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Abstract 
The application of deep learning methods to spatial transcriptomics has shown promise in 
unraveling the complex relationships between gene expression patterns and tissue architecture 
as they pertain to various pathological conditions. Deep learning methods that can infer gene 
expression patterns directly from tissue histomorphology can expand the capability to discern 
spatial molecular markers within tissue slides. However, current methods utilizing these 
techniques are plagued by substantial variability in tissue preparation and characteristics, which 
can hinder the broader adoption of these tools. Furthermore, training deep learning models 
using spatial transcriptomics on small study cohorts remains a costly endeavor. Necessitating 
novel tissue preparation processes enhance assay reliability, resolution, and scalability. This 
study investigated the impact of an enhanced specimen processing workflow for facilitating a 
deep learning-based spatial transcriptomics assessment. The enhanced workflow leveraged the 
flexibility of the Visium CytAssist assay to permit automated H&E staining (e.g., Leica Bond) of 
tissue slides, whole-slide imaging at 40x-resolution, and multiplexing of tissue sections from 
multiple patients within individual capture areas for spatial transcriptomics profiling. Using a 
cohort of thirteen pT3 stage colorectal cancer (CRC) patients, we compared the efficacy of deep 
learning models trained on slide prepared using an enhanced workflow as compared to the 
traditional workflow which leverages manual tissue staining and standard imaging of tissue 
slides. Leveraging Inceptionv3 neural networks, we aimed to predict gene expression patterns 
across matched serial tissue sections, each stemming from a distinct workflow but aligned 
based on persistent histological structures. Findings indicate that the enhanced workflow 
considerably outperformed the traditional spatial transcriptomics workflow. Gene expression 
profiles predicted from enhanced tissue slides also yielded expression patterns more 
topologically consistent with the ground truth. This led to enhanced statistical precision in 
pinpointing biomarkers associated with distinct spatial structures. These insights can potentially 
elevate diagnostic and prognostic biomarker detection by broadening the range of spatial 
molecular markers linked to metastasis and recurrence. Future endeavors will further explore 
these findings to enrich our comprehension of various diseases and uncover molecular 
pathways with greater nuance. Combining deep learning with spatial transcriptomics provides a 
compelling avenue to enrich our understanding of tumor biology and improve clinical outcomes. 
For results of the highest fidelity, however, effective specimen processing is crucial, and 
fostering collaboration between histotechnicians, pathologists, and genomics specialists is 
essential to herald this new era in spatial transcriptomics-driven cancer research.  
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Introduction 

For centuries, histological examination of tissue has been fundamental in disease 

prognostication [1]. Although such examination remains a cornerstone in pathology, the advent 

of genomic technologies has broadened our understanding of tumorigenesis, highlighting the 

value of examining expression patterns to gain comprehensive insights into tumor behavior and 

therapeutic response [2–4]. Typically, histopathological analysis is supplemented by 

immunohistochemical staining [5]. These evaluations provide spatial insights into molecular 

signatures that underscore cellular heterogeneity within a tissue sample. However, most 

immunohistochemical and fluorescence assays are limited in the number of markers they can 

analyze simultaneously. This limitation has been addressed with the emergence of spatial 

transcriptomics technologies, such as the Visium platform from 10x Genomics, which offers high 

multiplexing capability at remarkable spatial resolution, transforming our capacity to study 

expression patterns within intricate, nuanced tissue architectures [6,7]. When traditional 

histology is paired with spatial transcriptomics, it facilitates the correlation and combination of 

histopathological features with specific gene expression patterns. This integrative approach not 

only deepens our grasp of tumor heterogeneity and microenvironmental interactions but also 

holds the promise of uncovering novel spatial correlations that can refine prognostic 

evaluations. 

 

As current spatial transcriptomics assays are costly, elucidating the connection between tissue 

histomorphology and underlying molecular signatures can help provide multiplexing capabilities 

at scale, which are often limited by cost and reproducibility [6]. Current methods for inference of 

spatial transcriptomic patterns are inspired by virtual staining techniques [8–10], which use 

computational methods to predict molecular traits from routinely collected histological images. 

This obviates the need for further tissue staining/assaying. Preliminary studies have supported 
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the potential of these techniques to expand highly multiplexed spatial molecular evaluations to 

more extensive cohorts in a cost-effective manner. Yet, two primary obstacles impede 

consistent and high-quality spatial molecular inference from large, external sample groups using 

conventional stains. First, the quality of whole slide images must be elevated. Leveraging 

cutting-edge imaging technologies, such as the Aperio GT450s, coupled with the uniform 

application of staining reagents via automated slide staining machines, can pave the way for 

consistent results [11]. Given the necessity for accurately co-registered imaging and omics data, 

it's posited that refined staining and advanced imaging might enable more detailed evaluations. 

Up to this point, most experiments aiming to derive expression from tissue have depended on 

manual staining techniques and lower-resolution imaging. Given these limitations, it's 

unsurprising that the field has not yet realized the full potential or expanded the extensive range 

of biomarkers possible. Second, expanding the sample size of cohorts to train these virtual 

staining algorithms without escalating costs is imperative to capture a wider spectrum of patient 

and tumor attributes, ensuring a more thorough and reliable analysis with application to larger 

cohorts. Third, it is important to be able to allow for a much richer picture of the underlying 

relationship between immune cells and tumor tissue. 

 

The recent introduction of the CytAssist device potentially addresses these concerns [12,13]. In 

contrast to the traditional Visium FFPE assay, which mandates manual staining and specific 

Visium slide imaging conditions (loosely adhered coverslips and short imaging window), the 

CytAssist allows for the stable coverslipping of slides and extended time frame between 

staining, imaging, and analyte retrieval. In addition, the CytAssist workflow relies on tissue 

sections placed onto standard histology slides rather than costly Visium barcoded slides, 

simplifying tissue placement and allowing the selection of specific ROIs for analysis. Together, 

this innovative design allows multiple tissue sections to be amalgamated onto a single slide 

before Visium profiling and facilitates the utilization of automated staining technologies and 
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cutting-edge imaging using clinical-grade pathology infrastructure. These improvements not only 

augment whole slide image quality for intricate, deep learning analyses but might also 

considerably diminish associated costs. 

 

In our research, we demonstrate some of the advantages brought by the CytAssist device in 

spatial evaluations. By multiplexing two tissue samples onto one slide, cost reductions become 

tangible. Incorporating automated staining procedures and superior imaging modalities 

enhances whole slide image quality, paving the way for more precise, in-depth analyses. Here, 

we focus on the effective integration of multiple tissue samples via the CytAssist tool, 

showcasing its potential to elevate spatial expression inferences from standard H&E stains 

when juxtaposed against manual staining and inferior imaging of analogous capture regions 

from sequential sections. 

 

Our comparison centers around a cohort of colorectal cancer patients. Colon cancer, 

increasingly affecting younger age groups, is a major global health issue due to its high 

prevalence and mortality. Crucial for determining prognosis and guiding treatment, colon cancer 

staging primarily relies on the TNM classification, which evaluates tumor invasion, lymph node 

involvement, and metastasis [14–17]. Notably, metastasis critically affects patient outcomes, 

marking increased tumor aggressiveness. While the TNM system is pivotal, it might not 

encompass the entire complexity of tumor biology, prompting research into additional molecular 

markers to enhance prognostic accuracy and predict recurrence risks [18]. Discovering new 

biomarkers from the spatial distribution of specific genes within the tumor and its immune 

microenvironment can provide insights into antitumoral reactions, potentially enhancing colon 

cancer staging [19–21]. 
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Methods 

Data Collection 

Specimen Overview: Our dataset comprises specimens processed through two distinct 

workflows: the traditional workflow (4 patients, 4 capture areas) and the new enhanced workflow 

(8 patients, 4 capture areas). In addition, two paired serial sections were profiled for 

comparative analysis, one emulating the traditional workflow and the other the new workflow, 

both leveraging the CytAssist technology. 

 

Patient and Capture Area Selection: This dataset represented thirteen patients diagnosed with 

pathologic T Stage-III (pT3) colorectal cancer. These patients were selected through a 

retrospective review of pathology reports from 2016 to 2019. Four patients were featured in a 

previous study where we restricted these patient characteristics based on microsatellite stable 

tumors and tumor site (right/transverse colon) [22]. For the remaining cohort of nine patients, to 

ensure a balanced representation of patient characteristics, the patients were matched based 

on various criteria, including age, sex, tumor grade, tissue size, and mismatch 

repair/microsatellite instability (MMR/MSI/MSS) status [23]. MSI status was determined by 

assessing the loss of expression of MLH1 and PMS2 through immunohistochemistry. Tissue 

blocks were sectioned into 5-10-micron thick layers, and specific regions of interest such as 

epithelium, tumor-invasive front, intratumoral areas, and lymphatics. Capture areas were 

annotated by a pathologist from serial whole slide images (WSI). Representative regions were 

carefully dissected from the tissue, placed into capture areas, and subjected to H&E staining, 

imaging, and Visium profiling in the Pathology Shared Resource at the Dartmouth Cancer 

Center and Single Cell Genomics Core in the Center for Quantitative Biology. 
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Table 1: Description of Patient Cohort. Tissue sections from 13 patients (14 sections) are divided 
amongst 10 capture areas, with up to two tissue sections per capture area joined together (left/right side). 
*Indicates held-out capture areas 5 and 6 from serial sections from the same patient and location for 
testing. All other tissue sections come from different patients.  

    Section Placed on Left Side / Center of 
Capture Area 

Section Placed on Right Side of Capture 
Area 

Workflow Capture 
Area 

CytAssist Dimension 
(mm^2) 

Age Sex Tumor 
Site 

MSI 
Status 

METS Age Sex Tumor 
Site 

MSI 
Status 

METS 

Traditional: 
Manual Stain 
+ Low 
Resolution 
Imaging  

1 no 6.5x6.5 40-
45 

F Transverse 
Colon 

MSS yes – – – – – 

2 no 6.5x6.5 60-
65 

M Right 
Colon 

MSS no – – – – – 

3 no 6.5x6.5 80-
85 

M Right 
Colon 

MSS yes – – – – – 

4 no 6.5x6.5 45-
50 

F Right 
Colon 

MSS no – – – – – 

5* yes 6.5x6.5 80-
85 

M Left Colon MSI yes – – – – – 

Enhanced: 
Automated 
Staining + 
High 
Resolution 
Imaging 

6* yes 6.5x6.5 80-
85 

M Left Colon MSI yes – – – – – 

7 yes 11x11 90-
95 

F Hepatic 
Flexure 

MSI yes 80-
85 

M Left 
Colon 

MSI no 

8 yes 11x11 85-
90 

F Splenic 
Flexure 

MSS yes 70-
75 

F Hepatic 
Flexure 

MSS no 

9 yes 11x11 80-
85 

F Cecum MSI yes 70-
75 

M Cecum MSI no 

10 yes 11x11 55-
60 

F Left Colon MSS yes 65-
70 

M Sigmoid MSS no 

 

 
Figure 1: Comparative Overview of the Two Workflows. (A) Traditional workflow: After placing tissue 
on Visium barcoded slide, sections are manually stained with H&E and imaged using the EVOS m7000. 
(B) Enhanced workflow: Automated application of chemical reagents with 40x resolution imaging via 
Aperio GT450, followed by transfer to Visium device facilitated by 10X CytAssist. 
 
Traditional Workflow: The first four capture areas (Capture Areas 1-4; Table 1, Figures 1A,2) 

were profiled using the traditional 10x Visium workflow– after macrodissection, placement onto 

the Visium barcoded slide, and manual H&E staining, the Visium workflow: 1) images the tissue 

at 10-20x resolution using standard image scanning (EVOS m7000 scanner, Thermo Fisher), 2) 

the tissue is permeabilized for hybridization of whole transcriptome mRNA probes, followed by, 

3) probe ligation and release for capture on the Visium slide through poly(A) tail binding; 4) next, 

captured probes are extended and amplified to incorporate spatial barcodes and 5) the probes 
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and spatial barcodes are sequenced on an Illumina NovaSeq instrument [24] targeting 50,000 

reads/spot. The 10x Genomics SpaceRanger software is used to convert raw sequencing data 

into spatially-resolved gene expression matrices. This comprehensive process enables whole 

transcriptome (mRNA) profiling of up to 5,000 55uM spots with a 100uM center-to-center 

distance within a 6.5 mm2 capture area or 14,000 spots within an 11 mm2 capture area. After 

post-filtering uninformative reads, we obtained approximately 17,943 genes at nearly 5,000 

locations for each slide (total Visium spots: 4950, 4922, 4887, and 4169 per slide).  

 

Enhanced Workflow: We trialed an improved specimen processing workflow designed 

specifically for profiling specimens with the Visium CytAssist assay. This protocol integrates the 

CytAssist technology with improved specimen processing in Pathology to ensure consistent 

staining and optimal image quality by leveraging the capabilities of pathology department 

automated slide stainer via the Sakura Tissue-Tek Prisma Stainer (Sakura Finetek USA, Inc. 

1750 West 214th Street, Torrance, CA 90501) [25] and the Aperio GT450s imaging system. The 

imaging was conducted at a high-resolution of 40x (equivalent to 0.25 micron per pixel) before 

proceeding with Visium profiling. Four tissue slides were collected representing eight patients, 

resulting from macrodissection of tissue sections from FFPE blocks. Patient selection criteria 

were well matched to the set used for the traditional workflow save for microsatellite instability 

status and age, which featured additional variation in this expanded set of patients. These 

sections were precisely marked by pathologists in serial WSIs to target specific tissue 

architectures. To maximize resource efficiency, tissue segments from two patients were merged 

onto a single slide, creating an 11mm by 11mm capture region. This strategy ensured each 

capture area contained an equal representation of metastasis and MSI status from anatomically 

similar sites. Using our improved workflow, we first 1) placed FFPE tissue sections onto 

standard histology slides, followed by coverslipping in a glycerol + xylene mounting medium, 2) 

performed deparaffinization, rehydration and H&E staining on a Leica Bond instrument, 3) 
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collected whole slide images at 40x resolution on Aperio GT450 scanners, and 4) 

decoverslipped in xylene for 1-3 days (until coverslips were detached). The remaining steps of 

destaining, probe hybridization, probe ligation, eosin staining, transfer to the Visium slide using 

CytAssist, and library preparation were performed according to the manufacturer's protocol 

(CG000485). Libraries were sequenced on an Illumina NovaSeq targeting 50,000 reads/spot. 

This detailed method permits unbiased gridded profiling of spots within slides area. The 

subsequent imaging of the same tissue slide (after staining with eosin) facilitated precise co-

registration of the 40X high-resolution pathology slide with the Visium spatial transcriptomics. 

After the manual selection of fiducials, the Spaceranger software was employed to align 

CytAssist sections with their corresponding 40X H&E stains, which ensures accurate co-

registration, and conduct quality control and convert the Visium Spatial Transcriptomics (ST) 

data into an easily interpretable format (Table 1, Figures 1B,2). It should be noted that this 

enhanced workflow does not yet apply to fresh frozen sections. 

 

Comparison Slides: To mitigate the influence of inherent tissue variability and rigorously assess 

the CytAssist technology, we designated two slides as comparison points to evaluate our 

machine learning models. These were based on paired serial sections spatially matched to 

represent identical capture areas. Capture Areas 5 and 6 were earmarked for our comparative 

analysis of the CytAssist technology (Table 1, Figure 2). Each slide from these areas 

underwent distinct preparation methods to mirror both the traditional and our improved workflow. 

From these slides, the set of nearly 18,000 genes was reduced to the 1,000 most spatially 

variable genes using the SpatialDE package [26]. 

 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 9, 2023. ; https://doi.org/10.1101/2023.10.09.23296700doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.09.23296700


 
Figure 2. Detailed Configuration of the 10 Capture Areas and Their Preprocessing Workflow. The 
figure presents the progression of all 10 capture areas, from their inception to visualization. The sequence 
is as follows: 1) H&E-stained slide, 2) Selected capture area dedicated to one or two patients, 3) 
Visualization of capture area, 4) Integration with spatial transcriptomics clusters. Training involved the use 
of either traditional, enhanced, or a combination of both slide types. Notably, capture areas 5 and 6 were 
set aside as held-out serial sections for subsequent analyses. 
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Machine Learning Modeling and Evaluation 

For the enhanced workflow, co-registered 40X WSI corresponding to each Visium slide were 

cropped into 512-by-512 pixel sub-images centered around each Visium spot within the capture 

areas, selected based on a previous study that had conducted a sensitivity analysis over 

various patch sizes [22]. For the traditional workflow, each Visium spot encompasses a circular 

capture zone with a 130-pixel diameter at a 20x magnification. Several deep learning models– 

with an Inceptionv3 convolutional neural network architecture as described in previous work– 

were trained to predict Visium ST at each spot for both binary (i.e., low/high expression, 

dichotomized by median expression) and continuous (e.g., log-transformed of pseudo counts 

with an offset of 1 read) prediction tasks for 1,000 spatially-variable genes. Models were trained 

using the mean squared error on the log-transformed counts for continuous data. As 

aforementioned, performance for dichotomous tasks was calculated through dichotomization via 

median expression [27,28]. Model parameters were selected based on optimal performance 

statistics across an internal validation set across the training epochs. Hyperparameters were set 

based on a coarse hyperparameter search for each method. 

Experimental Comparisons 

We used a comprehensive comparative analysis to discern the benefits of the enhanced 

workflow against the traditional workflow. The experimental comparisons probed the workflows 

under various training and validation regimes, thereby providing insights into their relative 

strengths and potential synergies (Table 2). We evaluated our models using paired serial 

sections from both workflows, ensuring minimal tissue variability to highlight the impact of 

staining and imaging methods. The performance comparisons were based on the training sets 

described in Table 2. 
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Table 2: Comparative Analysis of Model Training Approaches Across Distinct Workflows. 
This table delineates the methodologies used for generating training data from both the 
traditional and enhanced workflows. Emphasis is placed on evaluating the implications of 
different staining and imaging methods. By employing reserved comparison samples, models 
trained on each dataset undergo assessment using paired serial sections from both workflows, 
aiming to reduce tissue-related variability. 

Training 
Data 

Purpose Predictive Analysis 

Traditional 
Workflow 
Slides 

To establish a foundational 
performance baseline. 

This comparison gauged the ability of models trained on the 
traditional method to predict spot-level expression across both 
techniques using the paired serial sections (encompassing both 
traditional and improved workflows). 

Enhanced 
Workflow 
Slides 

To spotlight the enhanced 
capability and superiority of the 
improved workflow. 

Evaluating predictions on the paired serial sections from both 
workflows showcases how models, when trained sections assayed 
through the improved workflow, interpret results from both 
techniques. Ideally, its performance should meet or surpass the 
traditional workflow’s metrics on the shared paired slides. 

Slides from 
Both 
Workflows 

To harness the collective merits of 
both workflows, forging a holistic 
understanding of tissue histology 
across various specimen 
processing and imaging methods. 

Training on tissue acquired from both protocols promises to impart a 
broader representation of the data to the models. Evaluations on the 
comparison slides reflect the model's adaptability, informed by both 
workflows. 

 

Performance Evaluation 

Evaluative assessments on comparison slides: Spot level expression was compared on the 

held-out comparison slides, retaining their native imaging resolutions. Direct evaluation focused 

on recapitulating the expression at each individual Visium spot across the entirety of the held-

out slides. This granular assessment ensured an in-depth understanding of how well the trained 

models can predict expression profiles at localized regions throughout the slides. Confidence in 

model performance is reported through 95% confidence intervals derived from 1000-sample 

non-parametric bootstrapping of Visium spot observations. 

 

Performance Metrics: Performance metrics include: Quantitative Metrics, Area Under the 

Receiver Operating Characteristic Curve (AUC) for dichotomous tasks and Spearman 

correlation for continuous tasks, macro-averaged across all genes. Qualitative Evaluation, 

beyond quantitative scores, we examined the capability of each approach to mirror true 

expression patterns. This involved comparing the clustering of true expression patterns on those 

predicted from the tissue histology, utilizing the AlignedUMAP dimensionality reduction 
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technique to generate visually comparable low-dimensional embeddings [29,30]. A more 

effective method should ideally maintain the uniqueness and structure of the original clusters. 

 

Differential Expression: As a final comparison between the traditional and enhanced workflow, 

we aimed to gauge the predictive accuracy of each method in relation to tissue architecture. 

Specifically, each Visium spot was annotated according to its location—either within the tumor, 

at its periphery, or distal to the tumor. We hypothesized that the enhanced slides would yield 

gene expression profiles more reflective of these distinct tissue regions, approximating the 

precision of the ground truth expression more closely than the traditionally processed slides 

would. To test this, we employed the Mann-Whitney U-test to analyze differential gene 

expression (treating expression as a continuous count-based measure) between the tumor-

interface zones and those regions either within or away from the tumor [31]. This analysis 

focused on the top-200 genes as ranked by the Spearman correlation statistics between the 

true and predicted expression. We then compared the U-statistics obtained from the actual 

expression data to those generated from predicted expression, summarizing the results as the 

median percentage change in U-statistics across the examined genes, with 95% confidence 

intervals reported using 1000-sample non-parametric bootstrapping. 

Results 

Enhanced Staining and Imaging Workflow Results in Substantial Boost in 

Predictive Performance 

When assessing the predicted expression against the true expression for the top 1000 spatially 

variable genes in the held-out slides, the models demonstrated remarkable accuracy, reported 

using both AUC and Spearman statistics (Table 3, Figure 3, Supplementary Figure 1). 

Overall, models trained using the traditional dataset predicted expression on both traditional and 
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enhanced slides with approximately 0.66 AUC and a 0.28 correlation. These models were 

notably the underperformers. In contrast, exclusively leveraging the enhanced workflow led to a 

major increase in predictive performance. Specifically, while training and testing on traditional 

slides yielded an AUC of 0.641 and a 0.243 correlation, the same process on enhanced 40x-

resolution WSI (enhanced workflow) catapulted the results to an AUC of 0.833 and a 0.625 

correlation—this translates to a surge of nearly 45% in AUC and a staggering 157% in 

Spearman correlation. Our exploration into whether a hybrid training approach, incorporating 

both traditional and enhanced slides, would augment performance turned out to be inconclusive, 

as it did not notably elevate predictive power for either slide type and instead lead to modest 

reductions in performance from training solely on WSI acquired through the improved workflow. 

As depicted in Figure 4, visually, the expression patterns across a slide appear more clearly 

distinct and align more closely with the ground truth when training is conducted using enhanced 

slides, irrespective of whether the comparison slide utilized enhanced or traditional techniques. 

 
Figure 3: Boxenplot of AUC Performance Across Top 1000 Genes. This plot showcases the 
comparative performance of held-out capture areas based on training slide type (traditional, enhanced, or 
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both) and evaluation slide type (traditional or enhanced), using the area under the receiver operating 
characteristic curve as the performance metric. 
 
Table 3: Performance Metrics for Held-Out Capture Areas Across Top 1000 Genes. This table 
presents the median AUC and Spearman correlation coefficients and their respective 95% confidence 
intervals derived from a 1000-sample non-parametric bootstrap. Metrics are shown for each combination 
of training slide type (traditional, enhanced, or both) and evaluation slide type (traditional or enhanced). 

Trained On Evaluated 
On 

AUC±SE Spearman±SE 

Traditional Enhanced 0.678±0.002 0.323±0.003 

Traditional Traditional 0.641±0.002 0.243±0.003 

Both Enhanced 0.822±0.003 0.605±0.005 

Both Traditional 0.708±0.002 0.389±0.004 

Enhanced Enhanced 0.833±0.003 0.625±0.006 

Enhanced Traditional 0.72±0.002 0.406±0.004 

 

 
Figure 4: Heatmap Visualization of Gene Expression Predictions. This figure juxtaposes the ground 
truth gene expression heatmaps against the predictions made by neural networks trained on either 
enhanced slides, both preparation approaches or traditional slides. Each prediction is showcased for both 
comparison slide types (traditional and enhanced). Specific markers from the held-out slides (both 
enhanced and traditional) are highlighted to emphasize the nuanced differences across training 
techniques and their evaluation. 
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Topological Consistency 

Similar to previous works [22,27], we sought to understand whether slides processed using the 

enhanced workflow yielded predicted expression patterns that were more topologically 

consistent with the ground truth expression, i.e., similarly clustered. Overlaying the clustered 

ground truth Visium spot expression on the predicted embeddings would provide a subjective 

measure of which methods provide better clustering. This topological agreement was compared 

for predicted expression patterns from models utilizing various combinations of enhanced and 

traditional slides for training. For evaluations conducted on the enhanced WSI, models trained 

using both enhanced and traditional slides together, as well as those trained solely on enhanced 

slides, produced the most pronounced clustering (Figure 5). The relative placements of these 

clusters closely reflected the ground truth. Conversely, the resulting clusters were less defined 

when models were assessed on the traditional slide. Notably, models trained on traditional 

slides seemed to conflate multiple clusters. 

 

 
Figure 5: UMAP embeddings of true and predicted gene expression for enhanced and traditional 
evaluation slides. The Mapper algorithm was employed to flexibly group together embeddings, with 
groups containing overlapping Visium spots. Node sizes in the Mapper plots correspond to the number of 
Visium spots, and colors indicate the dominant cluster membership. The clusters were assigned to each 
visium spot using AlignedUMAP embeddings followed by HDBSCAN clustering on the ground truth count-
based expression data.  
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Differential Expression and Prediction of Tissue Architecture 

We evaluated each method's capability to predict expression patterns characteristic of the tumor 

invasive margin in contrast to regions inside and distant from the tumor. Given the potential 

variability in predicted expression scales, we employed the Mann-Whitney U test to contrast 

expression across these tissue structures, documenting the percentage shift in U-statistics 

between actual and predicted expression. These findings are consistent with our predictive 

performance observations, suggesting that the ability to accurately predict expression is 

synonymous with more refined delineations of tissue architecture. This predictive performance 

and precision in the subsequent differential expression analyses are notably enhanced by the 

CytAssist leveraging the enhanced workflow (Table 4). For example, models either trained on 

both enhanced and traditional slides or exclusively on enhanced slides were most successful in 

recapitulating the U-statistics derived from actual expression data when assessed on enhanced 

slides. However, there was a marked drop in accuracy when these metrics were applied to the 

reserved traditional slide. 

 
Table 4: Comparative Performance on Tumor Interface Markers Localization: This table showcases 
the percentage variations in U-statistics between true and predicted gene expression (continuous count 
data) for the top-200 genes, emphasizing the method's precision in identifying expression differences at 
the tumor invasive margin relative to both its internal and surrounding areas. 95% confidence intervals 
were derived from a 1000-sample non-parametric bootstrap to measure the robustness of these findings. 
A diminished percentage difference signifies a heightened capability to pinpoint molecular markers at the 
tumor interface in a manner similar to the actual expression. 

Trained On Evaluated 
On 

U-Statistic 
Percent 
Change (%) 

2.5% CI 97.5% CI 

Traditional Enhanced 18.73 18.42 18.93 

Traditional Traditional 14.19 13.79 14.43 

Both Enhanced 5.23 4.80 5.61 

Both Traditional 17.56 17.33 17.84 

Enhanced Enhanced 5.40 5.22 5.77 
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Enhanced Traditional 17.11 16.90 17.47 

 

Discussion 

Our study aimed to evaluate the influence of specimen processing in the realm of spatial 

transcriptomics and spatial transcriptomics inference. Here, we compared traditional and 

enhanced workflows for the task akin to virtual staining—a technique that can infer spatial 

expression patterns directly from whole slide image histomorphology [8,32]. This method offers 

the potential to democratize spatial transcriptomics insights to more extensive cohorts for genes 

exhibiting high predictability, subsequently broadening the spectrum of markers under 

consideration. Enhancements in specimen preparation, specifically in three key areas including: 

1) tissue multiplexing to reduce costs based on their positioning in the mounting medium, 2) 

optimizing staining procedures, and 3) refining imaging processes, could facilitate more 

accurate image-based RNA inference and other integrative analysis, thereby boosting statistical 

precision. The incorporation of CytAssist was pivotal, offering insights into how upstream 

enhancements in specimen processing can yield vastly improved in silico outcomes. 

 

Principal findings in the context of improved tissue staining: This study underscores the 

discernible performance variations between slides processed through enhanced and traditional 

workflows, reflecting differences in tissue staining and imaging in the context of deep learning 

applications for spatial transcriptomics [33]. Tissue staining, a technique to enhance the contrast 

between various tissue components, is of paramount importance. Dyes such as hematoxylin 

and eosin, with their distinct optical absorption properties, offer a range of color variations. 

When oxidized, hematoxylin interacts with various metals, forming complexes that produce 

unique colors, enhancing the dye's staining capabilities [33–41]. Even minor deviations in 

staining procedures and timing can result in fluctuating staining intensity. Human variations in 
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the timing of staining and the use of reagents nearing their expiration or when overused/over-

oxidized/deteriorated can further compromise quality. Factors such as contaminants also 

introduce inconsistencies, impacting the uniformity of tissue staining. Automated staining 

solutions offer a promising alternative to manual methods, eliminating human-induced sources 

of variation. By using software to control the application of H&E stains according to a set 

protocol, both the quality and consistency of specimens can be enhanced. Removing these 

variations allows algorithms to shift their focus from capturing variability to representing the 

underlying structures with greater fidelity [35]. Past research validates that digital image analysis 

is frequently compromised by inconsistent staining. However, automating this process has been 

shown to not only improves staining consistency but also bolsters the contrast in tissue 

structures, thereby increasing diagnostic reliability [33–41]. For algorithms to effectively discern 

gene-related histologies, consistently capturing intricate details, better represented by 

minimizing these sources of variability, is vital. 

 

Thus, it is unsurprising that tissues stained through automated processes exhibited superior 

performance. The models trained on tissue sections processed using the enhanced workflow 

demonstrated remarkably stronger predictive accuracy, as evidenced by higher AUC and 

Spearman correlation values. Evaluation of these models on enhanced slides also presented a 

performance advantage, even when only training on traditionally processed slides. Moreover, 

we showcased that heightened predictive accuracy can lead to a bolstered statistical prowess in 

evaluating tissue architecture with enhanced slides relative to their traditional counterparts. 

Analysis of the aligned UMAP embeddings demonstrated that enhanced slides tended to yield 

expression patterns that were more topologically consistent with the ground truth, indicating 

their potential to cluster data more effectively. 
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Interpretation of Findings and the Need for Broader Validation: Our research affirms that by 

prioritizing specimen preparation and imaging, especially with the aid of CytAssist, one can 

amplify the statistical acuity of subsequent analyses and more authentically capture the intricate 

relationships among Visium spots from histological observations [42,43]. This heightened 

precision, made possible by the enhanced staining and imaging workflow, has the potential to 

illuminate the molecular intricacies and spatial configurations of unique tissue structures. Such 

insights pave the way for a more profound comprehension of CRC metastasis, especially when 

these state-of-the-art techniques are applied to broader cohorts. 

 

Challenges and Future Directions: This study focused on comparing enhanced and traditional 

workflows within a specific set of capture areas. The derived insights offer a foundational 

framework for both validating and scaling these techniques to expansive cohorts. However, 

there are a few considerations which warrant further attention. Firstly, the comparison between 

traditional and enhanced workflows was limited to a specific set of capture areas, necessitating 

further exploration to broaden the application, scope, and impact of our findings. Generalizing 

our findings to other tissue types, molecular pathways, and experimental setups should be 

further explored. For instance, the enhanced workflow does not yet apply to fresh frozen 

sections which will be the subject of future work. To affirm the universality and adaptability of the 

models, varied staining methodologies, slide preparations, and tissue specimens should be 

considered, requiring additional forms of validation (e.g., immunostaining, alternative spatial 

transcriptomic assays) [44–46]. Such disparities can introduce unpredicted variability, with 

potential ramifications on model efficiency. Although there are algorithmic solutions for 

standardizing staining agents, a holistic approach may require a collaborative multicenter 

framework, strategies to alleviate batch inconsistencies, and close coordination amongst key 

stakeholders within various shared resource infrastructures across each institution [47]. 

Enhancing the scope of validation for deep learning paradigms as well as identifying areas for 
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improvement outside of algorithmic development (e.g., specimen processing), can catalyze the 

more widespread integration of these nascent spatial transcriptomics technologies. The 

relevance of these findings hinges on external validation through independent cohorts. 

Moreover, the implications of our study should be expanded to encompass other diseases that 

warrant spatial molecular assessments [48–50]. 

Conclusion 

The validation of spatial transcriptomics information inferred from whole slide images provides a 

unique opportunity to assess colorectal cancer (CRC) metastasis with greater statistical 

precision. Conventional statistical analyses frequently rely on large volumes of specimens to 

yield significant results, which can prove costly for spatial transcriptomic assays. Yet, the spatial 

molecular data inferred through our advanced techniques, enhanced through sophisticated 

specimen processing, potentially diminish the necessity for such expansive and expensive 

datasets. Accurate extrapolations of gene expression landscapes within tissue samples can 

enable a more refined and purpose-driven exploration of CRC metastasis, further emphasizing 

our imperative to further validate these approaches in larger cohorts. 
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Key points. This study showcases an enhanced workflow for deep learning-based spatial 
transcriptomics inference, using the flexibility of the Visium CytAssist assay to leverage 
improved tissue processing and imaging. Leveraging Inceptionv3 neural networks on slides 
from thirteen pT3 stage colorectal cancer patients, the enhanced method significantly 
outperformed traditional workflows in predicting gene expression patterns. The enhanced 
approach yielded gene expression profiles more topologically consistent with actual data, 
improving the statistical precision in identifying biomarkers linked to metastasis and recurrence. 
Effective specimen processing is paramount for high-fidelity results in spatial transcriptomics-
driven cancer research. Working together, histotechnicians, pathologists, and genomics 
specialists play a critical role in advancing tissue preparation and imaging techniques, 
deepening our insight into tumor biology for further prognostic biomarker development. 
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Supplementary Materials 
 

 
Supplementary Figure 1: Boxenplot of Spearman Performance Across Top 1000 Genes. This plot 
showcases the comparative performance of held-out capture areas based on training slide type 
(traditional, enhanced, or both) and evaluation slide type (traditional or enhanced), using the Spearman 
correlation coefficient as the performance metric. 
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