurodevelopmental disorders, the Brainmint sample consists of adolescents recruited from 340 
the community. Some of these adolescents have elevated symptom burden and may meet the 341 
diagnostic criteria of a mental disorder, but this sample is not enriched with diagnoses as is 342 
the case with HBN. The symptom distribution is also different, with higher prevalence of 343 
anxiety symptoms in Brainmint, as compared to conduct problems and peer problems in 344 
HBN. In line with this, there is also a marked difference in the sex distribution across the two 345 
samples, with higher prevalence of males in HBN and the majority being female in 346 
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Brainmint. Given these differences, it is all the more striking that the RSFC patterns were 347 
validated. Concomitantly, this may also explain the difference in clinical associations. One 348 
possible explanation could be that the RSFC patterns do reflect some vulnerability to 349 
psychopathology, only it is not sensitive enough to be associated with mental health 350 
symptoms in a widely different sample.  351 

Prior work seem to converge on the finding that RSFC patterns relating to 352 
psychopathology are transdiagnostic or shared across disorders (Elliott et al., 2018; Karcher 353 
et al., 2021; Kebets et al., 2023; Lees et al., 2021; Linke et al., 2021; McTeague et al., 2017; 354 
McTeague et al., 2020; Sha et al., 2019; Voldsbekk et al., 2023; Xia et al., 2018). This would 355 
suggest that if anything, RSFC patterns represent possible general markers of 356 
psychopathology rather than disorder-specific markers. This has implications for their utility 357 
as biomarkers, meaning RSFC patterns may be used to detect general vulnerability, but not 358 
vulnerability specific to specific disorders. In line with this, a recent systematic review based 359 
on studies only of the general population conclude that general psychopathology is related to 360 
various RSFC patterns across studies (Hoy et al., 2023). With regards to specific 361 
psychopathology, there was only one finding reported across more than one study, namely an 362 
association between a neurodevelopmental symptom dimension and lower connectivity 363 
within the DMN (Karcher et al., 2021; Modabbernia et al., 2022). These findings are 364 
strikingly consistent with our previous work in HBN – a developmental clinical sample 365 
(Voldsbekk et al., 2023). This suggests that RSFC-psychopathology associations should 366 
extend from clinical samples to population samples, consistent with the understanding of 367 
psychopathology as a dimensional structure. Of note, this highlights the relevance of 368 
investigating the overlap and reproducibility of RSFC-psychopathology associations from 369 
clinical to population-based samples. The current study represents one attempt at this.  370 
 Consistent with the symptom load distribution in HBN across diagnostic categories, 371 
the RSFC pattern in HBN picked up associations with peer problems, hyperactivity, and 372 
prosocial behaviour for the ASD-specific pattern and all symptom dimensions for the cross-373 
diagnostic pattern. This represents a sanity check that the diagnosis-derived RSFC pattern in 374 
HBN picks up similar associations with symptom load as the diagnosis groups they are 375 
modelled to represent. Reliability of mental health measures has remained a challenge in the 376 
field (Nikolaidis et al., 2022). Here we show that RSFC patterns derived from diagnostic 377 
information exhibit associations with an independent measurement of symptom load that are 378 
overlapping with symptom load associations observed for each diagnostic category. This 379 
supports that these RSFC patterns reflect something that overlaps with their corresponding 380 
diagnostic categories. However, this sensitivity of the RSFC pattern was not generalisable to 381 
Brainmint. The RSFC pattern in Brainmint picked up an inverse relationship with prosocial 382 
behaviour, hyperactivity, and conduct problems for the ASD-specific pattern, indicating that 383 
higher prosociality and lower conduct problems and hyperactivity was associated with a more 384 
“ASD-like” brain pattern. This finding is paradoxical and the opposite of what one would 385 
expect. While it is too early to conclude based on one preliminary association only, it is 386 
worth noting that the strength of this association was low. Similarly, there was no significant 387 
associations with the cross-diagnostic pattern in Brainmint. Given these weak group-level 388 
associations, with great variation at the individual level, adding too much emphasis to this 389 
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preliminary finding is unwarranted. Instead, this result adheres to the previous literature 390 
finding generalisation of RSFC results a challenge (Uddin et al., 2017). 391 
 Some further limitations should be noted. First, RSFC results are influenced by 392 
methodological choices (Sala‐Llonch et al., 2019; Shirer et al., 2015). To increase 393 
reproducibility of RSFC networks, we utilised an established parcellation scheme (Schaefer 394 
et al., 2018). Second, the two samples underwent slightly differing fMRI preprocessing 395 
pipelines. This difference should diminish, rather than inflate, any ability to reproduce 396 
findings, meaning that the current study represents a conservative approach to reproducibility 397 
with higher chance of false negatives than false positives. Third, the symptom dimensions 398 
from SDQ were measured by parent-report in HBN and by self-report in Brainmint. This 399 
difference may have induced systematic variations in the data across the two samples, as it is 400 
known that parent-report and self-report have small-to-moderate correlations (Gaete et al., 401 
2018). This limitation represents a possible explanation for why we did not find overlapping 402 
associations between RSFC patterns and symptom level across the two cohorts. In addition, 403 
this may explain why the community-based sample seemed to exhibit a higher symptom 404 
burden than the clinical sample. This limitation represents an important reminder that low 405 
reliability in mental health measures impedes scientific discovery (Nikolaidis et al., 2022) 406 
and underscores that the current results must be interpreted with caution. Fourth, the age, sex, 407 
and clinical distributions across the two samples differed, meaning we cannot rule out 408 
whether the lack of generalisability across samples reflect these differences in distributions 409 
rather than a lack of reproducibility of RSFC-symptom patterns per se.  410 
 411 
5 Conclusions 412 
This work demonstrates that diagnosis-derived RSFC patterns in a US developmental clinical 413 
sample can be extended to a Norwegian convenience-based sample of youth. Both the cross-414 
diagnostic and the ASD-specific RSFC patterns were validated across samples. However, 415 
although both connectivity patterns exhibited significant associations with thematically 416 
appropriate symptom dimensions in both the discovery sample (HBN), they were not found 417 
to be sensitive to overlapping dimensions of symptom burden in the validation sample 418 
(Brainmint). Implications of this work is that generalisation of RSFC results remains a 419 
challenge. For any psychopathology-related RSFC patterns to be generalisable and clinically 420 
relevant, their sensitivity to symptom burden across samples represents a prerequisite.   421 
 422 
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