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Abstract 

Background: Chemotherapy-induced peripheral neuropathy (CIPN) is a serious therapy-

limiting side effect of commonly used anticancer drugs. Previous studies suggest that lipids 

may play a role in CIPN. Therefore, the present study aimed to identify the particular types of 

lipids that are regulated as a consequence of paclitaxel administration and may be 

associated with the occurrence of post-therapeutic neuropathy. 

Methods: High resolution mass spectrometry lipidomics was applied to quantify d = 255 

different lipid mediators in the blood of n = 31 patients drawn before and after paclitaxel 

therapy for breast cancer treatment. A variety of supervised statistical and machine-learning 

methods was applied to identify lipids that were regulated during paclitaxel therapy or 

differed among patients with and without post-therapeutic neuropathy.  

Results: Twenty-seven lipids were identified that carried relevant information to train 

machine learning algorithms to identify, in new cases, whether a blood sample was drawn 

before or after paclitaxel therapy with a median balanced accuracy of up to 90%. One of the 

top hits, sphinganine-1-phosphate (SA1P), was found to induce calcium transients in sensory 

neurons via the transient receptor potential vanilloid 1 (TRPV1) channel and sphingosine-1-

phosphate receptors.SA1P also showed different blood concentrations between patients with 

and without neuropathy. 

Conclusions: Present findings suggest a role for sphinganine-1-phosphate in paclitaxel-

induced biological changes associated with neuropathic side effects. The identified SA1P, 

through its receptors, may provide a potential drug target for co-therapy with paclitaxel to 

reduce one of its major and therapy-limiting side effects. 
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Introduction 

Paclitaxel is a standard adjuvant treatment for breast cancer and several other cancers. 

Originally isolated from the yew tree Taxus brevifolia, it inhibits mitosis by stabilizing 

microtubules and preventing tubulin depolymerization (1-3). A serious dose- and therapy-

limiting side effect, which it shares with other commonly used cytostatic drugs, is the 

chemotherapy-induced peripheral neuropathy and neuropathic pain (CIPN), which affects up 

to 80% of treated patients (4, 5). Patients report a variety of primarily sensory symptoms, 

encompassing sensations like numbness, paresthesia, spontaneous pain, and heightened 

sensitivity to mechanical and/or cold stimuli in their hands and feet. In more severe 

instances, the loss of vibration sense and joint position sense can further impact their 

functionality (6). Engaging in essential daily activities becomes challenging for patients, 

leading to difficulties in tasks like fine finger movements (such as buttoning clothing). Walking 

can induce pain due to mechanical hypersensitivity, while handling tasks like retrieving items 

from a fridge or exposure to cold weather may exacerbate symptoms (cold hypersensitivity). 

Chemotherapy can also emerge post-treatment in a state termed “coasting” where mild 

neuropathy can worsen, or new instances of CIPN may develop (7). Currently, there are no 

pharmacologic treatments for CIPN expert for duloxetine (4, 8, 9). Therefore, research on the 

mechanism of paclitaxel induced CIPN with possible identification of novel treatments is an 

active research topic.  

Several genes and neurofilament proteins have been implicated in paclitaxel-induced 

neuropathy (10-12). More recently, lipid mediators have been shown to be produced at high 

levels in sensory neurons, neuronal tissue and immune cells after chemotherapy due to 

oxidative stress and have been shown to contribute to chemotherapy-induced neuropathy 

and neuropathic pain by modulating neuronal ion channels (13-16). Therefore, they are of 

particular interest as signaling molecules and potential markers for chemotherapy-induced 
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neuropathy in patients. In fact, lipids are already considered markers for other neurological 

diseases such as Alzheimer's disease and amyotrophic lateral sclerosis (ALS) (17-20). 

However, a systematic approach to investigate lipids in patients with paclitaxel-induced 

neuropathy has not been performed.  

In this prospective clinical cohort study, plasma concentrations of 255 different lipid 

mediators were evaluated for changes in their concentrations associated with paclitaxel 

treatment. A comprehensive LC-MS/MS-based targeted and LC-QTOFMS-based untargeted 

lipidomics screening was performed on plasma samples from paclitaxel-treated patients. 

Lipid groups measured included eicosanoids, endocannabinoids, oxidized linoleic acid 

metabolites, sphingolipids, lysophospholipids and free fatty acids, many of which have been 

previously associated with persistent pain states (21-23). A data-driven approach was used 

to identify lipid mediators whose concentrations could be used to train machine learning 

algorithms to identify, in new cases, whether a plasma sample was collected before or after 

therapy, or from a patient with or without post-therapy neuropathy. The biological relevance 

of the findings was then validated in vitro by applying SA1P to primary sensory neurons 

using calcium imaging. 

Materials and Methods  

Patients and study design 

This was a prospective single-arm study enrolling patients with breast cancer. The study was 

conducted in accordance with the Declaration of Helsinki on Biomedical Research Involving 

Human Subjects and was approved by the Ethics Committee of the Medical Faculty of the 

Goethe-University, Frankfurt am Main, Germany. Informed written consent was obtained 

from each of the participants.  
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Sixty patients (one male, 59 females with breast cancer and undergoing paclitaxel treatment 

were recruited from the Tumor Center of the University Hospital Frankfurt, Germany (UCT). 

Most patients (n = 47) received the "paclitaxel-weekly" schedule, consisting of 12 cycles of 

paclitaxel treatment (80 mg/m², each week); a few patients (n = 13) received mixed 

carboplatin/paclitaxel treatment (Table S1). A blood sample was collected from each patient 

before and after chemotherapy, and the degree of neuropathy after chemotherapy was 

assessed as described below. Plasma was isolated from the blood samples immediately 

after blood collection to ensure lipid stability. Plasma was stored at -80°C until analysis. 

All patients provided a blood sample before chemotherapy; however, only 36 patients of the 

patients provided a second blood sample after chemotherapy. For our analysis, we focused 

on patients that had two blood samples. Therefore, 72 samples from 36 patients (before and 

after chemotherapy) were analyzed using both LC-MS/MS-based targeted and LC-QTOFMS-

based untargeted lipidomics. A total of 255 individual lipids were detected in each sample. 

From the resulting data, five patients had to be excluded due to incomplete lipidomics data 

(more than 20% of the analytes could not be detected). The remaining 62 samples from 31 

patients were used for the machine learning analysis (Figure 1). 

Assessment of neuropathy 

The occurrence and severity of peripheral neuropathy was assessed according to the 

guidelines of the NCI Common Terminology Criteria for Adverse Events (CTCAE) v5.0, 

Published: November 27, 2017, by the U.S. Department of Health and Human Services 

(https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/ctcae_v5_quick_r

eference_5x7.pdf). Neuropathy assessment was performed prospectively, i.e., before the 

first paclitaxel treatment and again after the 12th treatment cycle. Neuropathy was assessed 
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regularly upon visit of the patient. The last assessment was performed 4.5 years after initial 

chemotherapy (Table S1).  

The severity of neuropathy was graded into five grades: Grade 1 Mild; asymptomatic or mild 

symptoms; clinical or diagnostic observations only; intervention not indicated. Grade 2 

Moderate; minimal, local or noninvasive intervention indicated; limiting age-appropriate 

instrumental ADL (activities of daily living). Grade 3 Severe or medically significant but not 

immediately life-threatening hospitalization or prolongation of hospitalization indicated; 

disabling; limiting self-care ADL. Grade 4 Life-threatening consequences; urgent intervention 

indicated. Grade 5 Death related to AE. In the present cohort, grades 1-3 were detected 

following paclitaxel chemotherapy (Table S1). Of the 31 patients with a full set of samples, 17 

had neuropathy after chemotherapy (54.9%), 12 had grade 1, 3 had grade 2 and two patients 

with grade 3 (Table S1).  

Lipidomics analysis using LC-MS/MS and LC-QTOFMS 

Blood was collected from patients in EDTA tubes and immediately centrifuged at 2000 xg for 

10 minutes at 4°C.The supernatant was immediately frozen at -80°C until further processing. 

Approximately 2-3 ml of plasma was considered sufficient for each patient. Liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) analysis of eicosanoids, oxidized 

linoleic acid metabolites (O(x)LAMs), prostanoids, endocannabinoids, LPAs, pterins, 

sphingolipids and ceramides, and lipidomics screening were performed as described 

previously (15, 22, 24). A total of 255 lipids were quantified in each plasma sample. These 

lipids belong to the groups of eicosanoids, oxidized linoleic acid metabolites, 

endocannabinoids, lysophosphatidic acids, pterins, sphingolipids, ceramides, cholesterols, 

cholesterol esters, diacylglycerols, triacylglycerols, phospholipids, lysophospholipids, and 

free fatty acids. Full details of the lipids detected are given in Table S2. Full details of the LC-
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MS methods used can be found in the Supporting Information Methods section (Tables 1-

10). 

Data analysis 

Programming was performed in R language (25) using the R software package (26), version 

4.1.2, for Linux, available free of charge from the Comprehensive R Archive Network (CRAN) 

at https://CRAN.R-project.org/, and in Python language (27) using Python version 3.8.12, 

available free of charge at https://www.python.org (accessed March 1, 2022). The 

presentation emphasized as far as possible the presentation of raw data as advised in (28). 

The data analysis is summarized in Figure 1 and described in detail in the supporting 

information. 

The data analysis combined statistical and machine learning methods in the sense of a so-

called "mixture of experts" approach that has been shown repeatedly to be superior to relying 

on a single method (29, 30), such as regression analysis alone (31). The reason for the 

preference for using several but one method is that all statistical models inherently rely on 

underlying assumptions about a data set, some of which can be tested, but in practical 

scenarios it is often difficult to determine the best model to describe a real data set. 

Therefore, the results of the present analysis were derived from the consensus of several 

methods in an effort to increase their certainty. Of note, all statistical and machine-learning 

tests were performed two-sided, i.e. without a directed hypothesis, which was not available 

for all of the d = 255 lipid markers with respect to their regulation as an effect of paclitaxel 

and/or as a sign of the development of neuropathy. The data analysis included unsupervised 

and supervised methods (Figure 1). The former were used to establish whether the lipidomics 

data contained structures that supported prior classifications into baseline versus post-

treatment samples, or into subjects with or without neuropathy after treatment. Supervised 
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methods were then used to identify lipid mediators that carried information relevant to this 

class structure of the data set.  

Following log-transformation and missing-value imputation, the lipid marker concentrations 

were analyzed using unsupervised methods to assess whether they contained structures that 

were consistent with the prior class structure. Z-standardized data were projected from the 

high-dimensional space onto lower dimensional planes by means of principal component 

analysis (PCA) (32, 33). However, among limitations of PCA is that it focuses on the 

dispersion (variance) of the data, while clustering/subgrouping attempts to identify 

concentrations (neighborhoods) within the data, making PCA and clustering opposing 

methods in this sense. Furthermore, PCA fails to separate data sets with non-linear 

relationships, for which other projection methods have been developed, such as the currently 

popular t-distributed stochastic neighborhood embedding (t-SNE) (34), which also has 

limitations and occasionally provides class structure to data sets that do not have class 

structure (35). Considering these limitations, a second unsupervised approach was used to 

verify the agreement between the lipidomics data structure and the prior classification, 

implemented as self-organizing maps (SOM) of artificial neurons (36). In the special form of 

an “emergent” SOM (ESOM (37)), the present map consisted of 4,000 neurons arranged on 

a two-dimensional toroidal grid with 50 rows and 80 columns (38, 39). ESOM was used 

because it has been repeatedly shown to correctly detect subgroup structures in biomedical 

data sets comparable to the present one (37, 40, 41). The core principle of SOM learning is 

to adjust the weights of neurons based on their proximity to input data points. In this process, 

the best matching unit (BMU) is identified as the neuron closest to a given data point. The 

adaptation of the weights is determined by a learning rate (η) and a neighborhood function 

(h), both of which gradually decrease during the learning process. Finally, the groups are 

projected onto separate regions of the map. On top of the trained ESOM, the distance 
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structure in the high-dimensional feature space was visualized in the form of a so-called U-

matrix (42, 43), which is the canonical tool for displaying the distance structures of input data 

on ESOM (38). The visual presentation facilitates data group separation by displaying the 

distances between BMUs in high-dimensional space in a color-coding that uses a 

geographical map analogy, where large "heights" represent large distances in feature space, 

while low "valleys" represent data subsets that are similar. "Mountain ranges" with "snow-

covered" heights visually separate the clusters in the data (44). Further details about ESOM 

can be found in (43). 

After verifying that the lipidomics data structure supported the prior class structure into day 1 

/ 2 or neuropathy/non-neuropathy at day 2, supervised analyses were performed to 

determine if the lipid mediators were informative for this class structure (feature selection 

(45)). Again, a mixture of experts approach (29-31) was adopted, including binary logistic 

regression as a widely used standard (46) and additional machine-learning algorithms known 

to work well for tabular numerical data were applied, i.e., random forests (47, 48) as a robust 

tree-based bagging classifier, and support vector machines (SVM) (49) as a hyperplane 

separation-based method. Classifier tuning is described in the supporting information.  

Feature selection was again implemented as a mixture of experts, using 17 different 

methods, including univariate and multivariate types listed in the Supplementary Appendix. 

The combination of univariate and multivariate methods is based on the recognition of the 

limitations of both. Univariate methods, such as standard effect size measures, are 

commonly used in the analysis of omics data, but it has been shown that they may fail to 

recognize the high dimensionality of the dataset and inadequately reduce it to a multiple 

unidimensional problem. As demonstrated elsewhere (50), higher significance in univariate 

group comparisons does not automatically mean stronger predictive power, and variables 

with strong predictive power may sometimes be non-significant. Therefore, multivariate 
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feature selection approaches were added; however, acknowledging that the statistical and 

machine learning models used to infer feature importance also have their limitations. For 

example, binomial or multinomial regression analysis works only on linearly separable data 

sets (51), but it is basically impossible to judge whether a given real-world data set is linearly 

non-separable, support vector machines assume that the data set is separable on 

hyperplanes, and random forests, assume that the data is separable along the axes of the 

coordinate system.  

After quantifying the importance of each feature by each method, the most relevant subset of 

lipid mediators was identified by subjecting the importance measure to computed ABC 

analysis (cABC analysis) (52). This is an item categorization technique that aims to divide a 

set of positive numerical data into three disjoint subsets labeled "A,” "B,” and "C". Subset "A" 

should contain the "few important" elements (53) and its members were therefore retained as 

candidate features. The number of placements of a mediator in ABC subset A was obtained 

across all 17 algorithms and subjected to further cABC analysis to find those lipid mediators 

that were most consistently placed in ABC subset "A" across all 17 feature selection 

methods. To further reduce the final number of relevant lipid mediators, the cABC analysis 

could be run recursively as described in (54).  

The resulting final sets of lipid mediators were then used to train the algorithms to perform 

the task of assigning a sample to either the pre- or post-therapy day or to a patient with or 

without neuropathy in the hold-out 20% validation sample mentioned above. All supervised 

analyses were performed using cross-validation and training, testing, and validation splits of 

the dataset as a machine learning standard. That is, a class-proportional random sample of 

20% of the dataset was set aside before the analyses started and served as a validation 

sample that was not touched during algorithm training and feature selection. In the remaining 
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80% of the dataset, feature selection was performed using supervised analyses in 100-fold 

nested cross-validation scenarios.  

Calcium Imaging with primary sensory neurons 

Primary sensory neurons were cultured as described previously (55). For calcium imaging 

experiments, neurons were stained with Fura-2-AM (Thermo Fisher) for at least 60 min at 

37°C and washed afterwards twice with Ringer´s solution consisting of 145 mM NaCl, 1.25 

mM CaCl2 × 2H2O, 1 mM MgCl2 x 6 H2O, 5 mM KCl, 10 mM D-glucose, and 10 mM HEPES 

adjusted to a pH of 7.3. To investigate the effect of SA1P or LPC 24:0 on different TRP 

channels, sensory neurons were incubated with the lipids for 1 min at a concentration of 1 or 

10 µM, respectively. The gold standard agonists for TRPV1 and TRPA1 were capsaicin (200 

nM, 20s) and AITC (allyl isothiocyanate, 75 µM, 30s). Fingolimod was used at a 

concentration of 1 µM and pre-incubated for 1 h prior to measurement. As a positive control, 

final stimulation with KCl (50 mM, 1 min) was used to depolarize all neurons. All stimulating 

compounds were dissolved in Ringer’s solution to their final concentrations.  

The calcium imaging data were analyzed using descriptive statistics. All calcium imaging 

data are presented as the mean ± SEM. Normal distribution was confirmed using the 

Shapiro-Wilk test. For experiments comparing only two groups, unpaired and 

heteroscedastic Student’s t-tests were conducted following Welch’s correction. When 

comparing more than two groups, one-way analysis of variance (ANOVA) was used, and for 

the comparison of more than three groups, two-way ANOVA was conducted. For all 

statistical analyses of the calcium imaging data, the software GraphPad Prism 9.5 was used. 

Statistical significance was set at p value < 0.05. 
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Results 

All patients received paclitaxel as adjuvant or neoadjuvant therapy, without any other 

potentially neurotoxic substances. Of the 60 patients from our analysis cohort, two were 

excluded due to rescheduling of paclitaxel therapy. Blood samples were obtained from 31 

patients before and after chemotherapy. Twenty lipid marker variables had > 20% missing 

values. Following exclusion of these patients and variables and imputation, a data matrix for 

further analyses was obtained, sized 79 × 255 (79 data set instances, samples, and 255 

different lipid mediators Figure 1). An overview of the distribution of the lipid marker data is 

shown in Figure S1. These included 48 samples drawn on day 1 before therapy and 31 

samples drawn on day 2 after 12 cycles of paclitaxel therapy. On day 2, n = 17 of the 31 

patients had symptoms of neuropathy (54.9%), which is in line with previous clinical reports 

on occurrence and severity of paclitaxel-induced neuropathy (56, 57). Most patients reported 

grade 1 neuropathy, although two patients experienced grade 3 neuropathy. Occurrence and 

degree of neuropathy were monitored 4.5 years after finishing chemotherapy. The 

neuropathy lasted for several months or, in many cases, still persisted for 4.5 years after 

chemotherapy at the last examination (Table S1). 

Results of unsupervised analysis of structure in the lipidomics data supporting prior 

knowledge  

An overview of the distribution of the lipid marker data is shown in Figure S1. PCA yielded d 

= 28 components with eigenvalues > 1, which together explained 93.93% of the total 

variance in the lipid mediators (Figure 2). The d = 86 lipid mediators that contributed most to 

the relevant PCs were identified based on the membership to category "A" in the cABC 

analysis of the weighted variable contributions to each PC (Figure S2). This was carried over 

as one of the several feature-importance measures to the supervised analyses reported in 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 20, 2024. ; https://doi.org/10.1101/2023.10.08.23296716doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.08.23296716
http://creativecommons.org/licenses/by/4.0/


 

 

 13

the next chapter. On the emergent self-organizing map (ESOM, Figure 2a), a clear 

separation of two clusters was observed, which provided support that the lipid mediators 

contained a data structure contingent with the prior classification into pre- and posttherapy 

samples (Fisher’s exact test: p = 0.01054, odds ratio: 3.57 with 95% confidence interval 1.28 

- 10.52; Figure 2b). The separation of samples on the ESOM also corresponded, but to a 

lesser extent, with the occurrence of neuropathy observed at the time of the 2nd blood sample 

(p = 0.0328, odds ratio 0.16, 95% confidence interval 0.0137 - 1.022).  

The results of the unsupervised analysis thus supported that the lipidomics data contained a 

structure contingent on a known prior classification. This supported the continuation of data 

analysis with supervised methods to determine which of the lipids carried relevant 

information to assign a probe to a particular prior class. 

Results of supervised analyses identifying lipid mediators relevant to the class structure  

Lipid mediators informative for assigning samples to before or after paclitaxel therapy 

Based on the majority vote of the different approaches to feature selection including PCA 

importance and further univariate and multivariate feature selection methods specified in the 

supplementary information, d = 77 lipid mediators were found to provide relevant information 

on whether a sample was collected before or after paclitaxel therapy (Figure S3). When 

statistical (logistic regression) and machine learning (random forests, support vector 

machines - SVM) algorithms were trained with this set of lipid mediators, the assignment of a 

sample to day 1 or 2 was well above the guessing level (Table 2). By contrast, when the 

training data were randomly permuted, the performance fell to a balanced accuracy of 0.5, 

i.e., guessing level, which established that the obtained class assignment in the non-

permuted scenario had not been due to overfitting. In addition, by rerunning the cABC 

analysis on the mediators assigned to subset “A” in the first run (“recursive” cABC analysis 
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(54)), the informative set of lipid mediators could be further reduced to d = 27 (Table 1). With 

these mediators, SVM and random forest were still able to detect whether an instance of a 

lipidomics dataset was from before or after paclitaxel treatment at a balanced accuracy better 

than expected from guessing. In summary, with the top hits (“sparse” feature set), three 

different algorithms (logistic regression, random forests, support vector machines) could be 

trained to identify, in new cases, whether a blood sample was drawn before or after paclitaxel 

therapy with a median balanced accuracy of up to 90%. 

Lipid mediators informative for assigning post-paclitaxel therapy samples to neuropathy 

The n = 31 samples from day 2 were probably too small to detect whether a sample was 

from a patient with neuropathy. Although the three algorithms detected neuropathy in new 

cases, unseen during training, at balanced accuracy of up to 0.75, while only the guess level 

of 0.5 was achieved when using permuted data for training, the 95% CI of the performance 

measures was not separated from guess level. Therefore, multivariate feature selection was 

not considered a valid approach, since it requires that the algorithms from which the feature 

importance is read can successful perform their task of class assignment (51). Therefore, 

univariate methods (Cohen's d, FPR, FWE) were preferred, as well as a direct hypothesis 

transfer of the top hits from the above-mentioned day1/2 assessments to neuropathy. 

Classical statistics consisting of direct group comparisons using Kruskal-Wallis tests (58) 

were performed. The small set of d = 3 lipid mediators that emerged from all three univariate 

methods as top hits for neuropathy included sphingolipid sphinganine-1-phosphate (SA1P), 

also known as dihydrosphingosine-1-phosphate (DH-S1P)  sphingomyelin 33:1, and 

sphingomyelin 43:1. Statistical group comparisons verified that the three mediators differed 

significantly between samples from neuropathy-positive and neuropathy-negative patients 

(Figure 3).  
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Biological in-vitro validation of the machine learning based results 

The results of the supervised analysis thus established a limited set of lipid mediators to be 

regulated in association with paclitaxel therapy or with its side effect of inducing neuropathy. 

The top hit was sphinganine-1-phosphate (SA1P), providing a basis for in vitro validation of 

its biological effects in the present context of neuropathy.  

Calcium imaging measurements were performed on primary sensory neurons obtained from 

the murine dorsal root ganglia. We stimulated the neurons with 1 and 10 µM SA1P (ranked 

as the primary hit) or LPC 24:0 (ranked as one of the least relevant lipids by machine 

learning analysis). We observed that SA1P caused a direct calcium transient in 

approximately 11.7% of KCl-responsive sensory neurons (Figure 4a, b). However, LPC 24:0 

did not induce any notable activation of sensory neurons at concentration of 1 and 10 µM 

(Figure S4a-c). To further characterize the SA1P-responding neurons, we investigated their 

responsiveness to agonists of the TRP channels TRPV1 (capsaicin) and TRPA1 (AITC, allyl 

isothiocyanate), both of which are hallmarks of subpopulations of primary sensory neurons 

(59). Stimulating SA1P-responsive neurons with capsaicin and AITC revealed that 73% of 

these neurons also responded to capsaicin and 25% of them responded to AITC, whereas 

only 9.6% responded to both stimuli. Neurons were identified as responders to KCl (50 mM, 

1 min; Figure 4c, d). 

To identify the receptors or channels responsible for SA1P-mediated calcium transients in 

sensory neurons, the selective TRPV1 antagonist AMG9810 was used. Neurons were 

stimulated twice with SA1P (1 µM, 1 min) and AMG9810 (1 µM or vehicle) was added two 

minutes prior to the second SA1P stimulus. The second SA1P response was entirely 

abolished when the neurons were treated with AMG9810, but not with the vehicle (Figure 5a-

c). The potency of AMG9810 was validated using the same measurement protocol as before 
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but with capsaicin (200 nM, 20s) instead of SA1P, which is the gold standard agonist of 

TRPV1. AMG9810 completely blocked the second capsaicin response (Figure 5d). The 

involvement of S1P-receptors previously suggested to be the receptors for SA1P (60), was 

evident by studying S1PR1 and S1PR3 as the most highly expressed S1P receptors in 

sensory neurons (61), which are also targets of the approved drug fingolimod. Sensory 

neurons were incubated with fingolimod or vehicle for one hour and stimulated the neurons 

with SA1P (Fig. 5e, f). Comparing fingolimod- and vehicle-treated neurons, we observed that 

the response intensity to SA1P was similar (Figure 5g), while the number of neurons 

responding to SA1P was significantly decreased after fingolimod treatment (Figure 5h). 

Support of the main results in an independent second patient cohort  

The study lacked a separate validation cohort with similar data to the main cohort. However, 

an independent second cohort was available from another hospital (Oncological Center in 

Offenbach, Germany). This cohort consisted of 28 patients treated with the "paclitaxel 

weekly" regimen (paclitaxel 80 mg/m², once weekly) as adjuvant or neoadjuvant therapy for 

breast or ovarian cancer. All patients provided informed consent into study participation and 

publication of the results. Blood samples were available from routine collections and were 

analyzed by LC-MS/MS (Figure S5, Table S3). In contrast to the main cohort, plasma from 

patients in the second cohort was collected after 6 cycles of paclitaxel treatment due to local 

routines. Therefore, the second cohort cannot be considered a state-of-the-art validation 

cohort. In addition, only six patients in this cohort had neuropathy after chemotherapy 

(26.5%), all with grade 1 neuropathy (Table S4). Despite these limitations, algorithms trained 

with lipid information from cohort 1 were able to successfully identify whether a probe was 

taken before or after paclitaxel therapy in the second cohort at a better than guessing level. 

Furthermore, a trend towards different SA1P concentrations in the plasma of patients after 

paclitaxel treatment was observed (p = 0.086, Figure 6). 
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Discussion  

For paclitaxel, therapeutic doses range from 80 – 225 mg/m². As CIPN symptoms are dose-

dependent, the number of PIPN patients that receive a high paclitaxel dose is higher than the 

number of PIPN patients receiving a low dose. The cumulative threshold dose above which 

paclitaxel causes sensory neuropathy is 300 mg/m² (5). In our study, we mainly used a low 

dose paclitaxel, because this therapeutic regimen is the most widely used paclitaxel 

monotherapy. Previous studies report an occurrence of neuropathy with this therapeutic 

regimen is around 50-70%, and most patients (80-90%) are expected to experience Grade 1 

neuropathy after 12 weeks (1-3). Our results are within the range reported by these previous 

studies.  

SA1P induced a direct calcium transient in sensory neurons dependent on sphingosine 1-

phosphate receptors (S1PR) and the transient receptor potential vanilloid 1 (TRPV1) 

channel. The results suggest that lipids are altered during paclitaxel treatment and that 

alterations in sphingolipid metabolism may be critical for the development of paclitaxel-

induced peripheral neuropathy in patients. The final ("sparse") set of lipids regulated between 

sampling days (before and after paclitaxel treatment) was enriched for sphingolipids. 

Specifically, sphingolipids were significantly overrepresented among the top hits of lipids 

regulated between sampling days (Fisher's exact test: p = 0.01), i.e., while 46 of the original 

255 lipid mediators were sphingolipids (18%) (Table S2), 11 of the 27 members of the final 

sparse marker set (40.7%) belonged to the group of sphingolipids. The main pathway in 

which the top hits are involved is shown in Figure 7. The classification of patients with regard 

to neuropathy after paclitaxel treatment was reflected in lipidomics in another sphingolipid, 

i.e., dihydrosphingosine sphinganine-1-phosphate (SA1P), which was elevated in patients 

with neuropathy. 
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The results from an unbiased machine-learning-based analysis are in line with those of 

previous reports that had used classical statistics mainly. For example, S1P was elevated in 

the spinal cord of mice after bortezomib treatment and during bortezomib-induced 

neuropathic pain. Blocking S1P1 receptor S1P1R with fingolimod effectively reduced 

bortezomib-induced mechanical hypersensitivity in vivo (16). Interestingly, targeting the S1P-

S1P1R-axis was also found to reduce paclitaxel-induced neuropathic pain in vivo in a 

preclinical study (62). Further agreements of the present results relate to previous preclinical 

reports highlighting the significance of the sphingolipid pathway in persistent and neuropathic 

pain states (16, 63, 64). In addition, the S1P signaling axis was observed to be relevant in 

neuropathy and chemotherapy-induced neuropathic pain, which led to the suggestion of 

targeting S1P receptors as a novel approach to ameliorate chemotherapy-induced 

neuropathy and neuropathic pain (62, 65-68). Taken together, present results from lipid 

screening and unbiased machine-learning approach point towards a relevant contribution of 

sphingolipid signaling in paclitaxel-induced neuropathy in patients, mainly via sphinganine-1-

pshophate and sphingomyelins 33:1 and 43:1. 

Sphinganine is a key branching point in the sphingolipid pathway, where it can either be 

acylated to form dihydroceramides or phosphorylated to SA1P by sphingosine kinases (69). 

Accumulation of sphinganine has been previously associated with reduced activity of 

ceramide synthase CerS2 (70). Interestingly, low CerS2 expression is a hallmark of various 

tumors (71). It is conceivable that a subgroup of the patient cohort still exhibits low CerS2 

expression after paclitaxel treatment, which is associated with higher SA1P levels and a 

higher occurrence of neuropathy. We also identified SA1P as a potential proalgesic lipid 

mediator, as it causes direct calcium transients in approximately 10% of sensory neurons. 

This effect is mediated, at least in part, by S1P receptors S1P1 and S1P3 and the TRPV1 

channel. The TRPV1 channel has previously been identified as an important mediator of 
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neuropathic pain and is associated with exacerbated activity of sensory neurons during 

paclitaxel-induced neuropathic pain (72-74). Our data indicate that an S1P receptor 

modulator, such as fingolimod may be a potential treatment strategy for reducing the 

proalgesic effect of SA1P and possibly for reducing paclitaxel-induced neuropathy in 

patients. 

Several other lipids were found in the extended list of hits previously associated with 

chemotherapy-induced neuropathy or acute pain in preclinical studies, such as LPC 18:1, 

sphingosin-1-phosphate (S1P), and 9,10-EpOME. LPC 18:1 has previously been identified 

as an endogenous activator of TRPV1 and TRM8 and was found at elevated levels in murine 

DRGs 24 h after oxaliplatin treatment. This may contribute to oxaliplatin-induced acute pain 

(75). Similarly, 9,10-EpOME was elevated in the DRGs of paclitaxel-treated mice. locking its 

synthesis with the CYP2J2-inhibitor and the approved drug telmisartan was shown to reduce 

acute paclitaxel-induced mechanical hypersensitivity in vivo and prevent paclitaxel-induced 

mechanical allodynia by pretreatment (15). In addition, the direct TRPV1 agonist LPA 18:1 

was found in the extended list of hits. Lipid was shown to bind to the C-terminal binding site 

of TRPV1 to increase the opening probability of the channel (76). Other signaling lipids with 

potential proalgesic effects and potential TRP channel activators that have been described 

previously have also been identified as crucial for group separation by our unbiased 

machine-learning approach, which strengthens the presumption that the identified lipids may 

indeed be connected with paclitaxel neurotoxicity and paclitaxel-induced neuropathy in 

patients. Additionally, we found several precursor fatty acids in the extended list of hits, 

including arachidonic acid, linoleic acid, and palmitic acid. These results imply a major 

dysregulation of lipids after paclitaxel treatment, leading to enhanced plasma levels of 

precursors for eicosanoids and oxidized linoleic acid metabolites, which may explain the 
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observed enhanced concentrations of the eicosanoids of 5-HETE, 5,6-DHET, and the 

oxidized linoleic acid metabolites 9,10-EpOME, 9- and 13-HODE. 

Several limitations need to be addressed. First, the size of our patient cohort (n=60 patients, 

n=31 patients who provided blood samples before and after paclitaxel chemotherapy) 

allowed for errors due to interindividual differences. Second, the paclitaxel treatment regimen 

differed in some patients included in this study. While the majority of the patients received 

paclitaxel as “pacli weekly” regime consisting of a weekly dose of 80 mg/m² for 12 

consecutive weeks in, some few patients received paclitaxel doses up to 220 mg/m² or a 

combination chemotherapy consisting of carboplatin/paclitaxel. These variabilities within the 

patient cohort hamper interindividual correlations between plasma lipid mediator 

concentrations and paclitaxel-induced neuropathy throughout the treatment course. Third, 

the assessment of peripheral neuropathy in patients was performed according to the 

guidelines of the NCI Common Terminology Criteria for Adverse Events (CTCAE) v5.0, 

which ranks the severity of neuropathy into five grades but is rather focused on general 

adverse events of chemotherapy rather than specifically assessing peripheral neuropathy in 

detail. We did not perform any neurological testing of sensory parameters, such as 

quantitative sensory testing (QST) (77), to determine the sensory status quo of the patients.  

The identification of sphinganine-1-phosphate (SA1P) as a key lipid marker delineating the 

effects of paclitaxel was based on a comprehensive analysis performed by a "mixture of 

experts " of machine learning and classical statistical methods, coupled with in vitro 

molecular experiments performed on sensory neurons. A rigorous validation process was 

applied to ensure that the results did not depend on the properties of any single statistical or 

AI model. This included verifying that the lipidomics data intrinsically supported the existing 

class structure (days 1/2) using two different data projection methods (PCA, neural network). 

In addition, the identification of the most relevant lipids associated with past exposure to 
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paclitaxel relied on univariate and multivariate feature selection, and the results were verified 

by testing three different algorithms that finally could successfully identify from the 

concentrations of the top hits whether a blood sample was drawn before or after paclitaxel 

therapy. In addition, all data analyses were subjected to rigorous cross-validation. Results 

were first validated on a sample split from cohort #1 prior to any feature selection and 

classifier training, and again on the data from cohort #2. Then, the leading hit from machine 

learning, SA1P, was validated as a highly active mediator in a neuronal cell model, while a 

lipid maker deemed irrelevant by machine learning actually showed ineffectiveness in the cell 

model. The mechanistical details of altered sphingolipid metabolism reflected in their plasma 

concentrations of paclitaxel patients need to be investigated by further studies. 

Conclusions 

Here, we demonstrate that the combination of state-of-the-art lipidomics using LC-MS/MS, 

LC-QTOF-MS, and machine learning-based data analysis can robustly lead to the generation 

of testable hypotheses and the identification of biologically relevant signaling mediators of 

neuropathy in an unbiased manner. Lipidomic profiles were compared within the same 

patients, allowing analysis of individual paclitaxel-induced lipidome changes in the same 

patients. These analyses led to the identification of a lipid mediator that can directly activate 

calcium transients in sensory neurons, thereby modulating nociceptive processing and 

sensory neuron activity. The identified SA1P, through its receptors, may provide a potential 

drug target for co-therapy with paclitaxel to reduce one of its major and therapy-limiting side 

effects.  
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Data availability  

Data are available on request from the senior author. Relevant Python and R code is 

available at https://github.com/JornLotsch/PaclitaxelNeuropathyProject. 
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Supplementary data captions 

Figure S1: Log10-transformed concentrations of the analyzed lipid mediators presented as 

violin plots showing the probability density distribution of the variables; Figure S2: Results of 

a projection of the z-standardized log-transformed lipidomics data onto a lower-dimensional 

space by means of PCA; Figure S3: Identification of the lipid mediators that were most 

informative in assigning a sample to the pre- or post-therapy time point. Feature selection by 

13 different methods; Figure S4: Effects of Lysophosphatidylcholine 24:0 (LPC 24:0) on 

primary sensory neurons; Figure S5: Plasma lipids from the independent second patient 

cohort. Table S1: Patient characteristics of the 31 patients that gave blood samples before 

and after chemotherapy from the patient cohort; Table S2: Complete list of lipid mediators 

included in the analyses, separated by group of lipid and detection method; Table S3: 

External validation of the classifiers; Table S4: Patient characteristics of the 28 patients from 

the second cohort that gave blood samples before and after the sixth cycle of chemotherapy. 

Supplementary methods: data analysis, data preprocessing, supervised and unsupervised 

machine learning, lipid mediator informative for assigning samples to before or after therapy 

in an independent second patient cohort, lipidomics analyses of plasma patient samples 

(Tables 1-10).
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Figures and Tables 

 

 

Figure 1: Flowchart showing the number of patients included and the workflow of the data 

analysis. UCT: University Cancer Center Frankfurt, PCA: principal component analysis, ESO: 

emergent self-organizing maps, cABC analysis: computed ABC analysis. The figure was created using 

Microsoft PowerPoint® (Redmond, WA, USA) on Microsoft Windows 11 running in a virtual machine 
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powered by VirtualBox 6.1.36 (Oracle Corporation, Austin, TX, USA) as guest on Linux, and then 

further modified with the free vector graphics editor “Inkscape (version 1.2 for Linux, 

https://inkscape.org/
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Figure 2: Results of a projection of the z-standardized log-transformed lipidomics data onto a 

lower-dimensional space by means of a self-organizing map of artificial neurons (bottom). a): 

3D display of an emergent self-organizing map (ESOM), providing a 3-dimensional U-matrix 

visualization (78) of distance-based structures of the serum concentrations of d = 255 lipid mediators 

following projection of the data points onto a toroid grid of 4,000 neurons where opposite edges are 

connected. The dots represent the so-called “best matching units” (BMU), i.e., neurons on the grid that 

after ESOM learning carried a data vector that was most similar to a data vector of a sample in the 

data set. Only those neurons of the originally 4000 neurons are shown that carried vectors of cases 

from the present data set. Please also note that one BMU can carry vectors of several cases, i.e., the 

number of BMUs is not necessarily equal to the number of cases. A cluster structure emerges from 

visualization of the distances between neurons in the high-dimensional space by means of a U-matrix 

(79). The U-matrix was colored as a geographical map with brown or snow-covered heights and green 

valleys with blue lakes, symbolizing high or low distances, respectively, between neurons in the high-

dimensional space. Thus, valleys (left and right of the “mountain range” in the middle indicate clusters 

and watersheds, i.e., , i.e., the line of large distances between neighboring points, indicate borderlines 

between different clusters. Tat is, the mountain range with "snow-covered" heights separates main 

clusters according to probe acquisition at day 1 or day 2, i.e., before and after treatment with 
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paclitaxel. BMUs belonging to the two different clusters are colored green or bluish.  b): Mosaic plot of 

the prior classes (day 1 or day 2) versus the ESOM/Umatrix based clusters. The separation 

corresponded to the previous classification into pre- and post-therapy probes (day1/2). Cluster #1 was 

composed of more probes taken on day #1, while probes from day 2 were overrepresented in cluster 

#2. The figure has been created using the R software package (version 4.1.2 for Linux; 

https://CRAN.R-project.org/ (26)), R library “ggplot2” (https://cran.r-project.org/package=ggplot2 (80)) 

and our R package “Umatrix” (https://cran.r-project.org/package=Umatrix (37)). 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 20, 2024. ; https://doi.org/10.1101/2023.10.08.23296716doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.08.23296716
http://creativecommons.org/licenses/by/4.0/


 

 

 

Figure 3: Log10-transformed concentrations of lipid mediators shown to be informative for assigning a post-therapy sample to a p

neuropathy or a patient without neuropathy. Individual data points are presented as dots on violin plots showing the probability density distrib
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variables, overlaid with box plots where the boxes were constructed using the minimum, quartiles, median (solid line inside the box) and maximum of these 

values. The whiskers add 1.5 times the interquartile range (IQR) to the 75th percentile or subtract 1.5 times the IQR from the 25th percentile. a): Concentrations of 

SA1P (top hit for sample 1 versus sample 2 segregation) are presented separately for the first and second samples. b): Concentrations of the top lipid mediators 

for neuropathy versus no neuropathy in the second sample presented separately for neuropathy-positive and -negative samples. The results of the group 

comparison statistics (Kruskal-Wallis tests (58)) are given at the top of the graphs. The figure has been created using the R software package (version 4.1.2 for 

Linux; http://CRAN.R-project.org/ (26)) and the R library "ggplot2" (https://cran.r-project.org/package=ggplot2 (80)). 
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Figure 4: Effects of sphinganine-1-phosphate on primary sensory neurons. a) Neurons 

were stimulated with SA1P (1 or 10 µM, 1min or vehicle (0.7% methanol (v/v)). b) percentage of 

responding neurons to vehicle (0.7% methanol (v/v), 1 min), (SA1P (1 µM, 1min), AITC (allyl 

isothioncyanate, 75 µM, 30s) or capsaicin (caps, 200 nM, 20s). c) representative traces of SA1P-

responding neurons and their response to AITC, capsaicin and KCl. d) percentage of SA1P-

responding neurons responding to AITC, capsaicin (caps), AITC and capsaicin and KCl. Data are 

shown as mean ± SEM from at least six measurements per condition with at least 40 neurons per 

measurement, * p < 0.05, ** p < 0.01, *** p < 0.01, One-way ANOVA. 
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Figure 5: Contribution of TRPV1 and S1P receptors to SA1P-mediated calcium-influx in 

sensory neurons. Sensory neurons were stimulated with SA1P twice (1 µM, 1 min) and either a) 
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vehicle (DMSO 0.003% (v/v), 2 min) or b) the TRPV1 antagonist AMG9810 (1 µM, 2 min) prior to 

the second SA1P stimulus. Cells were depolarized with KCl (50 mM, 1 min) at the end of each 

experiment. c) Statistical analysis of the amplitude of SA1P-mediated calcium transients in 

sensory neurons treated with either vehicle or AMG9810 (blue). d) Statistical analysis of the 

amplitude of capsaicin-mediated calcium transients (100 nM, 20s) in sensory neurons treated 

with either vehicle or AMG9810 (blue). e), f) Sensory neurons were stimulated with SA1P after 

preincubation with the S1P1 receptor modulator fingolimod (1 µM, 1 h) or control. g) Statistical 

analysis of the amplitude of SA1P-mediated calcium transients (1 µM, 1min) in sensory neurons 

treated with either vehicle or fingolimod (1 µM, 1h, orange). h) Statistical analysis of the number 

of SA1P-responding neurons (as % of KCl-positives) after treatment with either vehicle or 

fingolimod (1 µM, 1h, orange). Data represents mean ± SEM from at least five measurements per 

condition with at least 25 neurons per measurement, * p < 0.05, ** p < 0.01, *** p < 0.01, 

Student’s t-test with Welch’s correction. 
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Figure 6: Log10-transformed concentrations of SA1P in the second patient cohort. 

Individual data points are presented as dots on violin plots showing the probability density 

distribution of the variables, overlaid with box plots where the boxes were constructed using the 

minimum, quartiles, median (solid line inside the box) and maximum of these values. The 

whiskers add 1.5 times the interquartile range (IQR) to the 75th percentile or subtract 1.5 times 

the IQR from the 25th percentile. a): Concentrations of SA1P (top hit for sample 1 versus sample 

2 segregation) are presented separately for the first and second samples. b): Concentrations of 

S1AP in the second sample are shown separately for neuropathy-positive and -negative samples. 

Day 1 represents the timepoint before starting chemotherapy. Day 2 represents the timepoint 

after 12 cycles of paclitaxel chemotherapy. The results of the t-test group comparison statistics 

are given at the top of the graphs. The figure has been created using the R software package 

(version 4.1.2 for Linux; http://CRAN.R-project.org/ (26)) and the R library "ggplot2" (https://cran.r-

project.org/package=ggplot2 (80)). 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 20, 2024. ; https://doi.org/10.1101/2023.10.08.23296716doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.08.23296716
http://creativecommons.org/licenses/by/4.0/


 

 

 34

 

 

Figure 7: Sphingolipids and Ceramides (SPT: Serine palmitoyl-transferase; 3KR: 3-

ketosphinganine reductase; SPHK: Sphingosine kinase; CerS: Ceramide synthase; DEGS: 

Dihydroceramide desaturase, GlCerS: Glucosylceramide synthase; LacCerS: Lactosylceramide 

synthase; SMS: Sphingomyelin synthase; CDase: Ceramidase). Structures were drawn with 

ChemDraw 20. 
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Table 1: Lists of lipid mediators that were most informative in assigning a sample (i) to the 

first or second sampling time point or (ii) a sample from the second time point to a patient 

with or without neuropathy. Abbreviations: SA1P: sphinganine-1-phosphate, S1P: sphingosine-

1-phosphate, LPE: lysophosphatidylethanolamine, LPC: lysophosphatidylcholine, 2-AG: 2-

arachidonoylglycerol, OEA. Oleoylethanolamide. 

Sample 1 versus sample 2 

SA1P Sphingomyelin 

42:1 

Palmitic acid 16:0 Eicosaeinoic acid 

20:1 

PE 38:5 

LacCeramid C16 LPE 22:6 Margaritic acid 17:0 2-AG LPC 22:4 

S1P LPE 18:0p Sphingomyelin 42:3 OEA Cholesterolsulfa

te 

Sphingomyelin 

36:3 

LPE 18:0 LPC 18:0 Sphingomyelin 

40:1 

 

Ceramide 18:0 LPC 20:1 LPC 18:1 Sphingomyelin 

42:2 

 

Ceramide 24:0 Nervoneic acid 

24:1 

Dehydroepiandrostero

ne sulfate 

  

     

Sample 2: neuropathy versus no neuropathy 

SA1P Sphingomyelin 

33:1 

Sphingomyelin 43:1   

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 20, 2024. ; https://doi.org/10.1101/2023.10.08.23296716doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.08.23296716
http://creativecommons.org/licenses/by/4.0/


 

 

 36

Table 2: Internal validation of the sets of lipid mediators resulting from the feature 

selection analysis. The different classifiers (linear support vector machine, SVM, random 

forests, and logistic regression) were trained with subsets of the training data set with all variables 

(d = 255 lipid mediators as “full” feature set and with the d = 77 or d = 27 lipid mediators that had 

resulted from the recursive cABC analysis applied on the sum score of selections by 17 different 

feature selection methods as “reduced” or “sparse” feature sets, respectively. The trained 

classifiers were applied to a validation sample comprising 20% of the data that had been 

removed in a class-proportional manner from the dataset at the beginning of feature selection and 

had not been touched until used in the classifier validation task presented in this table. In 

addition, the validation task was repeated with training the classifiers with permuted lipid 

mediators to observe possible overfitting. Shown are the medians and nonparametric 95% 

confidence intervals (2.5th to 97.5th percentiles) from 5 x 20 nested cross-validation runs. Results 

of external validation in an independent cohort are shown in the supporting information (Table 

S3). 

Classifier Performance 
measure 

Feature set    

  Full Reduced Reduced 

permuted 

Sparse 

 Number of lipid 

mediators 

255 77 77 27 

SVM Balanced 

accuracy 

0.7 (0.48 - 

0.92) 

0.78 (0.61 - 

1) 

0.48 (0.23 - 

0.76) 

0.75 (0.54 - 

0.91) 

Random 

forests 

 0.7 (0.56 - 

0.83) 

0.75 (0.58 - 

0.85) 

0.46 (0.24 - 

0.75) 

0.74 (0.55 - 

0.88) 

Logistic 

regression 

 0.7 (0.52 - 

0.85) 

0.77 (0.58 - 

0.92) 

0.48 (0.29 - 

0.7) 

0.7 (0.49 - 

0.89) 
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SVM roc-auc 0.88 (0.67 - 

1) 

0.95 (0.85 - 

1) 

0.48 (0.16 - 

0.77) 

0.9 (0.81 - 

0.99) 

Random 

forests 

 0.86 (0.76 - 

0.95) 

0.88 (0.81 - 

0.98) 

0.48 (0.21 - 

0.81) 

0.9 (0.8 - 1) 

Logistic 

regression 

 0.81 (0.64 - 

1) 

0.88 (0.75 - 

1) 

0.46 (0.16 - 

0.79) 

0.86 (0.69 - 

0.98) 
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