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2 

Abstract 35 

Background. Spatial transcriptomics involves studying the spatial organization of gene expression within 36 

tissues, offering insights into the molecular diversity of tumors. While spatial gene expression is 37 

commonly amalgamated from 1-10 cells across 50-micron spots, recent methods have demonstrated the 38 

capability to disaggregate this information at subspot resolution by leveraging both expression and 39 

histological patterns. However, elucidating such information from histology alone presents a significant 40 

challenge but if solved can better permit spatial molecular analysis at cellular resolution for instances 41 

where Visium data is not available, reducing study costs. This study explores integrating single-cell 42 

histological and transcriptomic data to infer spatial mRNA expression patterns in whole slide images 43 

collected from a cohort of stage pT3 colorectal cancer patients. A cell graph neural network algorithm was 44 

developed to align histological information extracted from detected cells with single cell RNA patterns 45 

through optimal transport methods, facilitating the analysis of cellular groupings and gene relationships. 46 

This approach leveraged spot-level expression as an intermediary to co-map histological and 47 

transcriptomic information at the single-cell level. 48 

    Results. Our study demonstrated that single-cell transcriptional heterogeneity within a spot could be 49 

predicted from histological markers extracted from cells detected within a spot. Furthermore, our model 50 

exhibited proficiency in delineating overarching gene expression patterns across whole-slide images. This 51 

approach compared favorably to traditional patch-based computer vision methods as well as other 52 

methods which did not incorporate single cell expression during the model fitting procedures. Topological 53 

nuances of single-cell expression within a Visium spot were preserved using the developed methodology. 54 

    Conclusion. This innovative approach augments the resolution of spatial molecular assays utilizing 55 

histology as a sole input through synergistic co-mapping of histological and transcriptomic datasets at the 56 

single-cell level, anchored by spatial transcriptomics. While initial results are promising, they warrant 57 

rigorous validation. This includes collaborating with pathologists for precise spatial identification of distinct 58 

cell types and utilizing sophisticated assays, such as Xenium, to attain deeper subcellular insights. 59 

    Keywords. Spatial transcriptomics, Tumor-immune microenvironment, Whole slide images, Cell graph 60 

neural network, Gene expression patterns, Pathway analysis, Molecular profiling 61 
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Background  62 

Cancer warrants considerable attention given its profound impact on individuals and their families, the 63 

absence of a clear cure in many cases, and the necessity to advance technologies for prevention, early 64 

detection, and treatment selection. By the end of 2023, nearly 2 million new cancer cases and more than 65 

600,000 cancer deaths will occur in the United States [1,2]. Colorectal cancer (CRC) persists as one of 66 

the most formidable solid tumors, with an annual incidence of approximately 150,000 new cases in the 67 

United States and a 63% 5-year survival rate [1,2]. With the shift in CRC to younger demographics and 68 

tumor metastasis being responsible for most cancer deaths, there is a pressing need for a high-fidelity 69 

screening and prognostication program [3]. The treasure trove of imaging and genomics information 70 

provided by nascent molecular assays and informatics techniques has the potential to inform more 71 

effective, targeted treatment options by revealing novel prognostic biomarkers. 72 

 73 

The pathological TNM-staging system (pTNM) is the most predictive factor for the risk of recurrence and 74 

prognosis [4–7]. Cancer staging is broadly characterized by assessing local invasiveness (T-stage), 75 

followed by the extent of lymph node involvement (N-stage), then the presence of metastasis to distant 76 

sites. Successful extraction of lymph nodes at the time of resection is crucial for establishing the N-stage, 77 

which primarily informs the risk of recurrence [6]. A higher yield of lymph nodes during surgery is often 78 

associated with favorable outcomes at the expense of potential morbidity; as such, the recommended 79 

lymph node yield is set at 12 [6,8]. Yet, one recent population study found that only 37% of such 80 

assessments extract this number, underscoring significant implications for accurate risk assessment and 81 

selection of optimal therapies [4]. For example, the usage of neoadjuvant chemotherapy is typically 82 

considered for stage III patients with proficient mismatch repair (MMR) status. As there are instances 83 

where the presence of metastasis is uncertain, thereby impacting the fidelity of prognostic assessments, 84 

informatics tools that can study the spatial biology of the tumor at the primary site can infer missing 85 

staging information (e.g., lymph node stage) or identify risk factors independent of pTNM staging relevant 86 

which provide additional predictive value for the recurrence risk assessment. 87 

 88 
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Tumor Infiltrating Lymphocytes (TIL) play a crucial role in understanding and modulating the Tumor 89 

Microenvironment (TME) and Tumor Immune Microenvironment (TIME) [9]. The TME consists of 90 

malignant and benign cells, blood vessels, and extracellular matrix, interconnected through complex 91 

communication via cytokine recruitment factors [9]. Recent studies highlight the importance of immune 92 

infiltrates, such as T cells, B cells, NK cells, and monocyte/lymphocyte cells, and their distribution, 93 

density, and relationships in mounting an effective anti-tumor response. Microsatellite Instability (MSI) 94 

status also influences this response [10]. For example, high levels of cytotoxic T cells within the tumor 95 

may indicate immune exhaustion, while increased immune cell density can suggest a favorable prognosis 96 

[11]. Understanding the molecular changes and spatial arrangements associated with colon cancer 97 

metastasis is still incomplete. Nonetheless, several digital pathology assays have incorporated existing 98 

findings to complement pTNM staging and serve as independent risk factors for recurrence. These 99 

assays include: 1) Immunoscore, which measures the density of cytotoxic T-cells at the tumor's invasive 100 

margin and inside the tumor [12], 2) CDX2, an epithelial marker of pluripotency indicating the tumor's 101 

ability to bypass immune response and growth inhibition checkpoints [13–15], and 3) circulating tumor 102 

DNA, such as mutations in the Vascular Endothelial Growth Factor (VEGF) pathway [16–18]. While these 103 

assays are predictive of recurrence risk, they provide only a limited perspective on tumor metastasis 104 

phenomenology. 105 

 106 

Spatial omics technologies, like 10x Genomics Spatial Transcriptomics (ST) or GeoMX Digital Spatial 107 

Profiling (DSP), have facilitated the simultaneous analysis of multiple biomarkers, including the whole 108 

transcriptome, with remarkable spatial resolution [19–22]. These technologies have been applied to 109 

further characterize TIL subpopulations in TME. However, their clinical utility is limited due to high costs, 110 

low throughput, and limited reproducibility. In previous work, we demonstrated the feasibility of utilizing 111 

machine learning algorithms to extract TIL and spatial biology information from Hematoxylin and Eosin 112 

(H&E) stains. This can be a cost-effective and high-throughput digital biomarker that could be employed 113 

prospectively as an adjunct test similar to Immunoscore for recurrence risk assessment [23–25]. We 114 

found that careful selection of algorithms is crucial to capture molecular alterations and pathways 115 

reflective of histomorphological changes or large-scale tissue architecture changes [26,27]. 116 
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 117 

Nevertheless, the resolution of these findings is currently restricted to the available resolution of Visium 118 

spots, typically around 50 microns, which aggregates expression data across a small number of cells (1-119 

10 cells). Incorporating single-cell information, captured through the new Chromium Flex technology, can 120 

enable further characterization of spatial cellular heterogeneity to enhance the resolution of the Visium 121 

data. Recent advancements in 10x profiling technologies, including Chromium Flex and CytAssist assays, 122 

enable the profiling of single-cell transcriptomics (scRNASeq) on serial sections of formalin-fixed paraffin-123 

embedded (FFPE) tissue. By utilizing automated staining devices and advanced imaging techniques prior 124 

to conducting Visium spatial transcriptomics (ST) assays, the CytAssist technology significantly improves 125 

workflow that allow for higher resolution whole slide images (WSI) to be collected. Pairing this high-126 

resolution slide imaging information with ST and serial section scRNASeq has the potential to enhance 127 

the capacity to perform spatial assessments at single-cell resolution on external study cohorts.  128 

 129 

While several technologies have been developed to increase the resolution of Visium data, such 130 

algorithms require both ST and histological information and do not operate on tissue images alone. 131 

Previous studies have made attempts to infer single-cell RNA sequencing (scRNA-seq) data from breast 132 

cancer tissue slide sections, improving the resolution of the data and enabling the identification of 133 

different cell types within the tissue [28]. Other studies have made attempts to infer Visium ST expression 134 

patterns aggregated across several cells per spot using image classification techniques with some 135 

domain-specific adaptations. For example, recent studies have trained DenseNet-121 and InceptionV3 136 

models to predict gene expression [29,30], and another work used a custom convolutional layer along 137 

with a graph attention network and transformer model to share information between Visium spots [25]. 138 

While the Visium platform primarily provides low-resolution, aggregated expression measurements across 139 

cells contained within a 50-micron spot [31,32], single-cell analyses offer a more comprehensive view of 140 

cellular heterogeneity. One study attempts to reconstruct false zero-counts in cell-level omics data by 141 

training a masked autoencoder over known cell data [33], and other recent efforts have been made to 142 

directly infer single-cell transcriptomes from whole slide images by collecting information from single cells 143 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 9, 2023. ; https://doi.org/10.1101/2023.10.09.23296701doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.09.23296701


6 

in serial sections following H&E staining, yet lacked ST data to guide the co-registration of the single cell 144 

data to the slide [34]. 145 

 146 

The primary goal of this study is to enhance the predictive capability of algorithms that infer spatial 147 

transcriptomics (ST) data solely from histology images, capturing single-cell heterogeneity within a spot 148 

and their aggregate spot-level expression. To achieve this, we combine the precise locations of individual 149 

cells, as identified in whole cell images, with the granular data from single-cell RNA sequencing (scRNA-150 

seq). This approach integrates histological details from localized nuclei within and around Visium spots 151 

with corresponding scRNA-seq profiles mapped to the same spots. By seamlessly merging these 152 

datasets, our framework stands poised to extract richer molecular insights from cells, facilitating a more 153 

accurate prediction of both Visium ST and individual cell information. 154 

 155 

Through feature engineering methods, we develop attribution methods to examine the structural 156 

organizations of cells that are most correlated with the expression of specific genes. This can contribute 157 

to a better understanding of the dynamics of the tumor-immune microenvironment and potentially aid in 158 

developing prognostic tools for the stage and aggressiveness of colorectal tumors. In this paper, we 159 

compare the accuracy of methods that use cells as features with conventional computer vision methods 160 

featured in our previous work. It is important to emphasize that this study does not claim to infer 161 

scRNASeq data at specific locations of individual cells. Rather, we demonstrate the ability to leverage 162 

single-cell information to enhance the expression prediction at Visium spots on held-out tissue slides. 163 

This research establishes a foundational workflow and conceptual framework for the future inference of 164 

such information. 165 

 166 
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Results 167 

Overview of Cells2RNA Framework: Bridging Histological Patterns with 168 

Single-Cell Expression 169 

Cells2RNA was crafted to infer single-cell expression insights from discernible histological patterns in 170 

instances where spatial transcriptomics and single-cell data might be lacking (Figure 1). The crux of the 171 

challenge lies in deducing single-cell nuances solely from histological patterns surrounding pinpointed 172 

cells (Figure 2A). Historically, prior research has been limited to interpreting aggregated spot-level data. 173 

Yet, when disaggregated to the individual cell level, a richer tapestry of heterogeneity emerges, which 174 

becomes our focal point for inference. This innovation holds the potential to augment findings across 175 

expansive cohorts without the constraints of traditional spatial analyses that heavily rely on Visium data. 176 

The goal of this study is to derive molecular insights paralleling the depth of Visium-based investigations, 177 

but strictly from histological imaging. 178 

 179 

Central to our approach is a co-mapping methodology. Here, histological patterns detected at the cellular 180 

level are intricately aligned with single-cell expression data (Figure 1A). Spatial transcriptomics serves as 181 

a vital intermediary in this process: during training, it not only maps single-cell RNASeq data to 182 

corresponding Visium spots (Figure 1B) where cells are located but also acts as a crucial inference target 183 

for the expression-centric histological attributes derived from these located cells. 184 

 185 

To accomplish this, Cell Graph Neural Networks (CGNNs) are employed (Figure 2B,E,F). They efficiently 186 

extract the essence of histological features from located cells within Visium spots (Figure 1C). These 187 

features are updated during model training through simultaneous harmonization with scRNASeq data via 188 

optimal transport methodologies (Figures 1D,2G), forging a cohesive link between cellular histological 189 

characteristics and their intricate gene expressions. 190 

 191 
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The culmination of this methodological synergy is a framework where the expression profiles predicted 192 

from detected cells align with the broader single-cell expression landscape. Although this alignment might 193 

not be perfect, it closely mirrors genuine single-cell expression dynamics within each Visium spot. Thus, 194 

our anticipation is twofold: the accurate convergence of aggregated inferred single-cell expression to 195 

spot-level benchmarks and a holistic reflection of single-cell expression diversity within the spot when 196 

applied to external, held-out slides (Figure 2C,D).  197 

 198 

Using Visium and paired 40X resolution whole slide imaging from a cohort of nine stage pT3 colorectal 199 

patients (see section “Data Collection and Preprocessing”), the co-mapping technique was benchmarked 200 

against patch-level models (Inceptionv3) and other CGNNs that utilize alternative information extraction 201 

methods. We assessed their performance based on predicting spot-level expression, capturing cellular 202 

heterogeneity within spots (using Wasserstein distance), maintaining tissue architectural relationships, 203 

and conducting a pathway analysis. A detailed examination of these methodologies and comparisons is 204 

provided in the Methods section. 205 

 206 
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 207 
Figure 1: Overview of Cell2RNA’s Co-Mapping Approach: (A) Low-dimensional visualization of single-208 
cell RNA profiles, clusters indicating cell-type. (B) Spatial layout of identified cells across the tissue slide 209 
(assignment to spots represented by hexagons), color-coded by distinct gene expression patterns 210 
mapped from single cell profiles featured in (A). (C) In-depth view of cells located within a specific Visium 211 
spot, illustrating connectivity and cell relationships. Expression-related histological features, represented 212 
by grey rectangles, are shared among neighboring cells through red curves via a graph neural network. 213 
(D) A side-by-side low-dimensional comparison of scRNASeq profiles for a representative Visium spot: 214 
actual expression (red), model-predicted expression using the co-mapping training approach (green), and 215 
expression prediction without co-mapping training (blue).  216 

A B

C D
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 217 

Figure 2: Schematic Representation of the Neural Network Workflow for Single-Cell Analysis. 218 
During the training phase, (A) a pre-trained Mask R-CNN model is applied to raw histology images to 219 
detect individual cells, after which a 6-nearest neighbors graph is constructed for the detected cells. (B) 220 
Features for each cell are extracted using a ResNet-50 neural network, and the aggregation of 221 
neighboring cell information is modeled using a Graph Attention Network (GAT). For each Visium spot, 222 
the node features are aggregated using sum pooling. (C) Pre-pooled node values are jointly optimized 223 
against single-cell RNA-sequencing (scRNA-seq) data, and (D) pooled Visium spot predictions are 224 
optimized against the corresponding ground truth data, using a mean-squared-error loss computed 225 
across log-transformed counts. (E)-(G) Visual description of neural network architectures and 226 
penalizations employed: (E) a two-stage neural network comprising a feature extraction stage and a 227 
prediction stage, this was not used in this work, (F) an end-to-end neural network encompassing the 228 
entire process from cell detection to feature extraction, graph convolutions and prediction, utilized in this 229 
study, and (G) the incorporation of single-cell-level penalties into the loss function to enforce consistent 230 
predictions with scRNA-seq data.  231 
 232 
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Model Comparison 233 

Overall, models have strong performance– selecting the top CGNN model per gene resulted in an 234 

AUROC of 0.8138 ± 0.0069 and Spearman's statistic of 0.5724 ± 0.0133 (Table 1). However, across all 235 

experiments, model performances did not appear significantly different from each other, though we 236 

noticed several important trends (Figure 3,4). CGNN models performed on par with the Inception model 237 

(AUC=0.8204 ± 0.0073). The most predictive cell-based model had an AUROC of 0.8093 ± 0.0083, 238 

similar to the InceptionV3 model's AUROC interval of 0.8204 ± 0.0073, which leveraged additional 239 

information beyond the cell's immediate neighborhood and may have also benefited from the built-in 240 

structural feature extraction of CNNs. There was high agreement in top-performing genes between CGNN 241 

methods using graph contrastive learning or single-cell penalization as compared to a CGNN with no 242 

penalization/pretraining (Supplementary Figure 1, Supplementary Table 1). Notable genes with high 243 

predictive performance include TMSB4X, which encodes an actin-sequestering protein vital for actin 244 

polymerization, cell proliferation, migration, differentiation, and bypasses X inactivation with a homolog on 245 

chromosome Y; and ELF3, which regulates the inflammatory response (Supplementary Table 1). 246 

 247 

Table 1: Comparison of model performance. Aggregate AUROC is calculated as the median AUROC 248 
across genes. Gene-level AUROC is calculated as the mean across cross-validation folds. 249 

Modeling Approach Spearman AUROC Optimal Transport 
(EMD) 

Vanilla CGNN 0.5591 ± 0.0146 0.8093 ± 0.0083 0.2113 ± 0.0018 
CGNN: Graph 

Contrastive Learning 
0.5356 ± 0.0177 0.8049 ± 0.0083 0.1900 ± 0.0020 

CGNN: Single-Cell 
Penalization 

0.5381 ± 0.0158 0.8012 ± 0.0074 0.1473 ± 0.0018 

CGNN: GCL and 
Single-cell penalization 

0.5464 ± 0.0156 0.8084 ± 0.0093 0.1415 ± 0.0018 

Top CGNN per Gene 0.5637 ± 0.0135 0.8138 ± 0.0069 N/A 
Top Model per Gene 0.5766 ± 0.0122 0.8206 ± 0.0076 N/A 

InceptionV3 (256x256) 0.5724 ± 0.0133 0.8204 ± 0.0073 N/A 
 250 
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 251 

Figure 3: Performance comparison between methods. A) Boxplot of AUROC scores from each 252 
method; B) comparison of AUROC for best CGNN and CNN for each gene  253 
 254 

 255 
Figure 4: Predicted expression for various genes: CNN, CGNN, compared to ground truth for genes 256 

CDX1, COL3A1, CDH1 and EPCAM across sections from all nine patients 257 

Single-Cell Attribution Maps Point to Spatial Cellular Heterogeneity 258 

Single-cell regularization was able to significantly improve the alignment of cellular information extracted 259 

from located cells within held-out slides with their corresponding single-cell profiles, as measured by the 260 

Earth Mover's (Wasserstein) distance between cells assigned to spots using Tangram and their closest 261 
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detected matches (EMD=0.1415 ± 0.0018 with penalization, 0.2113 ± 0.0018 without penalization). This 262 

improvement does not negatively impact AUROC. Cells were embedded using UMAP based on the 263 

ground truth and predicted expression, with and without penalization with scRNASeq. Visual inspection of 264 

these UMAP embeddings confirmed the quantitative results of differences in EMD (Supplementary 265 

Figure 2), that single-cell penalization causes node-level predicted expression from cellular 266 

histomorphology for genes to more closely resemble the distribution of single-cell data assigned to the 267 

Visium spot with Tangram.  268 

 269 

An optimal transport approach matched single-cell profiles between the predicted and ground truth. We 270 

then assessed the correlation between individual cells for specific genes based on their performance on 271 

the Visium spot level. Overall, more than 80% of the genes exhibited a positive correlation between 272 

ground truth and predicted single-cell expression when single-cell regularization was employed, 273 

compared to around 20-30% of the genes without such regularization was not used (Supplementary 274 

Figure 3). Examining inferred cell-level expression before the final pooling layer makes the source of our 275 

network's predicted gene expression evident. As illustrated in Figure 5E-G, we juxtapose the predicted 276 

level of EPCAM expression for each cell against ground truth data from a Visium assay. Notably, the 277 

Visium assay offers aggregate expression measurements spanning a broader region. Our model's 278 

predictions and the ground truth at cellular resolution are visually consistent (Figure 5A-D), further 279 

corroborating with both the high accuracy results reported from the previous section as well as the lower 280 

EMD reported through single-cell penalization.  281 

 282 

Cell-level attribution (i.e., inferred expression) maps mirror tissue architecture. A closer inspection of a 283 

tissue section reveals patterns, such as cells exhibiting high expression juxtaposed with a cluster of low-284 

expression cells. Such patterns potentially highlight activities conforming to the underlying tissue 285 

structure. The structural coherence of granular cell-level information likely stems from our regularization 286 

strategies, compelling the neural networks to internalize a general representation of cell graphs and the 287 

sheer volume of available data. In instances where Visium spots exhibit diverse expression levels yet 288 

have similar cell graphs, the graph neural network may pinpoint certain cells that act as primary 289 
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influencers or representatives of the expression within that spot (i.e., have markedly similar/different 290 

expression for specific genes). These specific cells could either epitomize the overall expression profile or 291 

significantly sway the expression heterogeneity at that location. Further validation is necessary to 292 

corroborate these findings, and this will be a central focus of our future research. 293 

 294 

Figure 5: Alignment of True and Predicted Single-Cell and Visium-Spot Level Expression on a 295 
Histological Section. The figure illustrates the relationship between true and predicted single-cell 296 
expression on a histological section for genes CD24, KRT8, and S100A6. Ground truth expression was 297 
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assigned to each cell using optimal transport based on comparing predicted and actual expressions 298 
rather than their spatial arrangement. A) and C) display the ground truth of single-cell expression with and 299 
without single-cell regularization, respectively. B) and D) visualize the respective predicted single-cell 300 
expressions. Progressing from individual cellular predictions to a broader view, D)-G) detail the transition 301 
through EPCAM expression: from predicted cell-level expression in D) to an overarching cell graph across 302 
multiple Visium spots in E) and concluding with spot-level Visium expression in G). 303 

Topological Consistency of Inferred Expression Patterns 304 

Across all capture areas, predicted spot level expression clustered similarly to the true expression as the 305 

relative positioning between the true and predicted clusters in the UMAP plots was preserved (Figure 6). 306 

However, there were notable differences. Overlaying the clusters assigned to ground truth embeddings 307 

over the predicted expression embeddings, we found that clusters were less separated, more connected, 308 

clumped, and fuzzier than the ground truth. Nonetheless, overlaying cluster assignments across the 309 

whole slide image demonstrates the ability of these models to derive expression signatures that can 310 

delineate key histological architectures that will be the subject of inquiry in future work.  311 

 312 
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Figure 6: UMAP embeddings of tissue slides from selected capture areas, color-coded by 313 
HDBSCAN clusters. Comparisons include CGNN, CGNN with single-cell penalization, and patch-based 314 
methods against the ground truth. Clusters derived from the ground truth are overlaid on the slides for 315 
context. 316 

Pathway Analysis 317 

To compare performance across several potential prediction targets, we selected pathways from 318 

MSigDB's Hallmark Gene Sets [35,36] and reported the average AUC for genes from these sets. Across 319 

all modeling approaches, genes involved in DNA repair and E2F targets were predicted with higher 320 

performance as compared to other molecular pathways (Supplementary Figure 4). Dysregulation of 321 

DNA repair can impact the acceleration of tumor progression [37], and therefore accurately detecting the 322 

presence of relevant genes may be useful in the prognostication of the speed of progression. We did 323 

notice that for some pathways, e.g., Epithelial to Mesenchymal Transition, penalizing by single-cell 324 

expression did lead to some loss of performance in distinguishing these molecular signatures 325 

(Supplementary Figure 4). 326 

 327 

We performed a pathway analysis by subsetting the top 10% of genes (100 out of 1000) per modeling 328 

approach for further analysis using the Enrichr software/database [38–41]. The top ten statistically-329 

significant pathways (from the Elsevier pathway collection), divided by each modeling approach, are 330 

shown in Supplementary Table 2. We also found that the WNT in Epithelial to Mesenchymal Transition 331 

in Cancer pathway, a chief contributor to the migration and metastasis of cancer cells, and several 332 

pathways associated with desmosome assembly (which regulate intercellular adhesion between 333 

metastasizing cells) were among the top ten most statistically significant gene sets detected in all four 334 

techniques, and EPCAM in Cancer Cell Motility and Proliferation is a statistically significant gene set in all 335 

four techniques. The WNT in Epithelial to Mesenchymal Transition in Cancer pathway has an AUROC of 336 

0.8686 ± 0.0273 for the Inception model and 0.8638 ± 0.0238 for the "vanilla" cell graph model. 337 

 338 
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Discussion 339 

In this research, our primary objective was to draw inferences about spatial mRNA expression patterns 340 

from whole slide images (WSI), specifically by fusing single-cell histological and transcriptomic data. One 341 

of the key advantages of deriving such spatial information from routine stains is the potential to 342 

substantially reduce the costs associated with understanding the tumor immune microenvironment 343 

(TIME). Instead of relying on expensive spatial molecular staining for multiple targets, this technique 344 

offers an economical avenue for spatial molecular assessment, which can subsequently aid in the risk 345 

evaluation of recurrence. It is becoming clear that the spatial positioning, functional status, and mere 346 

presence of immune cells within TIME are crucial determinants of the tumor's immune response. We 347 

pioneered a cell graph neural network algorithm in response to this understanding. This was designed to 348 

meticulously analyze cell structures within WSI and associate them with specific gene expressions. The 349 

development of this algorithm highlights the viability of utilizing spatial transcriptomics as a rich pretraining 350 

source, using scRNASeq to guide single-cell level interpretations that could benefit from graph-based 351 

representations. As we merged scRNASeq data with detailed histological imaging, we also introduced 352 

attribution methods that aspire to clarify the expression patterns evident in Visium spots. Even though 353 

these methods are still evolving and need further optimization and comprehensive validation, they usher 354 

in a promising avenue to understand the nuanced relationship between spatial positioning and gene 355 

expression. Importantly, our work underscores the potential of harnessing neural networks to derive 356 

molecular insights directly from tissue histology without necessitating additional assays, even though 357 

such assays played a critical role in training our models. 358 

 359 

Our study revealed that by considering cells' histomorphology and spatial relationships, we could 360 

effectively predict gene expression patterns across whole slide images. In some instances, these 361 

approaches outperformed traditional patch-based computer vision methods that rely on regression 362 

models using cropped images around each Visium spot. However, the predictive capacity of these 363 

approaches was found to be similar to patch-based methods, which is not surprising considering that the 364 

cells are contained within these patches and should present some loss of information. By explicitly 365 
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incorporating cells as nested observations, attribution methods enabled the identification of structural cell 366 

organizations that exhibited the strongest correlation with the expression of specific genes. This finding 367 

has the potential to enhance our understanding of the tumor-immune microenvironment dynamics in 368 

future work. 369 

 370 

Comparison of Cell-Level Approach to Patch-Based Methods: The performance of the CNN model does 371 

not surpass that of the cell-based approaches. Interestingly, our basic cell model, devoid of any 372 

augmentations or pretraining, demonstrates a bootstrapped AUROC confidence interval overlapping with 373 

that of the Inception model. This indicates that, even when operating with potentially less diverse 374 

information like the extracellular matrix and connective tissue, the cell-based model remains competitive 375 

against its CNN counterpart. We posit that patch-based CNNs have an inherent advantage due to their 376 

richer input dataset and innate spatial reasoning granted by 2D convolutional kernels. In contrast, graph 377 

neural networks (GNNs) rely exclusively on adjacency matrices for spatial information. The crux here is 378 

the trade-off between robustness and interpretability. Although CNN may show a slight performance 379 

advantage, its insights are limited to single-pixel attributions, neglecting the broader scope of cell-cell 380 

interactions. Conversely, the GNN model offers superior explainability, permitting direct visualization of 381 

pivotal cell-cell interactions for particular genes, with tools like Captum, GNNExplainer, and topological 382 

methods that can be used to decipher important structural motifs. 383 

 384 

Impact of Single-Cell Penalization: Several of our experiments, including single-cell penalization and 385 

contrastive pretraining, showed minimal influence on the final outcome. This lack of influence indicates 386 

that employing single-cell penalization can shed light on the spatial nuances of cellular disparities without 387 

compromising performance, emphasizing the significance of cellular phenomena and connectivity. We 388 

believe this is due to the large dataset size (more than 60,000 Visium spots), which may mitigate the 389 

need or potential benefit of pretraining. Additionally, although we hoped that single-cell penalization would 390 

improve the model's robustness (by grounding predictions in real single-cell RNA quantification), the 391 

penalization provided modest performance gains over methods that did not employ this penalization. This 392 

modest gain suggests that models may produce the same optimum regardless of the intermediate feature 393 
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values (i.e., cell-level predictions). However, we do note that single-cell penalization causes cell-level 394 

values to be more aligned with true single-cell data, which may indicate potential future applications in 395 

deconvolution at single-cell resolution pending further validation. Cell regularization seems to have a 396 

slight negative impact across all pathways, but this might be expected since it more directly impacts node 397 

predictions rather than graph predictions. Without this regularization, the model is more directly trained 398 

towards Visium alignment, on which it is validated. However, with the regularization, we notice that 399 

agreement between node-level predictions and single-cell profiles improves (as measured by a decrease 400 

in mean-squared error). Therefore, we propose that this method would be useful in exploring the potential 401 

for graph neural networks in cell deconvolution. 402 

 403 

Revisiting Topological Consistency and Intermediate Histologically-Associated Molecular States: We 404 

discovered that although the predicted expression patterns mirrored the essential topological 405 

relationships tied to specific histological structures, they were more intertwined compared to the true 406 

expression, resulting in less pronounced clustering. Such mixed clustering might suggest that these 407 

clusters signify different degrees of cellular activity for various phenomena. It seems easier for machine 408 

learning models to distinguish between low and high activity levels, but interpolating intermediate levels of 409 

activity poses a challenge from a visual standpoint. In some instances, while the ground truth UMAP 410 

expression plot showed nuanced expression, the predicted expression indicated centralized expression 411 

around specific profiles. This implies a potential loss of intricate genetic interrelations, which is expected 412 

when deducing genomic data mainly from visual information in histology. This nuanced loss in the 413 

distinctiveness of the models' topological embeddings could indicate the limitation of extracting molecular 414 

data from histology alone, suggesting richer molecular details exist beyond just histology. A potential 415 

enhancement might involve using single-cell expression profiles to better guide the model toward a more 416 

accurate gene distribution representation. Nevertheless, overall, the model's predictions are topologically 417 

in line with the ground truth. Areas of tissue with similar ground truth measurements also exhibit similar 418 

predicted expressions.  419 

 420 
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Reflections on Pathway Analysis: The WNT in Epithelial to Mesenchymal Transition in Cancer and 421 

EPCAM in Cancer Cell Motility and Proliferation were notable pathways from the results section. Wnt/β-422 

catenin signaling is implicated in cell differentiation and proliferation and has been implicated in 423 

increasing the number of "stem-like" cells in a tumor [42]. EPCAM is responsible for modulating epithelial 424 

cell adhesion, and - while having conflicting trends in recent research - can result in adhesive and 425 

migratory cell activity, potentially impacting the potential for metastasis [43]. 426 

 427 

Immunological Considerations: Our approach to unveil single-cell heterogeneity from whole slide images 428 

through alignment with single-cell expression bears several important immunological implications. First, 429 

the spatial arrangement of immune cells not only influences processes governing the anti-tumoral 430 

response but may offer insights as to the efficacy of immunotherapies including checkpoint inhibitors 431 

which has been a timely subject of inquiry [44,45]. Deciphering the spatial make-up may also further 432 

reveal how tumors can establish immunosuppresive environments or contribute to an immune exhaustion 433 

phenotype [46–48]. These topics underscore work being done to study how tumors can alter their 434 

immunogenicity and immune evasion tactics, potentially informing CAR T-cell therapies or selection of 435 

specific antibodies which can be applied in a personalized manner [49–51]. Revealing additional 436 

heterogeneity may refine the selection of adjuvant therapy choices outside of existing prognostic 437 

measures (e.g., pTNM staging) depending on the kind of immune reactivity. 438 

 439 

Limitations and Future Directions: Our study, while promising, has several limitations that offer avenues 440 

for future research. First, the generalizability of our detection neural network models may be constrained 441 

due to the limited sample size of the Lizard dataset used to train the cell detection models, which may not 442 

be representative of the broader colorectal tumor population. Inaccurate cell detection may have 443 

hampered the predictive performance of the cell-graph neural networks. Additionally, while our cohort of 444 

nine samples is large for a Visium study, given its cost, plans are underway to amass a larger, more 445 

diverse cohort to bolster the robustness of our findings by accounting for further tumor heterogeneity. As 446 

our cohort was restricted to pT3 patients, future work will examine the predictiveness of these algorithms 447 

at additional tumor sites and levels of invasiveness, particularly in relation to the tumor-immune 448 
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microenvironment. Another limitation is that our cell graphs solely relied on local connectivity for 449 

information flow, lacking positional embeddings or integration with patch-level information. The slight 450 

performance advantage of convolutional neural networks (CNNs) over graph neural networks (GNNs) 451 

could be attributed to CNNs' inherent structural benefits. Future work could explore the benefits of deeper 452 

or more extensive cell graphs and the incorporation of single-cell RNA priors for more accurate 453 

predictions. While cell regularization and similar strategies might not enhance the ultimate predictive 454 

capability for pooled Visium expression, they do bolster performance concerning optimal transport 455 

between single-cell profiles assigned to Visium spots using deconvolution methods (like Tangram). Direct 456 

model predictions can display notable correlations in gene expression levels across the cell distribution 457 

within each spot, even without an input single-cell profile. In the future, these methods could serve as 458 

adjustable enhancements or alternatives to Tangram. Inaccurate mapping of single-cell profiles to Visium 459 

spots may have also impacted the validity of the associations between single-cell inferred expression and 460 

could improve with the adoption of other single-cell spatial mapping methods. Potentially this approach 461 

could be used to map single cell profiles, where scRNASeq information has been collected, to their 462 

precise locations within slides without the use of Visium as an intermediary. Our approach could also 463 

extend to identify other spatially-resolved molecular features, such as protein interactions [52,53]. 464 

Validation of our findings using pathological examination of underlying cellular phenomena, through 465 

immunohistochemistry and other single-cell level spatial analysis platforms like Xenium/merScope is 466 

essential [54,55], as this study serves as a proof of concept. We anticipate applying our models to a 467 

larger cohort to identify metastasis and recurrence predictors at a population scale. Furthermore, the 468 

trade-off in model accuracy is mitigated by the potential for scalability, allowing for the assessment of a 469 

larger number of genes with reasonable predictive performance and statistical power. Overall, our study 470 

signifies a crucial step towards improving cancer diagnostics and prognosis by incorporating spatial 471 

transcriptomics into histological images, and future efforts will focus on refining these techniques. 472 

 473 

Ultimately our findings could shed light on the molecular alterations occurring in these immune cell 474 

subsets, which may help identify potential immune evasion mechanisms employed by tumor cells, such 475 

as the upregulation of immune checkpoint molecules or the recruitment of immunosuppressive cell 476 
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populations. By integrating this spatial and molecular information, we can potentially uncover the 477 

functional "hotspots" within the tumor microenvironment, where effective immune responses are either 478 

promoted or hindered. These functional "hotspots" could ultimately aid in designing immunotherapeutic 479 

strategies that aim to reinvigorate the anti-tumor immune response, either by modulating the activity of 480 

immune cells in these hotspots or by altering the spatial organization of immune cells within the tumor 481 

microenvironment. 482 

Conclusion 483 

Our investigation into the spatial patterns of T cells, NK cells, and B cells near the primary tumor site and 484 

their molecular alterations has potential implications for our understanding of tumor microenvironment 485 

dynamics and the broader clinical and immunological context. These patterns can offer valuable insights 486 

into the potential for concurrent nodal and/or distant metastasis and serve as indicators of the risk of 487 

recurrence and mortality. They provide critical complementary information to traditional lymph node 488 

assessment screening programs. Understanding these patterns can significantly influence disease 489 

management strategies for patients with colorectal cancer, as the immune response is intrinsically tied to 490 

the disease's pathogenesis and progression. The promise of spatially inferring gene expression patterns 491 

from routine histological staining within larger cohorts could vastly enhance our understanding of specific 492 

transcriptomic changes occurring within distinct spatial architectures associated with metastasis. 493 

Traditionally, conducting highly multiplexed spatial profiling in such cohorts has been cost-prohibitive. 494 

However, with the advent of new methods, it is now feasible to explore and analyze spatial transcriptomic 495 

data at a previously challenging scale. This advancement opens up unprecedented possibilities for more 496 

cost-effectively investigating spatial cell-type specific changes associated with metastasis. 497 

 498 

Our study revealed that by considering cells' histomorphology and spatial relationships, we could 499 

effectively predict gene expression patterns across whole slide images and recover local patterns of 500 

cellular heterogeneity. Identifying structural cell organizations that exhibited the strongest correlation with 501 

the expression of specific genes has the potential to drastically improve our understanding of the tumor-502 

immune microenvironment dynamics and potentially guide personalized treatment plans. Future 503 
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applications of this method could include predicting response to immunotherapy based on the spatial 504 

distribution and expression patterns of immune cells in the tumor microenvironment. In conclusion, our 505 

study underscores the potential of integrating spatial transcriptomic information into histological images 506 

using feature engineering approaches. It offers a promising direction for enhancing not only the diagnosis 507 

and prognosis of cancer but also our broader understanding of the clinical and immunological intricacies 508 

of the tumor microenvironments. As the field of spatial transcriptomics advances, we anticipate that this 509 

methodology will play an increasingly pivotal role in shaping personalized and precision medicine 510 

strategies for cancer treatment. 511 

 512 

Methods 513 

Table 2: Patient characteristics: This table details nine unique patients' profiles across five capture 514 
areas. Four of these areas are divided equally between two patients, while one is dedicated to a single 515 
patient. Critical patient data, including microsatellite stability status, metastasis occurrence, and tumor 516 
site, are provided for each individual. 517 

  Section Placed on Left Side / Center of Capture Area Section Placed on Right Side of Capture Area 
Capture 
Area 

Dimensions 
(mm) 

Age Sex Tumor Site MSI 
Status 

Metastasis Age Sex Tumor Site MSI 
Status 

Metastasis 

1 6.5 x 6.5 80-
85 

M Left Colon MSI yes – – – – – 

2 11 x 11 90-
95 

F Hepatic 
Flexure 

MSI yes 80-
85 

M Left Colon MSI no 

3 11 x 11 85-
90 

F Splenic 
Flexure 

MSS yes 75-
80 

F Hepatic 
Flexure 

MSS no 

4 11 x 11 80-
85 

F Cecum MSI yes 70-
75 

M Cecum MSI no 

5 11 x 11 55-
60 

F Left Colon MSS yes 65-
70 

M Sigmoid MSS no 

 518 

Data Collection and Preprocessing 519 

The dataset used in this study comprised nine patients with pathologic T Stage-III (pT3) colorectal cancer. 520 

Following IRB approval, these patients were selected through a retrospective review of pathology reports 521 

from 2016 to 2019. Notably, this cohort is distinct from our initial cohort of four slides, profiled using the 522 

original Visium assay without using CytAssist.  523 

 524 

Patients were matched based on various criteria such as age, sex, tumor grade, tissue size, mismatch 525 

repair/microsatellite instability (MMR/MSI/MSS) status, and tumor site. MSI status was determined 526 
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through the loss of expression of MLH1 and PMS2 as assessed through immunohistochemistry (there 527 

was no loss of expression for MSH2 and MSH6).  528 

 529 

The dataset included both patients with concurrent tumor metastasis and patients without metastasis, 530 

with equal representation from each group. Patients were carefully selected to ensure a balanced 531 

representation across various factors, including tumor site, grade, node status, MSI status, and sex. 532 

Tissue blocks were sectioned into 5-micron thick layers. Specific regions of interest within these sections, 533 

including epithelium, tumor-invasive front, intratumoral areas, and lymphatics, were annotated by a board-534 

certified GI pathologist. Following annotation, these regions were dissected from the tissue, and 535 

subjected to H&E staining, imaging, and Visium profiling at the Pathology Shared Resource at Dartmouth 536 

Cancer Center and Single Cell Genomics Core in the Center for Quantitative Biology. 537 

 538 

Enhanced Pathology Workflow for Visium Profiling: In this study, we utilized the enhanced workflow 539 

described in(10)., to profile specimens utilizing the Visium assay. Forv four slides, which corresponded to 540 

eight patients, we macrodissected tissue sections from Formalin-Fixed Paraffin-Embedded (FFPE) blocks 541 

into 5.5mm by 11mm rectangular segments—precisely delineated by the pathologist in serial Whole Slide 542 

Images (WSI)—to isolate specific tissue architectures. To optimize study expenses, rectangular tissue 543 

segments from two different patients were juxtaposed at the center of a standard histology slide to form 544 

11mm2 capture areas (each corresponding to approximately 14,300, 50-micron Visium spots) and then 545 

secured with a coverslip. Within each of these dual-patient capture areas, we maintained an equal 546 

representation of metastasis and MSI status and ensured each capture area comprised tissue from 547 

similar anatomic sites. For one of these slides, we profiled approximately 5,000 50-micron Visium spots 548 

within a 6.5mm by 6.5mm capture area. Our analysis involved a total of five tissue capture areas, 549 

representing nine distinct patients. The characteristics of the patients, such as age, sex, and tumor site 550 

for these batches, are provided in Table 2. 551 

 552 

To achieve uniform staining and enhance image quality, we incorporated the CytAssist workflow, which 553 

allows Visum profiling of tissues on standard histology slides, enabling the use of pathology department 554 
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automated staining (Sakura Tissue-Tek Prisma Stainer– Sakura Finetek USA, Inc. 1750 West 214th 555 

Street, Torrance, CA 90501) and advanced WSI at 40x resolution (0.25 micron per pixel) via Aperio 556 

GT450s to obtain reproducible, high-quality images. Following the preparation of the tissue slides, we 557 

employed the Visium assay using the CytAssist technology acording to the manufacturer’s protocol 558 

(CG000495) [56,57]. Here, transcriptomic probes are hybridized to the tissue section and ligated to form 559 

an amplifiable product. CytAssist facilitates the precise transfer of the ligated probes from the tissue slide 560 

to the Visium CytAssist Spatial Gene Expression slide (GEX), which harbors spatially-barcoded capture 561 

oligonucleotides, bearing a poly-A sequence complementary to the probes. During transfer, CytAssist 562 

images the tissue within the fiducial frame of the GEX slide, allowing for the co-registration of 40x H&E 563 

tissue images with Visium ST spots. transferred probes are then extended and amplified prior to 564 

sequencing on an Illumina NovaSeq instrument, targeting 50,000 reads/spot. This comprehensive 565 

procedure allows for unbiased and gridded profiling of up to 5,000 spots, each containing 1-10 cells, 566 

within a 6.5 mm2 capture area, and up to 14,300 spots within an 11 mm2 capture area. For data 567 

processing, we utilized Spaceranger V to align the CytAssist images with the corresponding 40X H&E 568 

stains, conduct quality control, and convert the Visium Spatial Transcriptomics (ST) data into a spots x 569 

genes expression matrices used for downstream analysis [58]. 570 

 571 

Single Cell Profiling: We utilized the Chromium Flex assay to acquire single-cell RNA-Seq data, 572 

specifically from serial sections of patients identified in Capture Areas 2 (left section) and 5 (right section), 573 

as detailed in Table 2. This method allows for single cell profiling of disaggregated FFPE tissue sections 574 

using the same transcriptomic probe set as the Visium assay, thereby revealing the diverse cell types 575 

within the tissue. This method was performed according to the manufacturer’s Demonstrated Protocol 576 

(CG000606). Data were processed using CellRanger v7.1.0 to generate quality control metrics and a 577 

cells by genes expression matrices for downstream processing.  578 
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 579 

Preprocessing and Augmentation 580 

Selection of Gene Prediction Targets: We curated a list of 1,000 target genes by initially filtering out those 581 

not appearing in at least 100 spots per patient. These genes were subsequently ranked based on the 582 

fraction of their spatial variance, as determined through SpatialDE analysis. To rectify aberrant gene 583 

expression levels, we applied a transformation to both prediction and target gene counts using the 584 

expression log(1 + counts). 585 

 586 

Extraction of Single Cell Imaging Information: Cell detection was performed using the Mask-RCNN 587 

framework, which was trained on both the Lizard dataset and our internal dataset [59–61]. The nuclei 588 

detection model, available through the public Detectron2 Model Zoo, served as our pre-trained base. This 589 

model was further trained on our dataset for up to 5,000 epochs, with training halted upon the observation 590 

of overfitting (indicated by a peak in mAP on the validation set). The architecture employed was a Mask 591 

RCNN with a Residual Network + Feature Pyramid Network (ResNet+FPN) backbone based on the 592 

ResNet-101 model. After training, this cell detection model was systematically applied across each Whole 593 

Slide Image (WSI). 594 

 595 

Image Normalization and Augmentation: The associated image was normalized for each detected cell 596 

through standard scaling applied over the image channels. We implemented data augmentation 597 

techniques to enhance our dataset, including random rotations (up to 90º) and color jitter adjustments. 598 

These augmentations were specifically applied to the images and cell detections cropped around the 599 

Visium spots during the training phase. 600 
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 601 

Deep Learning to Integrate Information from Localized Cells to Predict 602 

Spatial Gene Expression 603 

Cell graph neural networks (CGNN) facilitate the exchange of messages between adjacent cells, enabling 604 

the exchange/incorporation of contextual information [62–67]. This approach effectively captures the 605 

relationships between different cell populations within the tissue, including tumor cells and surrounding 606 

immune and other cell subpopulations. The important difference between this approach and a more 607 

general convolutional neural network model is that cells and the relationships between them are modeled 608 

explicitly. Leveraging these relationships can enhance the predictive performance of our spatial RNA 609 

inference algorithms while providing additional information as to relevant cells for these predictions. 610 

 611 

We implemented an end-to-end training strategy that integrates the simultaneous training of a 612 

Convolutional Neural Network (CNN) and a Graph Neural Network (GNN). The CNN is designed to 613 

extract cell-level features from histological images, while the GNN contextualizes these features by 614 

incorporating information from neighboring cells during the model-fitting process. This stands in contrast 615 

to previous cell-level neural network models, which typically employ a two-stage approach. In these two-616 

stage models, features are initially extracted using a CNN, and these extracted features serve as input to 617 

train the GNN in a separate, subsequent step. Such a two-stage paradigm can potentially lead to 618 

suboptimal results, as the CNN's parameters are fixed before the GNN training begins, thereby limiting 619 

the CNN's ability to adapt based on the contextual information that the GNN could provide. Our end-to-620 

end approach aims to harmonize the feature extraction and contextualization processes, enabling the 621 

CNN to learn cell-level features that are more effectively contextualized through iterative, integrated 622 

training with the GNN (Figure 1,2). 623 

 624 

The backbone of the model is a four-layer graph attention network (GAT) [68,69], which uses self-625 

attention mechanisms to update the representation of each cell with the information of its neighbors. We 626 
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extract nodal attributes from detected cells using a ResNet-50 model, which is trained jointly with the 627 

graph attention layers. The Euclidean distances between the spatial locations of detected cells are used 628 

to form k-nearest-neighbor cell graphs (k=6, determined through a sensitivity analysis), connecting cells 629 

based on their spatial proximity. Patients within the same Visium capture area were divided according to 630 

pathologist-annotated segmentation masks– we ensured that cell graphs did not overlap across patients. 631 

The model updates cell-level embeddings through information sharing up to four neighbors away, 632 

facilitated by message passing between nodes across four graph attention layers, each mapping cells to 633 

512-dimensional numerical vectors. Final node embeddings pass through a linear layer, producing a 634 

vector representing each gene's relative pseudocount-transformed expression for each cell. Cells 635 

corresponding to the same Visium spot are then aggregated through global sum pooling to predict 636 

expression at the Visium spot. This is then compared to the pseudocount-transformed ground-truth 637 

Visium data with mean squared error.  638 

 639 

Comparison of Cell-Graph Neural Network Regularization Strategies 640 

In addition to evaluating the congruence between ground truth and predicted expression at the spot level, 641 

we explored the following methodological variations: 642 

1. Vanilla Supervised Learning Objective: This baseline approach focuses solely on the 643 

supervised learning objective, serving as a reference for evaluating the potential gains from 644 

additional regularization strategies. 645 

2. Incorporating Graph Contrastive Learning: This approach introduces a self-supervised 646 

regularization term that encourages the model to learn embeddings through the comparison of 647 

augmented viewpoints of the same cell graph / Visium spot to different cell-graphs / Visium spot. 648 

This can enhance the model's sensitivity to spatial patterns in the data, potentially improving its 649 

predictive accuracy for spatial transcriptomics patterns. 650 

3. Incorporating Single-Cell RNA-Seq Penalization through Optimal Transport: This strategy 651 

introduces a penalty term that encourages the model to align cell-level histological features more 652 

closely with corresponding single-cell RNA-Seq data. By leveraging optimal transport theory, this 653 
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term effectively "guides" the model towards a solution where the spatial patterns inferred from 654 

histology are maximally consistent with independent single-cell RNA-Seq measurements, thereby 655 

enhancing the biological validity of the model's predictions. 656 

4. Combining Graph Contrastive Learning and Single-Cell Penalization: This approach 657 

synergistically combines both the graph contrastive learning and the single-cell RNA-Seq 658 

penalization strategies, aiming to leverage the benefits of both spatial context awareness and 659 

alignment with single-cell RNA-Seq data. This dual-regularization strategy is designed to promote 660 

a model that is both sensitive to spatial patterns and tightly aligned with independent molecular 661 

measurements, potentially offering a balance between spatial sensitivity and biological validity. 662 

 663 

Graph Contrastive Learning 664 

Using the PyGCL package, graph contrastive learning was implemented through augmentations to 665 

random cell positions in the nearest neighbor graph construction, dropping edges with a probability of 0.1, 666 

and masking out features with a probability of 0.3. Graph contrastive learning is a form of self-supervised 667 

learning that can improve the generalizability and robustness of graphs [70–72]. By intentionally adding 668 

noise to the training cell graphs and comparing these representations at different Visium spots, we aimed 669 

to improve the model's generalizability when tested on held-out data by forcing it to learn a stable, robust, 670 

foundational representation. 671 

 672 

Incorporating Single-Cell Expression 673 

For two of our patients in the study, we obtained corresponding single-cell RNA-Seq data, which were 674 

selected to be representative across sex, microsatellite instability, and metastasis status. Due to budget 675 

constraints, we were unable to acquire matching single-cell data for all the slides, a limitation we aim to 676 
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address in future work. Our approach involves the integration of single-cell RNA-Seq data as a form of 677 

model regularization. By encouraging the predictions derived from histological images of individual cells 678 

to align closely with the corresponding true single-cell expression profiles, we aim to enhance the 679 

interpretability of our models through more consistent and biologically meaningful cellular information. 680 

This, in turn, is expected to improve the model's generalizability. The objective is to develop a nuanced 681 

understanding of cell type populations at specific spatial locations while maintaining fidelity to the ground-682 

truth expression data sampled through the Visium platform. By fine-tuning the alignment between these 683 

profiles, we strive to increase the likelihood that our predictions accurately reflect the true cellular 684 

composition at each spatial location. In contrast to previous attempts to integrate single-cell information 685 

with histology, where spatial transcriptomics data were not employed to guide the spatial mapping of 686 

single-cell information, our approach uniquely capitalizes on the spatial context offered by the spatial 687 

transcriptomics data. Specifically, we align single-cell profiles with individual Visium spots, thereby 688 

avoiding spurious cell assignments that can arise when attempting to map single-cell information across 689 

entire whole-slide images without the benefit of such spatial guidance. 690 

 691 

We initiated our analysis by mapping scRNA profiles to Visium spots using the Tangram tool [73], and we 692 

selected the top k most likely cells to be assigned to each spot, where k represents the number of 693 

detected cells in that spot. In the context of our CGNN model, which aims to predict log-expression levels 694 

for individual cells, it was critical to assess the alignment between these predictions and the assigned 695 

single-cell profiles. Originally, we employed a dynamic matching approach wherein the pool of cells 696 

assigned to each spot was paired with our detected cells based on the Euclidean distance between their 697 

predicted and observed expression profiles. This matching was formulated as a variant of the linear sum 698 

assignment problem, solved using the Hungarian algorithm. This algorithm established the optimal one-699 

to-one correspondence between detected cells and their closest-matching assigned scRNA cells, thereby 700 

minimizing the Euclidean distance between them. We applied a mean squared error (MSE) loss across 701 

the log-transformed expression values to penalize discrepancies between these matched profiles. 702 

However, following internal comparisons, we shifted our approach to leverage the Wasserstein loss as a 703 

more effective metric for aligning our predictive single-cell expression profiles with the true expression 704 
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profiles derived from scRNA data. The Wasserstein distance, a loss metric formulated on principles from 705 

the theory of optimal transport [74–77], quantifies the minimum cost required to transform one distribution 706 

into another, effectively capturing the overall distributional differences between predicted and ground truth 707 

single-cell expression profiles. This approach offers more flexible comparisons, as it can accommodate 708 

shifts in the distribution and discrepancies in the shape of the distributions without necessitating a direct 709 

one-to-one matching between predicted and observed cells. 710 

 711 

Our internal comparisons revealed that the Wasserstein loss provided more precise and interpretable 712 

mappings between detected and observed cellular profiles, solidifying it as our chosen approach. The 713 

Wasserstein loss was computed for each Visium spot and used to compare the effectiveness of different 714 

regularization methods, measuring alignment between predicted and ground truth single-cell expression. 715 

 716 

Comparison to Convolutional Neural Network Approaches 717 

The CGNN approaches were compared to patch-based convolutional neural network methodologies 718 

deemed highly predictive from previous works– namely the InceptionV3 neural network. The Inceptionv3 719 

network can capture features at various receptive fields. This model was trained on images of tissue 720 

patches encompassing multiple cells inclusive of surrounding matrixed tissue architecture. We initialize 721 

the model with ImageNet weights (with the final layer truncated) on the same dataset. We apply the same 722 

visual transformations as for the cell embeddings, (standard scaling, color jitter, random 90º rotations). 723 

 724 

Training and Validation 725 

CGNN models were implemented with the torch-geometric Python package [78], which extends the 726 

PyTorch machine-learning framework. We use PyGCL [72] to apply graph augmentations. CGNN were 727 
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trained using the Adam optimizer [79] with a learning rate of 0.0001 on one Nvidia V100 GPU with 728 

Dartmouth Research Computing, quickly converging after two epochs. Similarly, the CNN model was 729 

trained for around 100000 iterations on a Nvidia V100 GPU.  730 

 731 

The final performances of these models were compared using leave-one-patient-out cross-validation. 732 

Statistics are reported with the Spearman correlation coefficients. We also sought to assess the 733 

performance of predicting dichotomized gene expression (low/high), a binary classification problem– this 734 

was accomplished by dichotomizing expression according to [30], used to calculate the area under the 735 

receiver operating characteristic curve (AUROC) as another performance measure. Models were trained 736 

and then cross-validated using all capture areas except one, reserved for testing, and repeated for all 737 

cross-validation folds. Performance statistics were generated for each cross-validation fold, including 738 

Spearman's correlation coefficients and area under the receiver operating characteristic curves 739 

(AUROCs) by gene. The results were then averaged across all folds to assess the best-performing model 740 

on a gene-specific basis. We calculated 95% confidence intervals for all performance statistics, reported 741 

using 1000 sample non-parametric bootstrapping. 742 

 743 

Model Interpretation through Single Cell Attributions, Gene Embeddings 744 

and Pathway Analysis 745 

Single-cell attributions: We visually inspected the CGNN's ability to reconstruct single-cell gene 746 

expression based on the aggregate neighborhood's gene expression. Since the CGNN calculates the 747 

overall expression of a Visium spot by summing predictions for individual cells, we hypothesized that the 748 

predictions for each cell would reflect their relative contribution to the spot's expression. We believed that 749 

the model would learn consistent and meaningful gene expression counts due to the large amount of data 750 

and our aggregation method. 751 

 752 
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Operating under this assumption, we generated attribution maps representing each cell's expression for 753 

the 1000 genes across the slide. These multidimensional maps provided insights into the expression 754 

patterns of individual cells, even though they were not explicitly labeled for that purpose. To assess the 755 

validity of these attribution maps, we collaborated with a pathologist for their expert evaluation. However, 756 

we acknowledge that further detailed analysis is needed in future work to delve deeper into their 757 

significance and accuracy. To complement these attribution maps, we also generated analogous 758 

explanation maps, which utilized the GNNExplainer algorithm to assign importance scores to specific cells 759 

based on their relevance for predictions of specific genes [80].  760 

 761 

Gene embeddings: Similar to our previous work, we sought to intuitively understand how well each 762 

approach could recapitulate the relationships between the Visium spots. This recapitulation was 763 

accomplished by applying Uniform Manifold Approximation and Projection (UMAP) to each predicted 764 

expression profile [81]. Each method's predicted and actual gene expressions were aligned and clustered 765 

using the AlignedUMAP method. Clusters determined by running HDBSCAN [82] on the ground truth 766 

expression data were overlaid on top of the UMAP plots for the other methods. To do this, we created 767 

HDBSCAN clusters with a minimum size of 3 across the log-transformed ground truth Visium data. Then, 768 

we annotated each of our prediction points with the corresponding HDBSCAN cluster of the ground truth 769 

and performed an aligned UMAP, jointly minimizing the distance between similar expressions in the 770 

embedding space and between paired ground truth and true locations. In addition, we annotated our 771 

histology images with the HBDSCAN clusters to interpret the tissue type of origin for each point. The 772 

visual similarity of clustering patterns would indicate an overall similarity of the predicted and ground truth 773 

expression.  774 

 775 

Pathway analysis: Pathway analyses were performed to assess the ability of the methods to capture 776 

broader biological phenomena. Pathway analyses were accomplished using two separate methods: 1) 777 

aggregating the Spearman correlation and AUROC statistics across genes associated with pathways 778 

identified from the MSigDB Hallmarks gene set, and 2) evaluating the enrichment of the highest genes as 779 

ranked using their performance statistics, utilizing enrichR, which employs a modified Fisher's exact test. 780 
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By examining the average performance across pathway analysis and overlap tests for the top-performing 781 

genes, we can gain insights into which biological phenomena each method effectively represents. 782 
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Supplementary Material 1018 

Supplementary Table 1: Spearman correlation scores for top performing genes from each 1019 
CGNN method 1020 

 Vanilla Graph Contrastive 
Pretraining 

Single-Cell 
Regularization 

Both 

 Gene R Gene R Gene  R Gene R 
1 LGALS3BP 0.484 S100A6 0.575 FXYD3 0.624 TFF3 0.643   
2 KRT8 0.443 FXYD3 0.568 LGALS4 0.590 KRT8 0.638 
3 SPINT2 0.425 TMSB10 0.566 KRT8 0.590 S100A6 0.634 
4 MYL6 0.412 TMSB4X 0.561 LGALS3 0.574 FXYD3 0.625 
5 KLF5 0.404 TFF3 0.551 MYH14 0.567 PHGR1 0.602 
6 S100A6 0.403 MT-ND4L 0.550 CLDN4 0.560 PIGR 0.595 
7 JUN 0.392 PIGR 0.548 MISP 0.556 LGALS3 0.592 
8 ETS2 0.390 KRT8 0.546 S100A6 0.541 ELF3 0.592 
9 CSRP1 0.390 LGALS3 0.543 PHGR1 0.540 CLDN7 0.590 
10 ACTB 0.389 MT-CO3 0.537 TFF3 0.535 KLF5 0.589 
11 PHGR1 0.385 LGALS4 0.535 CLDN7 0.534 CD24 0.586 
12 S100A10 0.384 ITM2C 0.534 CD24 0.530 EPCAM 0.585 
13 ZFP36 0.377 MT-CO2 0.530 CD9 0.521 LGALS4 0.583 
14 PERP 0.377 PHGR1 0.526 EPCAM 0.519 CLDN4 0.583 
15 IGFBP4 0.373 MT-ND4 0.510 TMSB10 0.505 FCGBP 0.580 
16 COL1A1 0.370 EPCAM 0.501 PIGR 0.502 MYH14 0.580 
17 FLNB 0.367 CLDN4 0.501 SPINT2 0.501 TMSB10 0.579 
18 SDC4 0.363 MT-ND6 0.494 REG4 0.499 TMSB4X 0.567 
19 CLDN7 0.354 STARD10 0.490 KLF5 0.496 MISP 0.565 
20 LMNA 0.348 LGALS3BP 0.490 ANXA2 0.491 STARD10 0.564 
21 CDC42EP5 0.346 CLDN7 0.489 PPP1R1B 0.481 CD9 0.559 
22 CANT1 0.344 MISP 0.479 IFI27 0.479 LGALS3BP 0.554 
23 PYGB 0.337 CD24 0.477 STARD10 0.479 SPINT2 0.551 
24 MYC 0.334 MT-CYB 0.467 MLEC 0.479 MUC13 0.549 
25 GMDS 0.327 ACTB 0.457 ELF3 0.475 SDC4 0.542 

 1021 

 1022 

Supplementary Figure 1: Comparative analysis of top performing genes used in different 1023 
penalization and pretraining methods for cell graph neural networks predicting spot-level gene 1024 
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expression. A) Left Venn Diagram: Shows the overlaps between genes selected using the "Vanilla", 1025 
"Graph Contrastive", and "Single Cell" penalization methods. Each circle represents a distinct set of 1026 
genes, with overlapping regions indicating shared genes between methods. B) Right Venn Diagram: 1027 
Represents the overlaps between genes selected using the "Graph Contrastive", "Single Cell", and "Both" 1028 
(a combination of methods) penalization/pretraining approaches. Overlaps indicate genes that are 1029 
common across multiple methods, highlighting the consensus and divergence in gene selection across 1030 
these strategies. Numbers within each segment of the diagrams indicate the count of genes unique to or 1031 
shared by the corresponding methods. 1032 

 1033 

Supplementary Figure 2: UMAP Embedding of Predicted vs. Assigned Cell Expressions. This figure 1034 
showcases UMAP embeddings contrasting predicted cell expressions against expressions of cells 1035 
designated to the Visium spot via the Tangram optimal matching algorithm. The red embeddings 1036 
showcase model outputs with regularization, blue embeddings correspond to the original ground truth 1037 
from single cell RNA-Seq, and yellow embeddings represent predicted single cell outputs without 1038 
regularization for the same spot. Evidently, cell regularization enhances the overlap of predicted and 1039 
assigned gene expressions. Performance assessment relies on the Earth Mover's Distance (EMD) 1040 
between a held-out single-cell profile designated via Tangram and predicted expressions on an isolated 1041 
slide. Distances between cells employ the Euclidean metric, while optimal matchings leverage the 1042 
Hungarian algorithm via the "scipy.optimize.linear_sum_assignment" function. Notably, post-1043 
regularization, the EMD decreases from 0.2113 ± 0.0018 to 0.1473 ± 0.0018. 1044 
 1045 
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 1057 

Supplementary Figure 3: Correlation of predicted versus true single cell log-expression for 1058 
different deciles of genes, ranked based on performance at the Visium spot level 1059 
 1060 
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 1061 

 1062 

Supplementary Figure 4: Boxplot of AUROC scores for selected pathways for all modeling 1063 
approaches. 1064 
 1065 

Supplementary Table 2: Top 10 pathways ranked by adjusted p-value, sourced from the Elsevier 1066 
Pathway Collection via Enricher, for each cell-level modeling strategy. 1067 
 Rank Term Overlap Adjusted P-

value 

No regularization 1 Desmosomes Role in Dilated Cardiomyopathy 5/15 1.72e-06 

2 Desmosome Assembly 5/18 2.19e-06 

3 Corneodesmosomes in Atopic Dermatitis 5/19 2.19e-06 

4 Desmosome Dysfunction in Cardiomyocyte 4/12 1.49e-05 

5 EPCAM in Cancer Cell Motility and Proliferation 5/36 3.61e-05 

6 Proteins with Altered Expression in Cancer 
Metastases 

7/106 3.61e-05 

7 WNT in Epithelial to Mesenchymal Transition in 
Cancer 

5/43 7.05e-05 

8 Proteins with Altered Expression in Endometrial 
Cancer 

4/23 1.28e-04 
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9 Epithelial to Mesenchymal Transition in Cancer: 
Overview 

6/90 1.40e-04 

10 Clear Cell Endometrial Cancer and Papillary Serous 
Endometrial Cancer 

5/65 3.88e-04 

Contrastive 
Pretraining 

1 Desmosome Dysfunction in Cardiomyocyte 4/12 4.26e-05 

2 Desmosomes Role in Dilated Cardiomyopathy 4/15 5.17e-05 

3 Proteins with Altered Expression in Cancer 
Metastases 

7/106 5.17e-05 

4 Desmosome Assembly 4/18 6.44e-05 

5 Corneodesmosomes in Atopic Dermatitis 4/19 6.50e-05 

6 Epithelial to Mesenchymal Transition in Cancer: 
Overview 

6/90 1.50e-04 

7 EPCAM in Cancer Cell Motility and Proliferation 4/36 6.61e-04 

8 WNT in Epithelial to Mesenchymal Transition in 
Cancer 

4/43 0.0012 

9 Proteins Involved in HPV Infection 3/19 0.0019 

10 Proteins Involved in Pathogenesis of Arrhythmogenic 
Right Ventricular Cardiomyopathy 

3/21 0.0023 

Single Cell 
Regularization 

1 Desmosomes Role in Dilated Cardiomyopathy 5/15 1.61e-06 

2 Desmosome Assembly 5/18 2.04e-06 

3 Corneodesmosomes in Atopic Dermatitis 5/19 2.04e-06 

4 Proteins with Altered Expression in Cancer 
Metastases 

8/106 2.92e-06 

5 Desmosome Dysfunction in Cardiomyocyte 4/12 1.10e-05 

6 Epithelial to Mesenchymal Transition in Cancer: 
Overview 

7/90 1.10e-05 

7 EPCAM in Cancer Cell Motility and Proliferation 5/36 2.65e-05 

8 WNT in Epithelial to Mesenchymal Transition in 
Cancer 

5/43 5.76e-05 

9 Proteins with Altered Expression in Endometrial 
Cancer 

4/23 1.06e-04 

10 Alkalosis 3/9 1.96e-04 

Both regularization 
methods 

1 Desmosomes Role in Dilated Cardiomyopathy 5/15 1.52e-06 

2 Desmosome Assembly 5/18 1.93e-06 

3 Corneodesmosomes in Atopic Dermatitis 5/19 1.93e-06 

4 Desmosome Dysfunction in Cardiomyocyte 4/12 1.31e-05 
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5 EPCAM in Cancer Cell Motility and Proliferation 5/36 3.18e-05 

6 Proteins with Altered Expression in Cancer 
Metastases 

7/106 3.18e-05 

7 WNT in Epithelial to Mesenchymal Transition in 
Cancer 

5/43 6.21e-05 

8 Proteins with Altered Expression in Endometrial 
Cancer 

4/23 1.13e-04 

9 Epithelial to Mesenchymal Transition in Cancer: 
Overview 

6/90 1.23e-04 

10 Clear Cell Endometrial Cancer and Papillary Serous 
Endometrial Cancer 

5/65 3.42e-04 
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