1 Effects of COVID-19 mRNA vaccination on HIV viremia and reservoir size 2

3 4 5 6 7 8 9	Maggie C. DUNCAN ^{1,2} , F. Harrison OMONDI ^{1,2} , Natalie N. KINLOCH ^{1,2} , Hope R. LAPOINTE ¹ , Sarah SPECKMAIER ¹ , Nadia MORAN-GARCIA ¹ , Tanya LAWSON ³ , Mari L. DeMarco ^{4,5} , Janet SIMONS ^{4,5} , Daniel T. HOLMES ^{4,5} , Christopher F. LOWE ^{3,4,5} , Nic BACANI ¹ , Paul SEREDA ¹ , Rolando BARRIOS ^{1,6} , Marianne HARRIS ^{1,7} , Marc G. ROMNEY ^{3,4,5} , Julio S.G. MONTANER ^{1,8} , Chanson J. BRUMME ^{1,8} , Mark A. BROCKMAN ^{1,2,9} , Zabrina L. BRUMME ^{1,2} .
10	¹ British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
12	² Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
13	³ Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada
14 15	⁴ Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, Canada
16	⁵ Department of Pathology and Laboratory Medicine, University of British Columbia,
17 18	⁶ School of Population and Public Health University of British Columbia Vancouver
19	Canada
20	⁷ Department of Family Practice, Faculty of Medicine, University of British Columbia,
21	Vancouver, Canada
22	⁸ Department of Medicine, University of British Columbia, Vancouver, Canada;
23	⁹ Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby,
24	Canada
25	Short Title: COVID-19 mRNA vaccines and the HIV reservoir
26 27 28 29	Word Count: Abstract: 250/250; Text: 3491/3500
30	Corresponding Author:
31	Zabrina L. Brumme, Ph.D.,
32	Faculty of Health Sciences, Simon Fraser University,
33	8888 University Drive, Burnaby, BC, Canada, V5A 1S6;
34 25	1el: //8 /82-88/2; Fax: //8-/82-592/;
36	eman. zorumme e stu.ca, zorumme e occre.ca
37	

38 Abstract:

39	Objective: The immunogenic nature of COVID-19 mRNA vaccines led to some initial
40	concern that these could stimulate the HIV reservoir. We analyzed changes in plasma HIV
41	loads (pVL) and reservoir size following COVID-19 mRNA vaccination in 62 people with
42	HIV (PWH) receiving antiretroviral therapy (ART), and analyzed province-wide trends in
43	pVL before and after the mass vaccination campaign.
44	
45	Design: Longitudinal observational cohort and province-wide analysis.
46	
47	Methods: 62 participants were sampled pre-vaccination, and one month after their first and
48	second COVID-19 immunizations. Vaccine-induced anti-SARS-CoV-2-Spike antibodies in
49	serum were measured using the Roche Elecsys Anti-S assay. HIV reservoirs were
50	quantified using the Intact Proviral DNA Assay; pVL were measured using the cobas 6800
51	(LLOQ:20 copies/mL). The province-wide analysis included all 290,401 pVL performed in
52	British Columbia, Canada between 2012-2022.
53	
54	Results: Pre-vaccination, the median intact reservoir size was 77 (IQR:20-204) HIV
55	copies/million CD4+ T-cells, compared to 74 (IQR:27-212) and 65 (IQR:22-174) post-first
56	and -second dose, respectively (all comparisons p>0.07). Pre-vaccination, 82% of
57	participants had pVL<20 copies/mL (max:110 copies/mL), compared to 79% post-first
58	dose (max:183 copies/mL) and 85% post-second dose (max:79 copies/mL) (p>0.4). The
59	magnitude of the vaccine-elicited anti-SARS-CoV-2-Spike antibody response did not
60	correlate with changes in reservoir size nor detectable pVL frequency (p>0.6). We found no

C 4	11 111 11 COUD 10	• ,•	• ,	1 / 1 1	•
61	evidence linking the COVID-19 n	nass vaccination	campaign to t	opulation-level	increases
-					

- 62 in detectable pVL frequency among all PWH in the province, nor among those who
- 63 maintained pVL suppression on ART.
- 64
- 65 **Conclusion**: We found no evidence that COVID-19 mRNA vaccines induced changes in
- 66 HIV reservoir size nor plasma viremia.

67

68 Keywords: COVID-19 vaccine, mRNA, HIV, reservoir size, IPDA, plasma viral load

69 <u>Introduction</u>

70 The mass rollout of safe and effective SARS-CoV-2 mRNA vaccines was critical in 71 combatting the COVID-19 pandemic. As people with HIV (PWH) are at a higher risk of 72 severe COVID-19 outcomes [1–3], it was particularly important for this group to be 73 vaccinated, and a large body of evidence now reassuringly confirms that PWH receiving 74 suppressive antiretroviral therapy (ART) generally mount robust immune responses to 75 COVID-19 vaccination [4–12]. Initially however, COVID-19 vaccine confidence was 76 typically lower among PWH compared to the general population [13,14], with possible 77 effects of vaccination on viral rebound cited among the concerns [15,16]. Such concerns 78 are not entirely unfounded, as some vaccines, including those against influenza, Hepatitis B, 79 and pneumococcus can induce HIV transcription, leading to transient increases in plasma 80 HIV RNA levels [17–21]. The immunogenic nature of mRNA vaccines, which elicit strong humoral and cell-81 82 mediated immune responses by harnessing innate detectors of single-stranded viral RNA 83 [22,23], led to some initial concerns that these might induce HIV expression, and possibly 84 viral release, from the reservoir [24]. This could theoretically occur via direct stimulation of 85 reservoir cells that recognize the vaccine antigen, or through a generalized inflammatory

86 response with cytokine production that could transiently promote HIV gene expression.

87 Indeed, reports of increased HIV viremia in individuals receiving ART following COVID-

88 19 mRNA vaccination have emerged [25–27], though other studies have observed no such
89 effects [28–30].

90 Existing studies however have been relatively modestly sized. A recent analysis of
91 35 PWH, which included 15 participants from the present cohort, reported that the

92 frequency of Nef-specific CD8+ T cells transiently increased after the initial COVID-19 93 mRNA vaccine dose, consistent with immune sensing of reactivated reservoir cells, but 94 plasma viremia was not investigated and no significant changes in reservoir size were 95 observed in the subset of 13 participants analyzed for this outcome [31]. Another analysis 96 of 25 PWH reported no significant changes in reservoir size post-COVID-19 vaccination 97 [29]. A recent analysis of 68 PWH reported a gradual yet not statistically significant 98 increase in pVL after the second vaccine dose with no obvious effects on reservoir size, but 99 nearly half of participants received the viral vectored ChAdOx1 vaccine (which may be less 100 likely to modulate the reservoir), and pVL and reservoir data were available for fewer than 101 two-thirds of the cohort [27]. To our knowledge, no studies have investigated the effects of 102 COVID-19 mRNA vaccination on the reservoir in an observational cohort while also 103 analyzing population-level trends in pVL test results in a large geographic region following 104 mass COVID-19 vaccination. 105 Here, we analyzed changes in pVL and reservoir size following the first and second 106 COVID-19 mRNA vaccine doses in 62 PWH receiving ART. Using a longitudinal dataset 107 that captured all PWH in British Columbia (BC), Canada, we also investigated whether the 108 frequency of detectable HIV RNA test results increased at the population level following

- the mass administration of first, second and booster COVID-19 vaccine doses in the
- 110 province.

111 <u>Methods</u>

112 Cohort and specimen collection

113	Our conort of PWH on AR1, established at the outset of the mass COVID-19
114	vaccination campaign in BC, has been described previously [6]. The present analysis
115	includes all PWH who provided a pre-vaccination sample and who received two mRNA
116	vaccine doses (either BNT162b2 or mRNA-1273). Serum, plasma and peripheral blood
117	mononuclear cells (PBMC; isolated by density gradient separation and cryopreserved
118	at -150°C until analysis) were collected pre-vaccination, and again one month after the first
119	and second vaccine doses.
120	
121	Ethics Approval
122	The cohort study was approved by the University of British Columbia/Providence
122 123	The cohort study was approved by the University of British Columbia/Providence Health Care and Simon Fraser University Research Ethics Boards. All participants provided
122 123 124	The cohort study was approved by the University of British Columbia/Providence Health Care and Simon Fraser University Research Ethics Boards. All participants provided written informed consent. The BC Centre for Excellence in HIV/AIDS (BC-CfE) Drug
122 123 124 125	The cohort study was approved by the University of British Columbia/Providence Health Care and Simon Fraser University Research Ethics Boards. All participants provided written informed consent. The BC Centre for Excellence in HIV/AIDS (BC-CfE) Drug Treatment Program (DTP), the source of the province-wide pVL dataset, is a provincially-
122 123 124 125 126	The cohort study was approved by the University of British Columbia/Providence Health Care and Simon Fraser University Research Ethics Boards. All participants provided written informed consent. The BC Centre for Excellence in HIV/AIDS (BC-CfE) Drug Treatment Program (DTP), the source of the province-wide pVL dataset, is a provincially- funded clinical registry mandated to: i) deliver health care to individuals living with HIV
122 123 124 125 126 127	The cohort study was approved by the University of British Columbia/Providence Health Care and Simon Fraser University Research Ethics Boards. All participants provided written informed consent. The BC Centre for Excellence in HIV/AIDS (BC-CfE) Drug Treatment Program (DTP), the source of the province-wide pVL dataset, is a provincially- funded clinical registry mandated to: i) deliver health care to individuals living with HIV and related diseases, or at risk of HIV infection, ii) implement and support public health
122 123 124 125 126 127 128	The cohort study was approved by the University of British Columbia/Providence Health Care and Simon Fraser University Research Ethics Boards. All participants provided written informed consent. The BC Centre for Excellence in HIV/AIDS (BC-CfE) Drug Treatment Program (DTP), the source of the province-wide pVL dataset, is a provincially- funded clinical registry mandated to: i) deliver health care to individuals living with HIV and related diseases, or at risk of HIV infection, ii) implement and support public health initiatives to curb HIV/AIDS, iii) monitor and evaluate these health care programs, and iv)
122 123 124 125 126 127 128 129	The cohort study was approved by the University of British Columbia/Providence Health Care and Simon Fraser University Research Ethics Boards. All participants provided written informed consent. The BC Centre for Excellence in HIV/AIDS (BC-CfE) Drug Treatment Program (DTP), the source of the province-wide pVL dataset, is a provincially- funded clinical registry mandated to: i) deliver health care to individuals living with HIV and related diseases, or at risk of HIV infection, ii) implement and support public health initiatives to curb HIV/AIDS, iii) monitor and evaluate these health care programs, and iv) support related knowledge translation and educational programs. As a result, the

131 Providence Health Care/University of British Columbia REB.

133 Anti-SARS-CoV-2 antibody assays

134	Total binding antibodies against SARS-CoV-2 nucleocapsid (N) and spike receptor
135	binding domain (RBD) in serum were measured using the Roche Elecsys Anti-SARS-CoV-
136	2 and Anti-SARS-CoV-2 S assays, respectively. Both are electro-chemiluminescence
137	sandwich immunoassays. The presence of anti-N antibodies identified participants with
138	prior SARS-CoV-2 infection. The S assay reports results in arbitrary units/mL (U/mL)
139	calibrated against an external standard, where the measurement range is from 0.4-25,000
140	U/mL.
141	
142	Plasma HIV RNA quantification
143	Plasma HIV RNA levels were quantified using the cobas Ampliprep/Taqman HIV-1
144	Test v2.0 (during the period March 7, 2012 – June 4, 2018) or the cobas HIV-1 Test on a
145	cobas 6800 (from June 5, 2018 – present; Roche Diagnostics). The lower limit of
146	quantification (LLOQ) of this test is 20 HIV RNA copies/mL. This threshold defined
147	undetectable viremia, unless otherwise indicated.
148	
149	HIV Reservoir Quantification
150	CD4+ T-cells were isolated from PBMCs via negative selection using the EasySep
151	Human CD4+ T-cell Enrichment Kit (STEMCELL Technologies). Median CD4+ T-cell
152	purity, assessed flow cytometrically post-isolation, was 97%. Genomic DNA was extracted
153	from a median of 2.9 (Interquartile Range [IQR] 2.2-3.8) million CD4 + T-cells using the
154	QIAamp DNA Mini Kit (QIAGEN). HIV reservoir quantification was performed using the

155 Intact Proviral DNA Assay (IPDA) [32] as described previously [33]. Briefly, this droplet 156 digital PCR assay distinguishes genomically-intact proviruses from the vast background of 157 defective ones by simultaneously targeting two HIV regions, the Packaging Signal (Ψ) near 158 the 5' end of the viral genome and the Rev Responsive Element (RRE) within Envelope 159 (env), that together strongly predict genomic intactness. An unlabeled competitive RRE 160 probe specific for hypermutated proviruses ensures that these are not counted as intact. 161 Occasionally, the published IPDA primers/probes fail to detect a participant's proviral pool 162 due to sequence polymorphism [33], which occurred in 14 (23%) of participants. For these, 163 we employed a secondary env reaction [33] or custom autologous primers/probes. The 164 assay also quantifies human genomic DNA in an independent parallel reaction, using 165 primer/probe sets in the human RPP30 gene that are spaced the same distance apart as the 166 HIV target regions. This spacing also allows each sample's data to be corrected for the 167 DNA shearing that occurs during extraction (by measuring the frequency whereby the 168 RPP30 targets are decoupled). The assay reports the number of intact HIV genomes (those positive for both Ψ and RRE), as well as the overall number of proviral DNA copies (those 169 170 positive for at least one target), per million CD4+ T-cells. 171 A median of 290,000 (IQR 255,000-325,000) cells were assayed per participant 172 across four replicate wells, which were merged to generate the final reservoir measurement.

173 Genomic DNA from J-Lat 9.2 cells, which harbor a single integrated copy of replication-

incompetent HIV per cell, was used as a positive control, while genomic DNA from donors

175 without HIV, and water, were used as negative controls. Droplets were read using the

176 QX200 Droplet Reader (BioRad) and analysed using QuantaSoft (BioRad, version 1.7.4).

177	Wells containing fewer than 10,000 droplets were excluded from analysis. The median
178	DNA shearing was 0.38 (IQR 0.35-0.39), well within the acceptable range [32].
179	
180	Temporal analysis of HIV plasma viral load test results in British Columbia
181	The BC Centre for Excellence in HIV/AIDS (BC-CfE) provides care and treatment
182	for all PWH in the province. The BC-CfE's Drug Treatment Program (DTP) database
183	captures all HIV plasma viral load (pVL) tests and ART information for all PWH in BC.
184	We analyzed all 290,401 pVL tests performed between January 2012 and December 2022
185	to investigate whether the frequency of detectable pVL test results increased following each
186	"wave" of mass COVID-19 vaccination in the province. Though the LLOQ of the pVL
187	assay is 20 copies/mL, the results are clinically reported (and thus stored in the DTP
188	database) with a LLOQ of 40 copies/mL. COVID-19 vaccine distribution data for BC up to
189	December 2022 (where 97% of vaccines administered were mRNA) [34] were retrieved
190	from the Public Health Agency of Canada and COVID-19 Vaccine Tracker [34-36].
191	
192	Statistical Analysis
193	Comparisons of continuous variables between groups were performed using the
194	Mann-Whitney U-test (for unpaired data) or Wilcoxon test (for paired data). Correlations
195	between continuous variables were performed using Spearman's correlation. Frequency
196	comparisons were performed using the χ^2 test. Where appropriate, multiple comparisons
197	were addressed using a false-discovery rate (q-value) approach [37]. All statistical tests
198	were performed in using R (version 4.3.1).

199 <u>Results</u>

200 Participant characteristics

201	The 62 PWH participants in the observational cohort study were a median 43 years
202	old and 55 (89%) were male. Participants had been receiving ART for a median of 6 years,
203	with 74% on integrase inhibitor-based ART at enrolment (Table 1). The most recent CD4+
204	T-cell count, measured a median of 40 (IQR 15-159) days before enrolment, was 725 (IQR
205	475-915; range 130-1800) cells/mm ³ . The estimated nadir CD4+ T-cell count, recorded a
206	median of 5.6 (IQR 2.8-13) years before enrolment, was 305 (IQR 160-499; range <9-970)
207	cells/mm ³ . At the baseline (pre-vaccination) visit, 51 (82%) of participants had pVL below
208	the LLOQ of 20 copies HIV RNA/mL (the highest pVL observed at baseline was 110
209	copies/mL). Overall, 69% of participants received two doses of the BNT162b2 COVID-19
210	mRNA vaccine, 26% received two doses of mRNA-1273, and 5% received a mixed mRNA
211	regimen. Of note, the interval between first and second COVID-19 doses was extended to
212	up to 112 days in Canada due to initially limited vaccine supplies in the country [38]. The
213	vast majority (57/62; 92%) of participants remained COVID-19 naive throughout follow-up,
214	four experienced COVID-19 before vaccination, and one acquired COVID-19 between the
215	first and second vaccine doses.
210	

216

217 No evidence that COVID-19 mRNA vaccination induces detectable viremia

HIV pVL testing was performed at the baseline visit, which occurred a median of
12 (IQR 3-26) days prior to vaccination, one month (a median of 31 [IQR 29-33] days)
after the first vaccine dose, and again one month (a median of 30 [IQR 29-30] days) after

221	the second vaccine dose (Fig. 1). At baseline, 82% (51/62) of participants had a pVL <20
222	copies/mL, where the highest observed value was 110 copies/mL. One month after the first
223	vaccine dose, 79% (49/62) of participants had pVL <20 copies/mL (highest value 183
224	copies/mL), a difference that was not statistically significant from baseline (Wilcoxon
225	paired test; p=0.46). One month after the second dose, three participants had temporarily
226	discontinued ART or missed the visit, leaving 59 participants for analysis. Of these, 85%
227	(50/59) had pVL <20 copies/mL (highest value 79 copies/mL), which was not significantly
228	different compared to baseline (p=0.81), nor one month post-first dose (p=0.88). Using a
229	pVL < 50 copies/mL threshold produced consistent results: at baseline, 94% (58/62) of
230	participants had a pVL <50 copies/mL, compared to 92% (57/62) one month after the first
231	vaccine dose, and 93% (55/59) after the second (Chi-squared p=0.93). At no point did any
232	participant experience virologic failure (defined as >200 copies/mL [39,40]). Results also
233	remained consistent after excluding visits from participants who had experienced
234	COVID-19 (all p>0.59; not shown). Stratification of the data by sex, COVID-19 vaccine
235	regimen, and ART regimen similarly produced no statistically significant differences in
236	pVL between baseline and post-vaccination visits for any subgroup (all p>0.08; q>0.78; not
237	shown).

238

239 No changes in HIV reservoir size after COVID-19 mRNA vaccination

To determine whether COVID-19 mRNA vaccination induced changes in HIV
reservoir size (defined as genome-intact proviral load) or total HIV DNA load, we
quantified the number of intact, defective and total proviral copies per million CD4+

243	T-cells (Fig. 2) [32]. At baseline, the median number of intact HIV copies per million
244	CD4+ T-cells was 77 (IQR 20-204). One month following the first vaccine dose it was 74
245	(IQR 27-212), a difference that was not statistically significant (Wilcoxon paired test,
246	p=0.64) (Fig. 2a). One month following the second vaccine dose, the median intact
247	reservoir size was 65 (IQR 22-174), which was not significantly different from baseline
248	(p=0.32), nor one month post-first dose (p=0.07) (Fig. 2a). Likewise, 5'-defective,
249	3'-defective, and total proviral burdens did not change significantly between baseline and
250	either post-vaccine visit (Fig. 2a-2d; all p>0.08). These results remained consistent after
251	excluding data from participants who experienced COVID-19 (all p>0.07; not shown).
252	Stratification of the data by sex, vaccine, and ART regimen similarly produced no
253	statistically significant differences in intact reservoir size, nor in the total, 5'-defective nor
254	3'-defective proviral burdens for any subgroup, after adjusting for multiple comparisons
255	(all q>0.24; not shown).
256	
257	No evidence that the magnitude of the COVID-19-vaccine-induced immune response

258 increases the likelihood of HIV reservoir perturbation

Based on the observation that PWH on ART who mounted strong responses to 259 influenza vaccination were more likely to show transient increases in HIV pVL [20], we 260 261 investigated whether the magnitude of the COVID-19-vaccine-induced immune response 262 increased the likelihood of HIV reservoir perturbation. We found no evidence to support 263 this: one month following the first vaccine dose, anti-SARS-CoV-2-Spike serum antibody 264 concentrations were a median of 51.4 (19.4-130.6 U/mL) in participants who maintained

265	pVL <20 copies/mL versus a median of 36.6 (16.4-80.7 U/mL) among participants with a
266	pVL >20 HIV copies/mL, a difference that was not statistically significant (Mann-Whitney
267	p = 0.73; Fig. 3a). Similarly, one month after the second vaccine dose, anti-SARS-CoV-2-
268	Spike serum antibody concentrations were median of 8970 (5019-13544 U/mL) and 7205
269	(4163-11638 U/mL) respectively in participants with pVL <20 versus >20 copies/mL, a
270	difference that was not statistically significant (p=0.84; Fig. 3b).
271	Likewise, the magnitude of anti-SARS-CoV-2-Spike serum antibody levels one
272	month after the first vaccine dose did not correlate with the fold-change in reservoir size
273	from baseline (Spearman ρ =0.05, p=0.69; Fig. 3c), nor did the magnitude of
274	anti-SARS-CoV-2-Spike serum antibody levels one month after the second vaccine dose
275	correlate with the fold-change in reservoir size from the prior visit (Spearman ρ =0.03,
276	p=0.82; Fig. 3d). Both the pVL and reservoir size results remained consistent after
277	excluding the participants with prior COVID-19 (all p>0.51; not shown). Overall, the
278	results from our observational cohort do not provide any evidence that COVID-19 mRNA
279	vaccines modulated the HIV reservoir nor induced plasma viremia.
280	
281	Province-wide analysis of trends in HIV plasma viral loads before and after mass
282	COVID-19 vaccination
283	We next investigated whether BC's mass COVID-19 vaccination campaign was
284	associated with an increase in the frequency of detectable pVL test results (defined here as

- pVL > 40 copies HIV RNA/mL; see methods) at the population level. We began by
- analyzing all 290,401 pVL tests performed in BC since 2012. These represented all pVL

tests performed as part of routine clinical care of all PWH in BC, regardless of the 287 288 individual's ART status at the time of testing (the number of PWH undergoing pVL testing 289 in a given year ranged from 7112-8095 during this period) (Fig. 4a). Between 2012 and 290 approximately 2016, the percentage of detectable pVL test results declined from nearly 291 29% to an average of 16% as a result of a province-wide implementation of widespread 292 HIV testing and immediate initiation of free-of-charge ART that began in 2013 [41]. Since 293 2016, the overall percentage of detectable pVL has remained relatively stable, though there 294 was a slight uptick in the proportion of detectable pVL tests during 2020 because care 295 providers were asked to reduce the frequency of routine pVL testing for PWH with long-296 term viremia suppression, to preserve lab capacity for COVID-19 diagnostic testing (which 297 was also performed on the cobas 6800 in BC).

298 COVID-19 vaccines were first made available to priority populations in BC, namely 299 frontline health workers, long-term care residents and individuals with select clinical 300 conditions (which did not include HIV infection) starting in late December 2020. The age-301 based mass immunization campaign began in April 2021, which is when the majority of 302 PWH became eligible for COVID-19 vaccination. Peak administration of first doses 303 occurred from approximately May through September 2021, with second doses largely 304 administered from February to March 2022 (Fig. 4a). By April 10th, 2022, 89% of all adult 305 British Columbians had received at least two COVID-19 vaccine doses [35]. Notably, we 306 observed no obvious evidence of population-level increases in detectable pVL during or 307 immediately following the peak vaccine administration periods in the province (Fig. 4a). 308 As transient, vaccine-induced viremia may only be observable in PWH on 309 suppressive ART, we next restricted the province-wide analysis to PWH receiving

310	uninterrupted ART, defined as those with continuous monthly prescription refill records in
311	a given year. We then determined the annual percentage of PWH receiving uninterrupted
312	ART who experienced at least one detectable pVL that year. We began the analysis in 2019,
313	the year before the COVID-19 pandemic was declared (and the first full year that the cobas
314	6800 HIV Test was implemented) (Fig. 4b). Between 4903 and 5975 PWH were included
315	in each year's analysis. In 2019, 18.7% of PWH receiving uninterrupted ART experienced
316	at least one detectable pVL. In 2020, the percentage was 16.8%, though this reduction may
317	be attributable to the temporary reduction in pVL testing that year. By 2021, pVL testing
318	returned to pre-pandemic levels and >9 million COVID-19 vaccine doses were
319	administered provincewide in that year. Nevertheless, the percentage of PWH receiving
320	uninterrupted ART who experienced at least one detectable pVL measurement was 18.5%,
321	which was essentially identical to that observed in 2019 prior to the pandemic. The
322	percentage for 2022 was also 18.5%. Taken together, these results reveal no evidence
323	linking the provincial COVID-19 vaccination campaign to increases in detectable pVL at
324	the population level in BC.

325 Discussion

326 The mass rollout of COVID-19 mRNA vaccines provided an opportunity to study the potential stimulatory effects of this new vaccine modality on the HIV reservoir. Though 327 328 a number of studies have now investigated this topic [27–29,31], their results have not been 329 entirely conclusive. While one study found evidence of a gradual, though not statistically 330 significant increase in the rate of detectable viremia peaking 4 weeks after the second 331 vaccine dose [27], two others reported no changes in viremia following two-dose 332 vaccination [28,30]. Two studies reported reduced frequencies of detectable viremia after 333 three-dose vaccination [28,29], though in one study this was likely attributable to increased 334 time on ART, which was initiated around the study outset for many participants [28]. Ours 335 is the first study to our knowledge to combine cohort- and population-level analyses of 336 pVL trends during a mass COVID-19 mRNA vaccination campaign. 337 Overall, neither the cohort nor population-level analyses identified evidence that 338 COVID-19 mRNA vaccination promotes viral release from the reservoir to detectable 339 levels in plasma. One month after the first and second vaccine doses, the proportion of 340 participants with detectable pVL remained statistically unchanged from baseline, with no 341 participant experiencing virologic failure (defined as pVL>200 copies/mL [39,40]). 342 Moreover, there was no evidence that the magnitude of the anti-SARS-CoV-2-Spike 343 antibody response influenced the likelihood of experiencing plasma viremia post-344 vaccination. Our province-wide analysis similarly found that the frequency of detectable 345 pVL test results remained stable at the population level following the mass administration 346 of first, second and booster COVID-19 vaccine doses in BC. This remained the case

whether we considered the overall PWH population, or the subset receiving uninterruptedART.

349 Our cohort-based analysis also found no evidence that COVID-19 mRNA 350 vaccination induced changes in HIV reservoir size, nor in total, 5'-defective, or 3'-defective 351 proviral loads. This is consistent with findings from of three studies that assessed smaller 352 numbers of participants for this outcome using similar approaches [27,29,31]. 353 Our study has some limitations and caveats. We sampled our cohort one month 354 following each COVID-19 vaccine dose because our primary objective was to evaluate 355 vaccine immune responses in PWH, as previously reported [6]. This timing however would 356 have missed rapid viremia events that had resolved by this time (indeed, such rapid viremia 357 events have been reported for influenza vaccination [20]). That said, in reports describing 358 viremia following COVID-19 vaccination, including the single case study, viremia was 359 detectable one month post-vaccination [25,27]. Another limitation is that our province-wide 360 evaluation represents an ecological analysis that correlated population-level pVL and 361 vaccination data, because COVID-19 vaccination dates of individual British Columbians 362 were not available to us. Thus, even though this analysis captured all HIV pVL tests 363 performed in BC during the period of interest, the variable timing of these tests with respect 364 to the individual's vaccination date would not have allowed us to capture all viremia events 365 that may have occurred. Finally, though neither our cohort nor population-level analyses 366 support frequent nor widespread effects of COVID-19 vaccination on the HIV reservoir, we 367 cannot rule out that such events may occur uncommonly, through mechanisms that remain 368 incompletely understood.

- 369 In conclusion, we found no evidence that COVID-19 mRNA vaccines induced
- 370 changes in HIV reservoir size nor plasma viremia in PWH receiving suppressive ART.
- Taken together with similar findings from other studies [27–29,31], we conclude that there
- is now a strong body of evidence indicating COVID-19 immunization is safe and effective
- in PWH [4–12]. This should provide additional reassurance to PWH and their care
- 374 providers regarding the safety of COVID-19 mRNA vaccines.

376 Acknowledgements:

377	MCD and ZLB conceived and designed the study. MAB and ZLB obtained funding. HRL,
378	MH, MAB and ZLB established the cohort. MCD, FHO, NNK, SS and NM-G processed
379	specimens and/or collected IPDA data. MCD analyzed data and made figures. TL, CFL
380	and MGR performed the plasma viral load testing. MLD, JS, DTH and MGR performed the
381	COVID-19 serologic testing. NB, PS and CJB performed the province-wide viral load
382	analysis. JSGM and RB provided data access. MCD wrote the first draft of the paper, with
383	all authors contributing edits.
384	
385	We are grateful to the study participants, without whom this research would not be possible.
386	
387	This work was supported in part by the Canadian Institutes for Health Research (CIHR)
388	through a project grant (PJT-159625 to ZLB) and a team grant (HB1-164063 to ZLB and
389	MAB). This work was also supported in part by the National Institutes of Health (NIH)
390	through the Martin Delaney "REACH" Collaboratory (NIH grant 1-UM1AI164565-01 to
391	ZLB and MAB), which is supported by the following NIH cofounding institutes: NIMH,
392	NIDA, NINDS, NIDDK, NHLBI and NIAID. MCD was supported by a CIHR CGS-M
393	award. NNK was supported by a CIHR Vanier Canada Graduate Scholarship. MLD and
394	ZLB were supported by Scholar Awards from Michael Smith Health Research BC. The
395	content is solely the responsibility of the authors and does not necessarily represent the
396	official views of the National Institutes of Health or other funders.
397	

398 <u>References</u>

399 400 401 402 403 404	1	Geretti AM, Stockdale AJ, Kelly SH, Cevik M, Collins S, Waters L, <i>et al.</i> Outcomes of Coronavirus Disease 2019 (COVID-19) Related Hospitalization Among People With Human Immunodeficiency Virus (HIV) in the ISARIC World Health Organization (WHO) Clinical Characterization Protocol (UK): A Prospective Observational Study. <i>Clin Infect Dis</i> 2020; 73:e2095–e2106.	
405 406 407	2	Tesoriero JM, Swain C-AE, Pierce JL, Zamboni L, Wu M, Holtgrave DR, <i>et al.</i> COVID-19 Outcomes Among Persons Living With or Without Diagnosed HIV Infection in New York State . <i>JAMA Netw Open</i> 2021; 4 :e2037069.	
408 409 410 411	3	Bhaskaran K, Rentsch CT, MacKenna B, Schultze A, Mehrkar A, Bates CJ, <i>et al.</i> HIV infection and COVID-19 death: a population-based cohort analysis of UK primary care data and linked national death registrations within the OpenSAFELY platform . <i>Lancet HIV</i> 2021; 8 :e24–e32.	
412 413 414 415	4	Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, <i>et al.</i> Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. <i>Lancet</i> 2021; 397:99–111.	
416 417 418	5	Ruddy JA, Boyarsky BJ, Bailey JR, Karaba AH, Garonzik-Wang JM, Segev DL, <i>et al.</i> Safety and antibody response to two-dose SARS-CoV-2 messenger RNA vaccination in persons with HIV. <i>AIDS</i> 2021; 35:2399–2401.	
419 420 421 422	6	Brumme ZL, Mwimanzi F, Lapointe HR, Cheung PK, Sang Y, Duncan MC, <i>et al.</i> Humoral immune responses to COVID-19 vaccination in people living with HIV receiving suppressive antiretroviral therapy . <i>npj Vaccines</i> 2022; 7 . doi:10.1038/s41541-022-00452-6	
423 424 425 426 427	7	Antinori A, Cicalini S, Meschi S, Bordoni V, Lorenzini P, Vergori A, <i>et al.</i> Humoral and Cellular Immune Response Elicited by mRNA Vaccination Against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in People Living With Human Immunodeficiency Virus Receiving Antiretroviral Therapy Based on Current CD4 T-Lymphocyte Count. <i>Clin Infect Dis</i> 2022; 75:e552–e563.	
428 429 430	8	Vergori A, Cozzi Lepri A, Cicalini S, Matusali G, Bordoni V, Lanini S, <i>et al.</i> Immunogenicity to COVID-19 mRNA vaccine third dose in people living with HIV . <i>Nat Commun</i> 2022; 13 :4922.	
431 432	9	Fidler S, Fox J, Tipoe T, Longet S, Tipton T, Abeywickrema M, <i>et al.</i> Booster Vaccination Against SARS-CoV-2 Induces Potent Immune Responses in People	

433 With Human Immunodeficiency Virus. *Clin Infect Dis* 2023; **76**:201–209.

434 10 Costiniuk CT, Singer J, Lee T, Langlois M-A, Arnold C, Galipeau Y, *et al.* COVID-19
435 vaccine immunogenicity in people with HIV. *AIDS* 2023; 37:F1–F10.

- Lapointe HR, Mwimanzi F, Cheung PK, Sang Y, Yaseen F, Speckmaier S, *et al.*Antibody response durability following three-dose coronavirus disease 2019
 vaccination in people with HIV receiving suppressive antiretroviral therapy. *AIDS*2023; 37:709–721.
- Costiniuk CT, Singer J, Lee T, Galipeau Y, McCluskie PS, Arnold C, *et al.* Antibody
 neutralization capacity after coronavirus disease 2019 vaccination in people with
 HIV in Canada. *AIDS* 2023; 37:F25–F35.
- Kaida A, Brotto LA, Murray MCM, Côté HCF, Albert AY, Nicholson V, *et al.* **Intention to Receive a COVID-19 Vaccine by HIV Status Among a Population- Based Sample of Women and Gender Diverse Individuals in British Columbia, Canada**. *AIDS Behav* 2022; 26:2242–2255.
- Liu Y, Han J, Li X, Chen D, Zhao X, Qiu Y, *et al.* COVID-19 Vaccination in People
 Living with HIV (PLWH) in China: A Cross Sectional Study of Vaccine Hesitancy,
 Safety, and Immunogenicity. *Vaccines* 2021; 9:1458.
- 450 15 Wu S, Zhu S, Yan X, Xu Y, Xu H, Yang F, *et al.* Willingness to receive the COVID451 19 vaccine among HIV positive men who have sex with men in China: a cross452 sectional study. *BMC Public Health* 2023; 23:64.
- 453 16 Yao Y, Chai R, Yang J, Zhang X, Huang X, Yu M, *et al.* Reasons for COVID-19
- 454 Vaccine Hesitancy Among Chinese People Living With HIV/AIDS: Structural
 455 Equation Modeling Analysis. *JMIR Public Health Surveill* 2022; 8:e33995.
- 456 17 Yek C, Gianella S, Plana M, Castro P, Scheffler K, Garcia F, *et al.* Standard vaccines
 457 increase HIV-1 transcription during antiretroviral therapy. *AIDS* 2016; 30:2289–
 458 2298.
- 18 Negredo E, Domingo P, Sambeat MA, Rabella N, Vázquez G. Effect of Pneumococcal
 Vaccine on Plasma HIV-1 RNA of Stable Patients Undergoing Effective Highly
 Active Antiretroviral Therapy. *EJCMID* 2001; 20:287–288.
- 462 19 Calmy A, Bel M, Nguyen A, Combescure C, Delhumeau C, Meier S, *et al.* Strong
 463 serological responses and HIV RNA increase following AS03-adjuvanted
 464 pandemic immunization in HIV-infected patients. *HIV Medicine* 2012; 13:207–218.
- Günthard HF, Wong JK, Spina CA, Ignacio C, Kwok S, Christopherson C, *et al.* Effect
 of Influenza Vaccination on Viral Replication and Immune Response in Persons
 Infected with Human Immunodeficiency Virus Receiving Potent Antiretroviral
 Therapy. J Infect Dis 2000; 181:522–531.

469 470 471	21	Rey D, Krantz V, Partisani M, Schmitt M-P, Meyer P, Libbrecht E, <i>et al.</i> Increasing the number of hepatitis B vaccine injections augments anti-HBs response rate in HIV-infected patients. Effects on HIV-1 viral load . <i>Vaccine</i> 2000; 18 :1161–1165.	
472 473 474	22	Kowalczyk A, Doener F, Zanzinger K, Noth J, Baumhof P, Fotin-Mleczek M, <i>et al.</i> Self-adjuvanted mRNA vaccines induce local innate immune responses that lead to a potent and boostable adaptive immunity . <i>Vaccine</i> 2016; 34 :3882–3893.	
475 476	23	Iavarone C, O'Hagan DT, Yu D, Delahaye NF, Ulmer JB. Mechanism of action of mRNA-based vaccines. <i>Expert Rev Vaccines</i> 2017; 16 :871–881.	
477 478 479 480	24	Frater J, Ewer KJ, Ogbe A, Pace M, Adele S, Adland E, <i>et al.</i> Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS- CoV-2 in HIV infection: a single-arm substudy of a phase 2/3 clinical trial . <i>Lancet</i> <i>HIV</i> 2021; 8 :474–485.	
481 482 483	25	Bozzi G, Lombardi A, Ludovisi S, Muscatello A, Manganaro L, Cattaneo D, <i>et al.</i> Transient increase in plasma HIV RNA after COVID-19 vaccination with mRNA- 1272 . <i>Int J Infect Dis</i> 2021; 113 :125–126.	
484 485 486	26	Levy I, Wieder-Finesod A, Litchevsky V, Biber A, Indenbaum V, Olmer L, <i>et al.</i> Immunogenicity and safety of the BNT162b2 mRNA COVID-19 vaccine in people living with HIV-1 . <i>Clin Microbiol Infect</i> 2021; 27 :1851–1855.	
487 488 489	27	Matveev VA, Mihelic EZ, Benko E, Budylowski P, Grocott S, Lee T, <i>et al.</i> Immunogenicity of COVID-19 vaccines and their effect on HIV reservoir in older people with HIV . <i>iScience</i> 2023; 26 :107915.	
490 491 492 493 494 495	28	Fusco FM, Carleo MA, Sangiovanni N, D'Abbraccio M, Tambaro O, Borrelli F, <i>et al.</i> Does COVID-19 Vaccination with BNT162b2 Influence HIV-Related Immunological and Virological Markers? Data from 235 Persons Living with HIV at Cotugno Hospital, Naples, Italy: Immune Response After Second and Third Doses, and Influence on Immunovirological Markers . <i>Viral Immunol</i> 2023; 36 :360- 365.	
496 497 498 499	29	Tuttle DJ, Castanha PMS, Nasser A, Wilkins MS, Alaoui-El-Azher M, Cuff DE, <i>et al.</i> SARS-CoV-2 mRNA Vaccine Induced Immune Responses in Men with HIV-1 and Impact on Proviral Reservoirs. Published Online First: 16 April 2023. doi:10.2139/ssrn.4417076	
500 501 502	30	Portillo V, Fedeli C, Ustero Alonso P, Petignat I, Mereles Costa EC, Sulstarova A, <i>et al.</i> Impact on HIV-1 RNA Levels and Antibody Responses Following SARS-CoV-2 Vaccination in HIV-Infected Individuals . <i>Front Immunol</i> 2022; 12 :820126.	

Stevenson EM, Terry S, Copertino D, Leyre L, Danesh A, Weiler J, *et al.* SARS CoV-2
 mRNA vaccination exposes latent HIV to Nef-specific CD8+ T-cells. *Nat Commun* 2022; 13:4888.

- 32 Bruner KM, Wang Z, Simonetti FR, Bender AM, Kwon KJ, Sengupta S, *et al.* A novel
 quantitative approach for measuring the reservoir of latent HIV-1 proviruses.
 Nature 2019; 566:120–125.
- 33 Kinloch NN, Ren Y, Conce Alberto WD, Dong W, Khadka P, Huang SH, *et al.* HIV-1
 diversity considerations in the application of the Intact Proviral DNA Assay
 (IPDA). *Nat Commun* 2021; 12:165.
- 512 34 Public Health Agency of Canada. Canadian report on COVID-19 vaccine doses
 513 administered. Ottawa: Public Health Agency of Canada; 2023. https://health-
- 514 infobase.canada.ca/covid-19/vaccine-administration/ (accessed 20 Sep2023).
- 515 35 Public Health Agency of Canada. Canadian COVID-19 vaccination coverage report.
- 516 Ottawa: Public Health Agency of Canada; 2023. https://health-
- 517 infobase.canada.ca/covid-19/vaccination-coverage/ (accessed 18 Sep2023).
- 518 36 Little N. COVID-19 Tracker Canada. 2020.COVID19Tracker.ca
- 519 37 Storey JD, Tibshirani R. Statistical significance for genomewide studies. *Proc Natl Acad Sci U S A* 2003; 100:9440–9445.
- 38 Public Health Agency of Canada. NACI rapid response: Extended dose intervals for
 522 COVID-19 vaccines to optimize early vaccine rollout and population protection in
 523 Canada. Public Health Agency of Canada; 2021. https://www.canada.ca/en/public524 health/services/immunization/national-advisory-committee-on-immunization525 naci/rapid-response-extended-dose-intervals-covid-19-vaccines-early-rollout526 population-protection.html (accessed 7 Sep2023).
- 527 39 The Committee for Drug Evaluation and Therapy. Therapeutic Guidelines for
 528 Antiretroviral (ARV) Treatment of Adult HIV Infection. British Columbia Centre for
 529 Excellence in HIV/AIDS; 2023.
- 40 Panel on Antiretroviral Guidelines for Adults and Adolescents. HIV Clinical
 Guidelines: Adult and Adolescent ARV What's New in the Guidelines. Department of
 Health and Human Services; 2023.
- 41 Nanditha NGA, Dong X, Tafessu HM, Wang L, Lu M, Barrios R, *et al.* A provincewide HIV initiative to accelerate initiation of treatment-as-prevention and
 virologic suppression in British Columbia, Canada: a population-based cohort
 study. *CMAJ Open* 2022; 10:E27–E34.
- 537

538 Figure Legends:

539

540	Figure 1: Plasma HIV loads following one- and two-dose COVID-19 vaccination. HIV		
541	plasma viral loads prior to vaccination (left), one month after the first dose (middle), and		
542	one month following the second dose (right). A black dashed line indicates the assay LLOQ		
543	of 20 HIV copies/mL, while light grey dashed lines indicate clinically relevant pVL		
544	thresholds of 50 and 200 HIV copies/mL. For graphing purposes, undetectable viral loads		
545	were plotted as 10 HIV copies/mL, while viral loads that were detectable yet below the		
546	LLOQ were plotted as 15 HIV copies/mL. As the vast majority of pVL measurements were		
547	below the LLOQ, violin plots help visualize the data distribution. Each participant is		
548	identified by a unique color that is consistent throughout all figures. P-values were		
549	calculated using the Wilcoxon sum rank test for paired data.		
550			
551	Figure 2: Measures of intact reservoir size, and total, 5'-defective, 3'-defective		
552	proviral burdens after one- and two-dose COVID-19 vaccination. Intact reservoir size		
553	(panel a), total proviral burden (panel b), 5'-defective proviral burden (panel c), and 3'-		
554	defective proviral burden (panel d) measured at baseline (pre-vaccine), one month after the		
555	first vaccine dose, and one month after the second vaccine dose, using the Intact Proviral		
556	DNA Assay (IPDA). Each participant is identified by a unique color that is consistent		
557	throughout all figures. P-values were calculated using the Wilcoxon sum rank test for		
558	paired data.		

560 Figure 3. Relationship between reservoir size, plasma viral load and COVID-19

561 vaccine immune response magnitude. Panel a: Anti-SARS-CoV-2-Spike (S) serum 562 antibody levels one month following the first COVID-19 vaccine dose in participants with 563 pVL >20 HIV RNA copies/mL (top group) versus <20 HIV RNA copies/mL (bottom group) 564 at this time point. P-value calculated using the Mann-Whitney U-test. *Panel b*: same as a, 565 but for anti-S serum antibody levels and pVL one month after the second dose. Panel c: 566 Relationship between Anti-S serum antibody levels one month following the first COVID-567 19 vaccine dose, and the fold-change in intact reservoir size from baseline, assessed using 568 Spearman's correlation. Panel d: same as c, but depicting the relationship between Anti-S 569 serum antibody levels one month following the second COVID-19 vaccine dose, and the 570 fold-change in intact reservoir size since the previous time point. Each participant is 571 identified by a unique color that is consistent throughout all figures.

572

573 Figure 4. Population-level analysis of pVL test results in BC. Panel a: The percentage 574 of all pVL tests performed in BC that returned a detectable result (defined as >40 HIV 575 RNA copies/mL; see methods) was computed for every month between 2012-2022 and 576 depicted as a smoothed mauve curve. The numbers underneath the x-axis denote the total 577 number of pVL tests performed each year. The smoothed blue line depicts the number of 578 COVID-19 vaccine doses administered in BC weekly, as retrieved from the COVID-19 579 Vaccine Tracker [36]. The shaded rectangle denotes the period when pVL load testing of 580 long-term ART-suppressed PWH was temporarily curtailed to preserve capacity for 581 COVID-19 diagnostic testing. *Panel b*: The percentage of PWH in BC receiving 582 uninterrupted ART who experienced at least one detectable pVL measurement (defined as

- 583 >40 HIV RNA copies/mL; see methods) for the given year. The total number of pVL tests
- included in each year's analysis, as well as the total number of PWH from whom these pVL
- 585 data are derived, are shown on the x-axis.

Characteristic	N = 62
Age at enrolment in years, median (IQR)	43 (35, 56)
Sex at birth	
Male, n (%)	55 (89%)
Female, n (%)	7 (11%)
Nadir CD4+ T-cell count in cells/mm ³ , median (IQR)	305 (160, 498)
Baseline ^a CD4+ T-cell count in cells/mm ³ , median (IQR)	725 (475, 915)
Baseline ^a plasma viral load in copies HIV RNA/mL, median (IQR)	<20 (<20, <20)
Years on ART, median (IQR)	6 (3, 14)
Current ART regimen	
INSTI-based, n (%)	46 (74%)
NNRTI-based, n (%)	6 (9.7%)
PI-based, n (%)	5 (8.1%)
Intensive ^a , n (%)	4 (6.5%)
CCR5 antagonist-based, n (%)	1 (1.6%)
Initial COVID-19 vaccine regimen	
BNT162b2 + BNT162b2, n (%)	43 (69%)
mRNA-1273 + mRNA-1273, n (%)	16 (26%)
BNT162b2 + mRNA-1273, n (%)	3 (4.8%)
COVID-19 exposure history	
COVID-19 naive throughout follow-up, n (%)	57 (92%)
COVID-19-experienced prior to vaccination, n (%)	4 (6.5%)
COVID-19 between first and second vaccine doses, n (%)	1 (1.6%)

^a At study entry (*i.e.* prior to COVID-19 vaccination) ^b Regimen containing at least two of the following drug classes: INSTI, NNRTI, PI, CCR5 antagonist

