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Abstract 

MicroRNAs (miRNA) are important post-transcriptional gene regulators. Various 

populations have experienced a marked rise in the risk of coronary heart disease (CHD) due 

to multiple miRNA variations. The current case-control study (150 cases and 150 healthy 

controls) was designed to determine the potential role of five miRNA functional variants 

(rs2292832, rs3746444, rs11614913, rs1044165, and rs767649) as risk factors for CHD in the 

Pakistani population using TaqMan Real-time PCR Assay. It was observed that the single 

nucleotide polymorphism (SNP) rs3746444 was significantly associated with the risk of CHD 

using the co-dominant model [χ2 =79.51; P = 0.0001], dominant model (GG vs AA+AG) 

[OR = 9.333 (5.180-16.82); P = 0.0001], heterozygous model (AG vs AA+GG) [OR = 0.1241 

(0.065-0.234); P = 0.0001] and additive model [A vs G; OR = 0.3440 (0.2468-0.4795); P = 

0.0001] respectively. Furthermore, rs11614913 was also linked with CHD when analyzed 

using a co-dominant model [χ2 =16.24; P = 0.0003], dominant model (CC vs CT+TT) [OR = 

1.918 (1.210-3.042); P = 0.0075], recessive model (TT vs CT+CC) [OR = 0.2754 (0.1369-

0.5540); P = 0.0002], and additive model [OR = 2.033 (1.445-2.861); P = 0.0001]. It was also 

found that rs767649 is connected to CHD using a co-dominant model [χ2 =114.9; P = 

0.0001], dominant model (AA vs AT+TT) [OR = 7.851 (3.554-17.34); P = 0.0001], recessive 

model (TT vs AT+AA) [OR = 0.04956 (0.026-0.092); P = 0.0001], heterozygous model (AT 

vs AA+TT) [OR = 4.495 (2.737-7.382); P = 0.0001], and inheritance additive model [A vs T; 

OR=7.154 (4.902-10.44); P = 0.0001] respectively. The SNP rs1044165 revealed a strong 

correlation with CHD using the heterozygous inheritance model (AG vs GG+AA) [OR = 

0.3442 (0.1308-0.9055); P = 0.0276]. No statistically significant association (P � 0.05) of 

rs2292832 SNP with CHD was found using all five inheritance models. 

Keywords: microRNA, single nucleotide polymorphism, coronary heart disease, TaqMan 

assay 
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Introduction 

According to the World Health Organization (WHO), coronary heart disease (CHD) is one of 

the leading causes of illness and mortality globally. [1]. Environmental and genetic factors 

have been implicated in the pathophysiology of CHD [2]. Environmental factors include lack 

of exercise, an imbalanced diet, a sedentary lifestyle, low socioeconomic status, hypertension, 

diabetes, and smoking [3]. Using genome-wide association studies, it was investigated that 

more than 164 genetic loci are involved in the pathogenesis of CHD. Interestingly, variations 

in the non-protein-coding regions of DNA disrupt the expression of CHD-associated genes.  

Alteration in both the exonic and intronic regions of the genome leads to CHD. The non-

coding parts of the genome encode short RNA molecules called microRNAs (miRNAs) [4]. 

Currently, 2654 mature miRNAs have been discovered in humans [5]. These RNA molecules 

are frequently linked to cell development, differentiation, and homeostasis and control the 

regulation of genes by repressing the translation or enhancing the destruction of 

complementary mRNA by binding to its 3′-UTR [6]. Dysregulated miRNAs are involved in 

the development and progression of multiple pathological conditions, including 

cardiovascular disease (CVD) [7]. Plasma MIR145 may be a useful biomarker for coronary 

artery disease (CAD) and be able to predict CAD [8]. Among the Egyptian population, 

MIR146A rs2910164 and MIR4513 rs2168518 may serve as a useful biomarker for CHD 

susceptibility [9]. The expression of MIR484 is upregulated in acute coronary syndrome 

patients [10]. Elevated level of miR-126-3p has indicated linkage with cardiac pathologies 

[11]. MIR21 is an important biomarker for atrial fibrosis [12]. MIR21, MIR27B, MIR122, 

MIR125B, MIR146B, MIR147B, and MIR155 were less expressed while MIR16 and MIR92A 

were highly expressed in premature CAD as compared to old age CAD patients [13]. In early 

onset CAD individuals, six miRNAs (miR340, -451, -454, -545, -615-5p, and 624) were 

upregulated and MIR1280 was downregulated as compared to controls [14]. In comparison to 
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healthy individuals,  miR-208a-3p is substantially upregulated in CHD cases [15]. Patients 

with hypertension have higher levels of MIR34A in their peripheral blood [16]. The level of 

miR-483-3p in the serum was linked to the development of hypertension which is a major 

contributor to CHD and stroke [17]. A review reported that MIR215, MIR487A, and MIR502 

are diagnostic and prognostic biomarkers in stable CAD [18]. SNPs are the most common 

type of genetic variation in human genomes which are mostly located in non-coding regions 

[19]. MiR-SNPs change the levels of miRNA expression, which increases one's vulnerability 

to a number of diseases [20]. SNPs alter phenotypes and are crucial in the progression of  

disease development [21]. It may have complicated impacts on miRNAs. Stability or 

processing may be impacted by these variations in immature miRNAs [22]. Such 

polymorphisms in the pri-miRNA promoters may affect the expression of mature miRNAs. 

Identification of the target gene may be impacted by  SNPs in the seed region [23]. The seed 

region variant rs3746444 has been linked to an increased risk of CHD [24]. The rs3746444 

genetic variation of MIR499a directly targets MTR (Methionine synthase) gene which may 

be closely linked with CHD risk in the Chinese cohort [25]. The genetic variant rs2910164 in 

pre-MIR146A is associated with a lower risk of acute coronary syndrome [26]. SNPs in 

MIR146, MIR149, MIR196A2, and MIR499 genes have been associated with the 

pathophysiology of CAD [27].  

Our study aims to assess the association of the respective variants in miRNAs (MIR149, 

MIR499A, MIR196, MIR223, and MIR155) with CHD pathogenesis. 
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Results   

HWE of SNPs in miRNA Regions 

150 CHD cases and 150 normal individuals were successfully genotyped to determine the 

association of SNPs in the relevant miRNAs. All cases and controls were in HWE at the 

studied SNPs located within miRNAs gene sequences (P<0.05).  

Allelic and Genotypic frequencies for rs3746444  

For SNP, rs3746444 in MIR499A, the distribution of genotypes between cases and controls 

showed significant association using co-dominant model [χ2 =79.51; P = 0.0001], 

homozygous dominant model (GG vs AA+AG) [OR = 9.333 (5.180-16.82); P = 0.0001], 

heterozygous model (AG vs AA+GG) [OR = 0.1241 (0.065-0.234); P = 0.0001] and additive 

model [OR = 0.3440 (0.2468-0.4795); P = 0.0001] respectively. However, in the 

homozygous recessive model, the association of its genotypes was insignificant (AA vs 

GG+AG) [OR = 0.7130 (0.4471-1.137); P = 0.1921] as shown in Table. 02. 

Allelic and Genotypic frequencies for rs11614913 

For SNP, rs11614913 in MIR196, the distribution of genotypes between cases and controls 

showed significant association using co-dominant model [χ2 =16.24; P = 0.0003], 

homozygous dominant model (CC vs CT+TT) [OR = 1.918 (1.210-3.042); P = 0.0075], 

homozygous recessive model (TT vs CT+CC) [OR = 0.2754 (0.1369-0.5540); P = 0.0002], 

and additive model [OR = 2.033 (1.445-2.861); P = 0.0001]. However, in the heterozygous 

model, the association of its genotypes was insignificant (CT vs CC+TT) [OR = 1 (0.6282-

1.592); P = 1].  

Allelic and Genotypic frequencies for rs767649  

For the rs767649 SNP of MIR155, it was noted that all the inheritance models showed 

significant association between the genotypes of cases and controls. The co-dominant model 
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[χ2 =114.9; P = 0.0001], homozygous dominant model (AA vs AT+TT) [OR = 7.851 (3.554-

17.34); P = 0.0001], homozygous recessive model (TT vs AT+AA) [OR = 0.04956 (0.026-

0.092); P = 0.0001], heterozygous model (AT vs AA+TT) [OR = 4.495 (2.737-7.382); P = 

0.0001], and additive model [OR = 7.154 (4.902-10.44); P = 0.0001] were statistically 

significant. 

Allelic and Genotypic frequencies for rs1044165  

MIR223 was studied for rs1044165 SNP and only the heterozygous inheritance model (AG vs 

GG+AA) [OR = 0.3442 (0.1308-0.9055); P = 0.0276] showed significant association (P � 

0.05) between the genotypes of cases and controls while the co-dominant model, 

homozygous dominant model, homozygous recessive model, and the additive model were 

insignificant (P � 0.05). 

Allelic and Genotypic frequencies for rs2292832  

 The inheritance models i.e., co-dominant model, homozygous dominant model, homozygous 

recessive model, heterozygous model, and additive model showed the P value above 0.05 

which represents statistically insignificant relationship between the genotypes of cases and 

controls for the SNP rs2292832 of MIR149 gene as mentioned in the following table. 

 

Table. 02. Statistical analysis for calculating the allele and genotype frequency of rs3746444, 

rs11614913, rs767649, rs1044165, and rs2292832 in CHD patients compared to healthy 

individuals using co-dominant, dominant, recessive, and additive models. 
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rs3746444 

Models Genotype Cases (n=150) 
(% age) 

Controls 
(n=150) 
(% age) 

OR 95% CI X²-
value 

P-value 

Co-Dominant 
Model 

AA 
AG 
GG 

52(35%) 
14(9%) 
84(56%) 

64(43%) 
68(45%) 
18(12%) 

 
 
- 

79.51 0.0001 

Homozygous 
Dominant 

GG 
AA+AG 

84(56%) 
66(44%) 

18(12%) 
132(88%) 

9.333 
(5.180-16.82) 

   - 0.0001 

Homozygous 
Recessive 

AA 
GG+AG 

52(35%) 
98(65%) 

64(43%) 
86(57%) 

0.7130 
(0.4471-1.137) 

   - 0.1921 

Heterozygous AG 
AA+GG 

14(9%) 
136(91%) 

68(45%) 
82(55%) 

0.1241 
(0.065-0.234) 

   -   0.0001 

Additive A 
G 

118(39%) 
182(61%) 

196(65%) 
104(35%) 

0.3440 
(0.2468-0.4795) 

   - 0.0001 

 
 
 

rs11614913 

Co-Dominant 
Model 

CC 
CT 
TT 

80(53%) 
58(39%) 
12(8%) 

56(37%) 
58(39%) 
36(24%) 

 
- 

16.24 0.0003 

Homozygous 
Dominant 

CC 
CT+TT 

80(53%) 
70(47%) 

56(37%) 
94(63%) 

1.918 
(1.210-3.042) 

   - 0.0075 

Homozygous 
Recessive 

TT 
CT+CC 

12(8%) 
138(92%) 

36(24%) 
114(76%) 

0.2754 
(0.1369-0.5540) 

   - 0.0002 

Heterozygous CT 
CC+TT 

58(39%) 
92(61%) 

58(39%) 
92(61%) 

1 
(0.6282-1.592) 

   - 1 

Additive C 
T 

218(73%) 
82(27%) 

170(57%) 
130(43%) 

2.033 
(1.445-2.861) 

   - 0.0001 

 
 
 

rs767649 

Co-Dominant 
Model 

AA 
AT 
TT 

46(31%) 
88(58%) 
16(10%) 

8(5%) 
36(24%) 
106(71%) 

- 114.9 0.0001 

Homozygous 
Dominant 

AA 
AT+TT 

46(31%) 
104(69%) 

8(5%) 
142(95%) 

7.851 
(3.554-17.34) 

  - 0.0001 

Homozygous 
Recessive 

TT 
AT+AA 

16(11%) 
134(89%) 

106(71%) 
44(29%) 

0.04956 
(0.026-0.092) 

  - 0.0001 

Heterozygous AT 
AA+TT 

88(59%) 
62(41%) 

36(24%) 
114(76%) 

4.495 
(2.737-7.382) 

  - 0.0001 

Additive A 
T 

180(60%) 
120(40%) 

52(17%) 
248(83%) 

7.154 
(4.902-10.44) 

  - 0.0001 

 
 

rs1044165 
 

Co-Dominant 
Model 

AA 
AG 
GG 

4(3%) 
6(4%) 

140(93%) 

4(3%) 
16(11%) 
130(87%) 

 
- 

4.91`6 0.0856 

Homozygous 
Dominant 

GG 
AG+AA 

140(93%) 
10(7%) 

130(87%) 
20(13%) 

2.154 
(0.9717-4.774) 

  - 0.0819 

Homozygous 
Recessive 

AA 
AG+GG 

4(3%) 
146(97%) 

4(3%) 
146(97%) 

1 
(0.2453-4.076) 

  - 1 

Heterozygous AG 
GG+AA 

6(4%) 
144(96%) 

16(11%) 
134(89%) 

0.3442 
(0.1308-0.9055) 

   - 0.0276 

Additive G 
A 

286(95%) 
14(5%) 

276(92%) 
24(8%) 

1.775 
(0.9002-3.505) 

   - 0.1305 

 
 

rs2292832 

Co-Dominant 
Model 

TT 
CT 
CC 

52(35%) 
82(55%) 
16(10%) 

56(37%) 
66(44%) 
28(19%) 

 
- 

5.151 0.0761 

Homozygous 
Dominant 

TT 
CT+CC 

52(35%) 
98(65%) 

56(37%) 
94(63%) 

0.8907 
(0.5556-1.428) 

  - 0.7183 

Homozygous 
Recessive 

CC 
CT+TT 

16(11%) 
134(89%) 

28(19%) 
122(81%) 

0.5202 
(0.2685-1.008) 

   - 0.0717 

Heterozygous CT 
TT+CC 

82(55%) 
68(45%) 

66(44%) 
84(56%) 

1.535 
(0.9733-2.420) 

   - 0.0831 

Additive C 
T 

114(38%) 
186(62%) 

122(41%) 
178(59%) 

0.8942 
(0.6443-1.241) 

  - 0.5586 
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The impact of variants on the Stem-loop structure of selected miRNAs 

The online tool RNAfold (http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi) 

was used for calculating various crucial values for the investigated reference polymorphisms 

and their altered mutants of respective miRNAs as shown in Table. 03.  

Table. 03. Information about the reference polymorphisms and their mutated variants. 

 

It was observed that the relevant SNPs in MIR499A, MIR196, MIR155, and MIR149 showed 

no effect on the secondary structure of these miRNAs while rs1044165 in MIR223 changed its 

secondary structure by creating a visible stem loop. The current data shows that the variant 

can generate significant structural change in the precursor miRNA as shown in Figure. 01. 

This method allowed us to assess the effect of SNP on the secondary structure's stability. 

 

 

 

 

 

 

 

Property Reference Mutated Reference Mutated Reference Mutated Reference Mutated 

MIR499A 

rs3746444 

MIR499A 

rs3746444 

MIR196A2 

rs11614913 

MIR196A2 

rs11614913 

MIR223 

rs1044165   

MIR223 

rs1044165   

MIR149 

rs2292832 

MIR149 

rs2292832 

Free energy of the 

thermodynamic ensemble 

-64.92 kcal/mol -52 kcal/mol -78.70 kcal/mol -

76.00 kcal/mol 

-47.98 kcal/mol. -43.85 kcal/mol -54.29 

kcal/mol 

-56.49 

kcal/mol 

The frequency of the MFE 

structure in the ensemble 

6.14 % 6.14 % 1.48 % 1.47 % 14.70 %. 13.09 %. 7.56 %. 7.57 %. 

The ensemble diversity 9.65  9.65 9.68 9.69  5.96  6.21  7.21  7.20  

The optimal secondary 

structure with a minimum free 

energy 

-63.20 kcal/mol -62.80 -76.10 kcal/mol -

73.40 kcal/mol 

-46.80 kcal/mol 

 

-42.60 kcal/mol -52.70 

kcal/mol 

-54.90 

kcal/mol 

The centroid secondary 

structure 

-63.00 kcal/mol -62.60 kcal/mol -75.70 kcal/mol -

73.00 kcal/mol 

-46.50 kcal/mol -42.30 kcal/mol -52.70 

kcal/mol 

-54.90 

kcal/mol 
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Figure. 01.  The upper structure shows the Stem-loop of reference MIR223 while the lower 

shows creation of new loop due to variation in the MIR223 gene. 

Discussion 

Several human disorders have been connected to SNPs in protein-coding genes. Pre-miRNAs 

are formed by the transcription of miRNA genes to become mature miRNAs. Pre-miRNA 

SNPs may have a direct impact on miRNA maturation, expression, or binding to target 

mRNA that leads to dysregulation of target genes [28]. As a result, a functional SNP in a 

miRNA gene may modify the expression of downstream genes, affecting many signaling 

cascades. It has been demonstrated that such variations in these non-coding areas of the 

genome are linked to various diseases, including cancer and cardiovascular diseases [29-32].  

The MIR499A is clustered with MIR499B and is located on the positive strand of 

Chromosome No.20 (genomic context from 34990376 to 34990497). The rs3746444 

polymorphism is a functional variant of MIR499A which is formed of a nucleotide 

substitution from adenine (A) to guanine (G). A finding of the current study is in line with 

Labbaf et al where it was confirmed that the variant rs3746444 in MIR499A may contribute 

to the susceptibility of CAD [33]. Abdelghany et al. have confirmed that  SNPs rs3746444 

and rs2910164 in pre-miRNAs may increase the risk of ischemic stroke in the Egyptian 

population [34]. The MIR196A2 gene is located on the positive strand of Chromosome No.12 

(genomic context from 53991738-53991847) and its SNP rs11614913 is in the mature 

miRNA regions. It was investigated that the CC genotype in rs11614913 caused an increased 

expression of mature MIR196A2 in the cardiac tissue samples of congenital heart disease in 

Chinese population [35]. A meta-analysis involving 16484 subjects by Liu et al revealed that 
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increased risk is linked with MIR146A rs2910164, MIR196A2 rs11614913, and MIR499 

rs3746444, but not with MIR149 rs71428439 in patients with CHD [36]. 

In the present study, a population-based association of variants in different miRNA genes 

with CHD was investigated in the Pakistani population using TaqMan assay. Our findings 

suggest that MIR499A, MIR196, MIR155, and MIR223 are strongly associated as risk factors 

for CHD susceptibility while the MIR149 gene has no significant association with CHD 

pathogenesis within the Pakistani cohort.  

As with any case-control study, one of the present study's limitations is that it was impossible 

to rule out potential selection bias, which could have an impact on how the data are 

interpreted. The statistical power of our study may also be limited by the relatively small 

sample size. The role of these miRNA polymorphisms in CHD is still to be confirmed in 

larger-sample investigations in the Pakistani population. 

 

 

 

 

 

 

 

 

 

 

 

Materials and Methods 

Ethical approval and genomic DNA extraction 
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A proven history of CHD individuals was required for inclusion in this study, and individuals 

without such a history were not allowed to participate. Patients' ages varied from 21 to 90, 

while controls' ages ranged from 27 to 91 and they had no history of CHD. All participants in 

this study, including the healthy controls and patients, provided their informed consent. As 

demonstrated in Table.01., this study adhered to the principles of the Helsinki Declaration 

[37]. 

Table. 01. Presymptomatic data about the cases and controls. 

 
BMI = body mass index, B.P = blood pressure, DM = Diabetes Mellitus, RBS = random 

blood sugar, LDL = Low density lipoprotien, HDL = High density lipoprotien, TC = Total 
cholesterol, TGs = Triglycerides  
 
The Advanced Study and Research Board gave approval to this study in its 53rd meeting held 

on January 08, 2020, at the University of Malakand, Pakistan. From CHD patients and 

healthy controls, 3-5 ml of whole blood was taken and stored in EDTA tubes at a 4� cold 

temperature for further processing. The Phenol Chloroform method was employed to extract 

genomic DNA from the collected blood samples (healthy, n=150, and controls, n=150). The 

extracted DNA was dissolved in TE buffer and stored at a 4� until further processing. 

 

 

 

TaqMan Assay 

 

Categories 

 

Gender  

 

Mean 
Age 

(Year) 

 
BMI 
(Kg/M2) 

 
Mean B.P 
Systolic/Diastolic 
(mmHg) 

 

DM 

 

RBS 
(mg/dL) 

 

LDL 
(mg/dL) 

 

HDL 
(mg/dL) 

 

TC 
(mg/dL)  

 

TGs 
(mg/dL) 

 
Cases 
(CHD) 

M= 106 
F= 44   

55.9 27.6 128/93.5 Type-1 
DM=136 
Type-2  
DM= 10 
Healthy= 
04 

144.4 51.2 137.8 191.2 231.6 

 

Controls 

M= 119 

F= 31 

58.8 26.2 124/92.4 ----- 101.9 85.5 101.7 173.4 131.3 
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The miRbase (http://www.mirbase.org) contains information about the genetic background of 

1917 precursors and 2654 mature human miRNAs. This database was used to obtain relevant 

data about the SNPs used in this study. Chromosomal locations and allele information for the 

miRNA variants rs2292832 in MIR149, rs3746444 in MIR499A, rs11614913 in MIR196, 

rs1044165 in MIR223, and rs767649 in MIR155 were retrieved from miRbase [5]. TaqMan 

real-time PCR experiments were set up in 384-well plates comprising positive and negative 

samples and performed on an ABI Q6 system (Applied Biosystems). ABI-Prism 7900HT 

sequence detection devices were used to read and analyze the plates. The TaqMan assay was 

conducted double blinded to check the quality of the patients and healthy individuals. 

Statistical assessment 

The Hardy-Weinberg Equilibrium (HWE) in the genotypes of the studied microRNA 

polymorphisms was investigated using the chi-square (χ2) test. The odds ratio (OR) and 95% 

confidence intervals (CI) were used to assess the relationship between the SNPs and the risk 

of CHD. This test determined the variance in genotype frequency distribution between 

patients and controls. To calculate the risk of CHD, various genetic inheritance models were 

applied. A low-risk allele was one whose frequency was lower in cases than in controls, 

while a high-risk allele was one whose frequency was higher in cases. The P-value for each 

genotype was calculated by comparing the homozygote and heterozygote genotype 

frequencies in patients and controls. Furthermore, the genotypic frequencies of the studied 

SNPs were calculated. A P-value of 0.05 or lower was regarded as statistically significant. 

In-silico Analysis  

Alterations in Minimum Free Energy (MFE) between reference and mutated sequences in the 

stem-loop structure of miRNAs were calculated using RNAFold—ViennaRNA Package 2.0 

[38] to predict the deleterious effects of SNPs in the studied miRNAs. 
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