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Abstract 
Bipolar disorder (BD) is a leading contributor to the global burden of disease1. Despite high 
heritability (60-80%), the majority of the underlying genetic determinants remain unknown2. We 
analysed data from participants of European, East Asian, African American and Latino 
ancestries (n=158,036 BD cases, 2.8 million controls), combining Clinical, Community, and Self-
reported samples. We identified 298 genome-wide significant loci in the multi-ancestry meta-
analysis, a 4-fold increase over previous findings3, and identified a novel ancestry-specific 
association in the East Asian cohort. Integrating results from fine-mapping and other variant-to-
gene mapping approaches identified 36 credible genes in the aetiology of BD. Genes prioritised 
through fine-mapping were enriched for ultra-rare damaging missense and protein-truncating 
variations in BD cases4, highlighting convergence of common and rare variant signals.  We 
report differences in genetic architecture of BD depending on the source of patient 
ascertainment and on BD-subtype (BDI and BDII). Several analyses implicate specific cell types 
in BD pathophysiology, including GABAergic interneurons and medium spiny neurons. 
Together, these analyses provide novel insights into the genetic architecture and biological 
underpinnings of BD.   
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Main 
 
Bipolar disorder (BD) is an often lifelong mood disorder that impairs quality of life, functional 
ability, and is associated with suicidality.5 Symptoms typically occur in early adulthood,5 with a 
similar prevalence and incidence rate across the world.6 Current treatment options include 
pharmacotherapies such as mood stabilisers, antipsychotics and antidepressants, preferably 
administered in conjunction with psychosocial interventions.1,5 However, approximately one third 
of patients relapse within the first year of treatment.7  
 
The heterogeneous nature of the disorder is noted in the Diagnostic and Statistical Manual of 
Mental Disorders, fifth edition (DSM-5), which includes the category “bipolar and related 
disorders,” encompassing bipolar disorder type I (BDI), bipolar disorder type II (BDII) and 
cyclothymic disorders.8 The International Classification of Diseases, 11th Revision (ICD-11)  
also recognises BDI and BDII as distinct subtypes.9 BDI is characterised by episodes of both 
mania and depression, while BDII includes episodes of hypomania and depression. Advances in 
genetics and neuroimaging have begun to make inroads into the underlying pathophysiology of 
BD. The Psychiatric Genomics Consortium (PGC) Bipolar Disorder Working Group has 
spearheaded genetic discoveries in BD.10,11 A genome-wide association study (GWAS) of 
41,917 BD cases and 371,549 controls identified 64 loci and highlighted calcium channel 
antagonists as potential targets for drug repurposing.3 Brain imaging studies have shown 
decreased cortical thickness, lower subcortical volume and disrupted white matter integrity 
associated with BD, as well as brain alterations associated with medication use.12 To date, this 
research has been conducted almost exclusively on individuals of European (EUR) ancestry. 
 
Here, we present the largest to date multi-ancestry GWAS meta-analysis of 158,036 BD cases 
and 2,796,499 controls, combining Clinical, Community, and Self-reported samples. We 
identified 337 linkage disequilibrium (LD) independent genome-wide significant (GWS) variants 
that map to 298 loci. We hypothesised that differences in source of patient ascertainment, BD 
subtype, and genetic ancestry might lead to differences in genetic architecture, thus we also 
analysed these groups separately. We provide new insights into the genetic architecture and 
neurobiological mechanisms involved in BD, with the potential to inform the development of new 
treatments and precision medicine approaches. 
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Study population 
The current GWAS meta-analysis includes 79 cohorts. Case definitions  were based on a range 
of assessment methods: (semi-)structured clinical interviews (Clinical), medical records, 
registries and questionnaire data (Community), and self-reported surveys (Self-reported). 
Details of the cohorts, including sample size, ancestry, and inclusion/exclusion criteria for cases 
and controls, are provided in Supplementary Tables 1 and 2 and the Supplementary Note. BD 
subtype data were available for a subset of individuals within the Clinical and Community 
groups. 82.5% of cases in the Clinical ascertainment group had BDI as did 68.7% of cases in 

the Community ascertainment group (X2=730, p < 2.2 ×�10−16; Supplementary Table 2). The 

total number of samples available for analyses included 158,036 BD cases and 2,796,499 
controls (effective n (Neff) =�535,720; see Methods).      

Genetic architecture of BD differs by ascertainment and subtype 
Given our hypothesis that samples ascertained and assessed by different methods could lead to 
differences in the genetic architecture, we performed meta-analyses separately for Clinical, 
Community and Self-reported samples. Using LDSC13 and assuming a population prevalence of 
2%,14 BD ascertained from Clinical samples was more heritable (h2

SNP = 0.22; s.e. = 0.01) than 
BD ascertained from Community samples (h2

SNP = 0.05; s.e. = 0.003) or Self-report (h2
SNP = 

0.08; s.e. = 0.003) (Supplementary Table 3). We used genetic correlation13 and MiXeR15,16 
analyses to further investigate the genetic architecture of BD based on assessment. While there 
was a strong genetic correlation between Clinical and Community samples (rg = 0.95; s.e. = 

0.03), the genetic correlation for Self-reported BD was significantly greater (p = 7.4 ×�10−28) 

with Community samples (rg = 0.79; s.e. = 0.02) than with Clinical samples (rg = 0.47; s.e. = 
0.02) (Supplementary Figure 2). 
 
MiXeR estimated the greatest polygenicity for BD ascertained from Self-reported samples, 
followed by Clinical and then Community samples (Figure 1, Supplementary Table 4). Almost all 
variants estimated to influence BD in Community samples were shared with BD ascertained 
from Clinical samples. The majority of Clinical and Community BD-influencing variants were 
also shared with Self-reported BD (Figure 1, Supplementary Figure 4). The mean correlation of 
variant effects in the shared components was high across all groups (Community and Self-
reported rg_shared = 0.95 (s.e. = 0.03), Community and Clinical rg_shared = 0.99 (s.e. = 0.01) and 
Clinical and Self-reported rg_shared = 0.74 (s.e. = 0.06) (Supplementary Table 4), supporting our 
decision to meta-analyse the three types of data sources.  
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Figure 1. Genetic correlation and bivariate MiXeR estimates for the genetic overlap of BD 
ascertainment and subtypes. Trait-influencing genetic variants shared between each pair (grey) 
and unique to each trait (colours) are shown. The numbers within the Venn diagrams indicate 
the estimated number of trait-influencing variants (and standard errors) (in thousands) that 
explain 90% of SNP heritability in each phenotype. The size of the circles reflects the 
polygenicity of each trait, with larger circles corresponding to greater polygenicity. The 
estimated genetic correlation (rg) and standard error between BD and each trait of interest from 
LDSC is shown below the corresponding Venn diagram. Clinical and Community samples were 
stratified into bipolar I disorder (BDI) and bipolar II disorder (BDII) subtypes if subtype data were 
available. Model fit statistics indicated that MiXeR-modelled overlap for bivariate comparisons 
including the bipolar subtypes (BDI and BDII) were not distinguishable from minimal or maximal 
possible overlap, and therefore to be interpreted with caution (see Supplementary Table 4). 
 
To analyse BD subtypes, we used available GWAS summary statistics for BDI (25,060 cases) 
and BDII (6,781 cases)3, which come from a subset of the Clinical and Community samples. 
Assuming a population prevalence of 1%,17 BDI was more heritable (h2

SNP = 0.21; s.e. = 0.01) 
than BDII (h2

SNP = 0.11; s.e. = 0.01). BDI and BDII were highly, but imperfectly, correlated (rg = 
0.88; s.e. = 0.05). The genetic correlations between both subtypes and the Community samples 
were high (BDI rg = 0.85; s.e. = 0.03, BDII rg = 0.95; s.e. = 0.06). In contrast, the genetic 
correlation between BDI and Self-reported BD (rg = 0.42; s.e. = 0.02) was significantly lower (p =

7.1 ×�10−13)  than between BDII and Self-reported BD (rg = 0.76; s.e. = 0.05) (Supplementary 

Figure 2).  
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Given the difference in proportion of BDI and BDII cases within the Clinical and Community 
cohorts, we evaluated the genetic correlation between BD within Clinical and Community 
cohorts, and Self-reported BD, after conditioning on the genetic risk for BDI and BDII. After 
conditioning, the genetic correlation between Self-reported BD and BD within Community 
cohorts (rg = 0.92; s.e. = 0.09) = was not significantly different (p = 0.10) than with BD in Clinical 
cohorts (rg = 0.71; s.e. = 0.13).  

Ancestry-specific GWAS meta-analyses 
We conducted separate meta-analyses in four ancestral groups. Because the self-reported data 
differed in genetic architecture from the clinical and community data, we performed separate 
meta-analyses with and without the inclusion of the self-reported data. Supplementary Table 2 
provides a summary of the GWAS meta-analyses and details of associated loci are described in 
Supplementary Tables 5-7. Ancestry-specific estimates of SNP-heritability and cross-ancestry 
genetic correlations are provided in Supplementary Table 3. 
 
We identified 261 independent GWS variants mapping to 221 loci associated with BD in EUR 
ancestry meta-analyses that included self-reported data, and 94 independent GWS variants 
mapping to 88 loci without self-reported data (Supplementary Tables 5 and 6). There were 92 of 
the 94 independent GWS variants available for meta-analysis in the Self-reported cohorts, of 
which 78 (85%) were concordant for direction of effect (Supplementary Table 6).  
 
In the East Asian (EAS) ancestry meta-analysis we identified two BD-associated loci, one of 
which is novel with an ancestry-specific index variant (rs117130410, 4:105734758, build 
GRCh37; Supplementary Figure 1, Supplementary Table 7). While this variant had a frequency 
of 16% and 9% in EAS BD cases and controls, respectively, it is monomorphic in non-Asian 
populations. The second locus (rs174576, 11:61603510, build GRCh37; Supplementary Table 
7) was only identified when the self-reported data were excluded from the meta-analysis since 
the index variant was not available in the self-reported data. This locus has been identified 
previously and implicates the FADS1 and FADS2 genes.3,18 No GWS loci were observed in the 
African American (AFR) or Latino (LAT) ancestry meta-analyses. 
 

Multi-ancestry meta-analysis 
A multi-ancestry meta-analysis of all of the datasets identified 337 LD independent GWS 
variants mapping to 298 loci (Supplementary Figure 1, Supplementary Table 8). There was 
minimal test statistic inflation due to uncontrolled population stratification after correction for 
principal components in each dataset (LDSC intercept = 1.052 (se = 0.016), attenuation 
ratio=0.071 (s.e. = 0.013)).  
 
Of the 298 loci identified in this multi-ancestry meta-analysis, 267 are novel for BD. Of the 64 
previously reported BD-associated loci,3 31 met GWS in the present analysis containing all 
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samples, and of the 33 that did not, 25 met GWS in either the Clinical samples or in the meta-
analysis that excluded Self-reported data (Supplementary Table 9). Moreover, the direction of 

association for all top SNPs (12,151 SNPs with p < 1 ×�10−5) from the previous GWAS was 

consistent with the direction of association in this multi-ancestry meta-analysis of all samples 
(Supplementary Table 9).  
 
When considering the impact of ancestry on the discovery of these 298 loci, one locus (index 
SNP rs7248481, chr19:13079957-13122567) was most strongly associated in the EAS ancestry 
meta-analysis. For all other loci, the association was strongest in the EUR ancestry meta-
analysis. The majority of the 298 loci were nominally significant (p < 0.05) within the AFR 
(290/298 loci), EAS (257/298 loci) and LAT (293/298 loci) ancestry-specific meta-analyses, 
highlighting consistency of signal across the ancestry groups (Supplementary Table 8).  
 
We used GSA-MiXeR19 to estimate the proportion of SNP-heritability (SNP-h2) accounted for by 
SNPs within GWS loci. Compared to only 8.3% accounted for by SNPs within the 64 previously 
identified loci,3 SNPs within the 298 loci account for 18.5% of the SNP-h2 of BD (Supplementary 
Table 10). Moreover, SNPs within the 298 loci also accounted for higher proportions of SNP-h2 
in the Clinical (64 loci: 8.5%; 298 loci: 17.8%), BDI (64 loci: 8.3%; 298 loci: 17.5%), Community 
(64 loci: 4.8%; 298 loci: 22.6%), and Self-reported (64 loci: 2.0%; 298 loci: 21.1%) samples. 
 
We carried out sensitivity meta-analyses excluding the Self-reported samples (leaving 67,948 
cases and 867,710 controls; Neff = 191,722), and identified 116 independent GWS variants 
mapping to 105 loci (Supplementary Table 11). There was minimal test statistic inflation due to 
uncontrolled population stratification after correction for principal components in each dataset 
(LDSC intercept = 1.050; se = 0.012, attenuation ratio=0.086; s.e. = 0.018). Analysis of Self-
report cohorts only (90,088 cases and 1,928,789 controls; Neff = 344,088) identified 126 loci 
(Supplementary Table 12). Of the 116 independent GWS variants identified in the meta-analysis 
excluding the Self-report samples, 110 were available for meta-analysis in the Self-report 
samples, of which 96 (87%) were concordant (Supplementary Table 11).  
 

Genetic correlations with other traits 
Genome-wide genetic correlations (rg) were estimated between EUR ancestry BD GWASs (with 
and without self-reported data, and when stratified by ascertainment and subtypes) and human 
diseases and traits via the Complex Traits Genetics Virtual Lab (CTG-VL; https://vl.genoma.io) 
web platform20 (Figure 2, Supplementary Tables 13-15). Most psychiatric disorders, including 
major depressive disorder (MDD), post-traumatic stress disorder (PTSD), attention 
deficit/hyperactivity disorder (ADHD), borderline personality disorder, and autism spectrum 
disorder (ASD), were more strongly correlated with the full meta-analysis, as well as with BDII, 
and BD in Community and Self-reported samples (Figure 2). In contrast, schizophrenia was 
more strongly genetically correlated with the full BD meta-analysis excluding self-reported data 
and with BDI and BD in clinical samples (Figure 2). 
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Figure 2. Genetic correlations between bipolar disorder and other psychiatric disorders. The y-
axis (Trait2) is ordered based on the significance and magnitude of genetic correlation of each 
trait with bipolar disorder type I. Stars indicate results passing the Bonferroni corrected 

significance threshold of P < 3.6 ×�10−5. ADHD, attention deficit/hyperactivity disorder. PTSD, 

post-traumatic stress disorder. The year indicated in parentheses after each trait refers to the 
year in which the GWAS was published. Details are provided in Supplementary Table 13. 
 

Polygenic prediction of bipolar disorder 
Polygenic risk score (PRS) analyses were performed using PRS-CS-auto21 in 55 EUR ancestry 
cohorts for which individual-level genotype and phenotype data were available (40,992 cases 
and 80,215 controls), as well as one cohort of AFR ancestry (347 cases and 669 controls) and 
three cohorts of EAS ancestry (4,473 cases and 65,923 controls) (Supplementary Tables 16-
20). In the EUR ancestry cohorts, the variance explained by the multi-ancestry GWAS without 
the self-reported data (R2 = 0.090, s.e. = 0.019) was significantly greater than that explained by 
both the multi-ancestry GWAS including self-report data (R2 = 0.058, s.e. = 0.017, P = 

2.72�×�10−4), and by the the EUR ancestry GWAS excluding the self-reported data (R2 = 

0.084, s.e. = 0.018, P = 5.62 ×�10−3) (Figure 3A, Supplementary Tables 16 and 21). Individuals 

in the top quintile (top 20%) for this multi-ancestry GWAS without the self-reported data PRS 
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had an odds ratio of 7.06 (95% confidence interval (CI) 3.9–10.4) of being affected with BD 
compared to individuals in the middle quintile. The corresponding median Area Under the 
Receiver Operating Characteristic Curve (AUC) was 0.70 (95% CI= 0.67-0.73). Therefore, the 
BD liability explained remains insufficient for diagnostic prediction in the general population. 
 
Similarly, PRS derived from GWAS excluding self-reported data explained significantly more 
variance in cases of BDI (Figure 3B, Supplementary Tables 17) and in Clinical cohorts (Figure 
3D, Supplementary Tables 19) than when self-reported data were included. Conversely, 
inclusion of the self-reported data yielded greater median R2 estimates for the PRS in cases of 
BDII (Figure 3C, Supplementary Tables 18) and in Community cohorts (Figure 3E, 
Supplementary Tables 20), although these differences were not significant. 
 

 
Figure 3.  Phenotypic variance in bipolar disorder in European cohorts explained by polygenic 
risk scores derived from the multi-ancestry and European meta-analyses (with and without self-
reported data).  
Variance explained is presented on the liability scale, assuming a 2% population prevalence of 
bipolar disorder. The results in the first panel are the median weighted liability R2 values across 
all 55 European cohorts (40,992 cases, 80,215 controls, Neff = 46,725). Similarly, the remaining 
panels show the results across 36 bipolar disorder I (BDI) cohorts (12,419 cases and 33,148 
controls,  Neff = 14,607), 21 bipolar disorder II (BDII cohorts, 2,549 cases, 23,385 controls,  Neff 
= 4,021), 48 Clinical cohorts (27,833 cases, 46,623 controls,  Neff = 29,543), and 7 Community 
cohorts (13,159 cases, 36,592 controls,  Neff = 17,178). All analyses were weighted by the 
effective n per cohort. Error bars show 95% confidence intervals (CI). Comparison of variance 
explained was determined using 1- and 2-sample Wilcoxon tests (Supplementary Table 21) 
 
PRS analysis of three clinically ascertained EAS cohorts revealed that the PRSs derived from 
GWAS excluding the self-reported data (Taiwan; EUR-PRS R2 = 0.069, Multi-PRS R2 = 0.075. 
Japan; EUR-PRS R2 = 0.027, Multi-PRS R2 = 0.025. Korea; EUR-PRS R2 = 0.016, Multi-PRS 
R2 = 0.022) performed better than those that included self-reported data (Taiwan; EUR-PRS R2 
= 0.026, Multi-PRS R2 = 0.036. Japan; EUR-PRS R2 = 0.015, Multi-PRS R2 = 0.015. Korea; 
EUR-PRS R2 = 0.014, Multi-PRS R2 = 0.017) (Supplementary Table 22).  
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In a clinically ascertained AFR target cohort, the inclusion of self-reported data increased the 
explained variance by both the multi-ancestry PRS and the EUR ancestry PRS from 0.010 to 
0.23 or 0.22, respectively (Supplementary Table 22).  
 

Pathway, tissue and cell type enrichment 
Gene-set enrichment analyses were performed on the summary statistics derived from the 
multi-ancestry meta-analysis including self-reported data, using MAGMA.22 We identified 
significant enrichment of 6 gene-sets (Supplementary Table 23) related to the synapse and 
transcription factor activity. The association signal was enriched among genes expressed in the 
brain (Supplementary Table 24), and specifically in the early- to mid-prenatal stages of 
development (Supplementary Table 25). Single-cell enrichment analyses of brain cell types 
indicate involvement of neuronal populations from different brain regions, including hippocampal 
pyramidal neurons and interneurons of the prefrontal cortex and hippocampus (Supplementary 
Figure 5), and were largely consistent with findings from the previous PGC BD GWAS3. Similar 
patterns of enrichment were observed based on ascertainment and subtype (Supplementary 
Figure 6). In addition, GSA-MiXeR19 highlighted enrichment of specific dopamine- and calcium-
related biological processes and molecular functions, as well as GABAergic interneuron 
development, respectively (Supplementary Table 26).   
 
A recent study23 analysed single-nucleus RNA sequencing (snRNAseq) data of 3.369 million 
nuclei from 106 anatomical dissections within 10 brain regions and divided cells into 31 
superclusters and 481 clusters, respectively, based on principal component analysis of 
sequenced genes. These superclusters were then annotated based on their regional 
composition within the brain (Figure 4). We used stratified LD score regression (S-LDSC)24 to 
estimate SNP-heritability enrichment for the top decile of expression proportion (TDEP) genes in 
each of the 31 superclusters and 481 clusters, as described previously.25 Heritability was 
significantly enriched in 9 of the 31 superclusters (Figure 4), and 49 of the 481 clusters 
(Supplementary Figure 7). No enrichment was seen in non-neuronal clusters. Interestingly, two 
clusters within the medium spiny neurons, not observed at the supercluster level, are 
significantly enriched further supporting the involvement of striatal processes in BD. 
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Figure 4. Supercluster-level SNP-heritability enrichment for bipolar disorder. The t-distributed 
stochastic neighbour embedding (tSNE) plot (from Siletti et al.23) (left) is coloured by the 
enrichment z-score. Grey indicates non-significantly enriched superclusters (FDR > 0.05). The 
barplot (right) shows the nine significantly enriched superclusters.  
 
Single-cell enrichment analysis in 914 cell types across 29 non-brain murine tissues identified 
significant enrichment in the enteroendocrine cells of the large intestine and delta cells of the 
pancreas, which remained significant after cross-dataset conditional analyses with a murine 
brain tissue dataset (Supplementary Table 27). 
 

Fine-mapping  
We performed functional fine-mapping using Polyfun+SuSiE (Supplementary Tables 28 and 
29).26 At a threshold of PIP > 0.50, we identified 80 putatively causal fine-mapped SNPs for the 
multi-ancestry meta-analyses including self-reported data. At the more stringent threshold of 
PIP > 0.95 we identified 20 putatively causal SNPs. When comparing the number of SNPs 
within 95% credible sets, the inclusion of multi-ancestry and self-reported data led to smaller 
credible sets (i.e. credible sets with fewer numbers of SNPs). For example, we identified 175 
95% credible sets of < 20 SNPs in the multi-ancestry dataset with self-reported data, compared 

18 
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to 122 in the European dataset with self-reported data (Supplementary Figure 8). Putatively 
causal SNPs with a PIP > 0.5 were mapped to genes by performing variant annotation with 
Variant Effect Predictor (VEP) (GRCh37) Ensembl release 109,27 based on their position 
relative to annotated Ensembl transcripts and known regulatory features. This analysis identified 
71 unique genes annotated to fine-mapped SNPs from the multi-ancestry meta-analysis 
including self-reported data (Supplementary Table 29).  
 

Converging evidence of common and rare variation 
Within loci associated with BD in the multi-ancestry meta-analysis, the 71 genes annotated to 
putatively causal fine-mapped SNPs (Supplementary Table 29) were enriched for ultra rare (<=5 
minor allele count) damaging missense and protein-truncating variants in BD cases in the 
Bipolar Exome (BipEx) consortium dataset4 (Odds ratio (OR) = 1.16, 95% confidence interval 
(CI) = 1.05 - 1.28, P = 0.002), and in schizophrenia cases in the Schizophrenia Exome Meta-
analysis (SCHEMA) dataset28 (OR = 1.21, 95% CI = 1.02 - 1.43, P = 0.024). This enrichment is 
similar to that observed for schizophrenia28 and ADHD.29  
 

Identification of credible BD-associated genes  
In addition to the 71 genes annotated to the fine-mapped putatively causal SNPs as described 
above, we annotated a further 45 genes to the 80 fine-mapped SNPs by SMR using eQTL and 
sQTL data, as well as by proximity, i.e. the nearest gene to each SNP (Supplementary Figure 9, 
Supplementary Tables 30 and 31). No genes were annotated to the CpGs identified by the 
mQTL analysis (Supplementary Table 30). We then determined if any of these 116 genes were 
also identified through the genome-wide gene-based analysis using MAGMA,22 eQTL analyses 
using TWAS as implemented in FUSION30 and isoTWAS,31 or through enhancer-promoter (E-P) 
interactions.32,33 This resulted in seven possible approaches by which loci could be mapped to 
genes including, eQTL evidence (eQTL or TWAS or FOCUS or isoTWAS), mQTL, sQTL, VEP, 
proximity, MAGMA and E-P interactions.  
 
We integrated the results from the post-GWAS analyses described above and identified a 
credible set of 36 genes identified by at least three of the described approaches (Supplementary 
Table 31). The SP4 gene was identified by six of these approaches, and astrocyte and 
GABAergic neuron specific regulation of SP4, by the GWS variant rs2107448, were identified 
from cell-type specific enhancer-promoter interaction results (Supplementary Table 31). 
Moreover, the TTC12 and MED24 genes were identified by five of the approaches. Eight of the 
36 credible genes have synaptic annotations in the SynGO database.34 Three genes (HTT, 
ERBB4 and LR5NF) were mapped to both postsynaptic and presynaptic compartments. One 
gene (CACNA1B) was mapped to only the presynapse and four genes (SHANK2, OLFM1, 
SHISA9 and SORCS3) were mapped to only the postsynapse (Supplementary Table 32).  
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Based on the lifespan gene expression data from the Human Brain Transcriptome project 
(www.hbatlas.org),35 we identified two clusters of credible genes with distinct peaks in temporal 
expression (Supplementary Figure 10, Supplementary Table 31). The first cluster shows 
reduced prenatal gene expression, with gene expression peaking at birth and remaining stable 
over the life-course. Conversely, the second cluster shows a peak in gene expression during 
fetal development with a drop-off in expression before birth.  
 

Drug target analyses 
Gene-set analyses were performed restricted to genes targeted by drugs, assessing individual 
drugs and grouping drugs with similar actions as described previously.3,36 Gene-level and gene-
set analyses of the multi-ancestry GWAS summary statistics including self-report data were 
performed in MAGMA,22 and identified significant enrichment in the targets of anticonvulsant 
pregabalin (Supplementary Table 33). There was also significant enrichment in the targets of 
antipsychotics and anxiolytics (Supplementary Table 34). 
 
Examination of the Drug Gene Interaction Database (DGIdb)37 to identify drug-gene interactions 
using the credible genes as input genes, showed that 15 out of 36 genes were interacting with a 
total number of 528 drugs. Gene-set enrichment analysis of these drug-gene interactions 
showed a significant enrichment (p<0.0001) for targets of the atypical antipsychotic drugs 
nemonapride and risperidone (Supplementary Table 35). However, after correction for the total 
number of drugs (N=69,018), the enrichment was non-significant (FDR>0.05). In addition, 16 of 
the 36 credible genes had evidence of tractability with a small molecule in the OpenTargets 
dataset, including FURIN, MED24, THRA, ALDH2, ANKK1, ARHGAP15, CACNA1B, ERBB4, 
ESR1, FES, GPR139, HTT, MLEC, MSH6, PSMD14, and TOMM2. 
 
Among the 36 credible genes, two (ALDH2 and ESR1) were within the list of 139 lithium target 
and interaction partner genes. The results of the network-based separation (SAB) analysis do not 
indicate a general overlap between the credible genes and lithium target genes in the human 
protein interactome (SAB=0.124, z-score=1.710, p-value=0.044). The positive SAB value 
indicates that the lithium target genes and the 36 credible genes are separated from each other 
in the network of protein-protein interactions. 
 

Discussion 
We performed the largest GWAS of BD, including diverse samples of EUR, EAS, AFR and LAT 
ancestry, resulting in an over four-fold increase in the number of BD-associated loci: 337 LD 
independent GWS variants mapping to 298 loci. In the meta-analysis of EUR, the largest 
ancestry group, we identified over 200 GWS loci. We also found a novel ancestral-specific 
association in the EAS cohort. We confirmed our hypothesis that differences in ascertainment 
and BD subtype might lead to differences in genetic architecture. Post-GWAS analyses provide 
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novel insights into the biological underpinnings and genetic architecture of BD and highlight 
differences depending on ascertainment of participants and BD-subtype. We also showed that 
multi-ancestry data improved fine-mapping and polygenic prediction.  
 
Enrichment of the common variant associations from this multi-ancestry meta-analysis 
highlights the synapse, interneurons of the prefrontal cortex and hippocampus, and 
hippocampal pyramidal neurons as particularly relevant. Exploratory analyses using GSA-
MiXeR19 suggest enrichment of dopamine- and calcium-related biological processes and 
development of GABAergic interneurons. These findings were further corroborated by 
enrichment analyses in single-nucleus RNA-seq data from adult postmortem brain tissue, which 
highlighted specific clusters of interneurons derived from the caudal and medial ganglionic 
eminences and medium spiny neurons predominantly localised in the striatum. Medium spiny 
neurons are not enriched in depression using the same dataset.25 Although interneurons 
derived from ganglionic eminences were also enriched in schizophrenia, stronger signals were 
observed for amygdala excitatory and hippocampal neurons.25 
 
A novel finding is that single-cell enrichment analysis of non-brain murine tissues identified 
significant enrichment in the enteroendocrine cells of the large intestine and delta cells of the 
pancreas. Conditional analyses suggest that this enrichment is independent of overlapping 
genes between these cell-types and those expressed in neurons. Stimulation of 
enteroendocrine cells by short-chain fatty acids (SCFAs) promotes serotonin production in the 
colon which leads to enhanced levels of serotonin in systemic circulation and in the brain, and is 
a proposed mechanism by which microbiota influence the gut-brain axis.38,39 Notably, lithium 
treatment is shown to upregulate SCFA-producing bacteria highlighting a potential mechanism 
of action.40 
 
We mapped genes to the 80 putatively causal SNPs identified from fine-mapping based on 
seven complementary approaches and identified a subset of 36 credible genes implicated by at 
least three of these approaches. The top credible gene, identified by six gene-mapping 
approaches, was SP4, which has also been implicated in schizophrenia through both rare28 and 
common variation.41 Moreover, we clustered the credible genes based on similar patterns of 
temporal variation in expression over the lifespan and identified two clusters. The first cluster 
shows reduced gene expression pre-birth, with gene expression peaking at birth and remaining 
stable over the life-course, while the second cluster shows a peak in gene expression during 
fetal development aligning with the neurodevelopmental hypothesis of mental disorders.42 
Genes prioritised through fine-mapping were shown to be enriched for ultra rare damaging 
missense and protein-truncating variation in the BipEx4 and SCHEMA28 datasets, respectively, 
highlighting convergence of common and rare variant signals as recently shown in 
schizophrenia.41  
 
We identified differences in the genetic architecture of BD subtypes related to ascertainment. 
BD within Clinical and Community samples was highly but imperfectly correlated, with varying 
correlations with Self-reported BD. The low genetic correlation and minimal genetic overlap 
between cases ascertained through clinical studies and cases with self-reported BD is driven by 
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a greater proportion of BDI within the Clinical and Community samples. In line with these 
results, PRS derived from meta-analyses excluding the self-reported data performed better in 
Clinical and BDI target samples, while the inclusion of self-reported data improved the PRS in 
Community and BDII target samples. Moreover, the pattern of correlations between BD and 
other psychiatric disorders differed with the inclusion of self-reported data. Schizophrenia had 
the highest genetic correlation with BD without the inclusion of the self-reported data, while 
major depressive disorder was most strongly correlated with BD after the inclusion of the self-
reported data. These results suggest that the Self-reported samples may include a high 
proportion of people with BDII. Moreover, this is in line with recent findings in individuals 
diagnosed with BDII, which showed increasing polygenic scores for depression and ADHD and 
decreasing polygenic scores for BD over time.43 However, a diagnosis of BD in the outpatient 
setting may be overdiagnosed in people with conditions such as chronic depression or 
borderline personality disorder, highlighting a higher rate of comorbid disorders and potential for 
‘overdiagnosis’ of BD within cohorts of this nature.44,45 We showed that the differences in 

genetic architecture and phenotypic proportions of the Clinical, Community and Self-reported 

BD cohorts impacted the replication of prior BD-associated loci. Previously associated loci that 

fell short of meeting GWS in the current study were GWS in the Clinical samples and in the 

meta-analyses that excluded Self-reported data, and all top SNPs (12,151 SNPs with p < 1 

× 10−5) from the previous GWAS were consistent in direction of association in this multi-

ancestry meta-analysis of all samples (Supplementary Table 9).   

 
Investigation of the novel ancestral-specific association in the EAS ancestry meta-analysis in 
the GWAS catalog46 highlights overlaps with genome-wide significant loci for reduced sleep 

duration,47 and lower educational attainment,48 as well as a suggestive locus (p < 2 ×�10−6 ) for 

the interaction between cognitive function and MDD.49 These findings suggest a role for this 
genomic region in complex brain-related phenotypes.  
 
The multi-ancestry PRS provided the greatest improvement over the EUR-PRS in two of the 
three EAS ancestry target cohorts (Korean and Taiwanese). More subtle improvements were 
seen when the EUR target cohorts were analysed. Multi-ancestry training data provided little 
improvement in the AFR target cohort, which may be due to the genetic heterogeneity of this 
target cohort.50 These results highlight the benefits of multi-ancestry representation in the PRS 
training data, in line with findings from other diseases.51 The predictive power of this BD PRS 
shows a substantial improvement compared to previous findings3 however, this BD PRS alone 
still falls short of clinical utility.52 The meta-analysis excluding self-reported data produced 
results with the most explanatory power; this is likely due to increased phenotypic heterogeneity 
when the self-reported data are included. 
 
One limitation is the lack of in-sample LD estimates for all cohorts, due to a lack of in-house raw 
genotype data for some cohorts. For instance, analysis of the MHC/C4 locus was not 
considered since the number of samples for which individual-level genotype data were 
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accessible did not increase much since the previous analysis3. We used a EUR LD reference 
panel to analyse the multi-ancestry meta-analyses53 where LD patterns and interindividual 
heterogeneity within the ancestry groups are not fully captured. Another limitation is the 
inclusion of samples with minimal phenotyping. Although this allowed us to achieve large 
sample sizes, especially in under-represented non-European ancestry cohorts, and greatly 
increase the number of loci identified, minimally-phenotyped samples  have some shortcomings. 
For example, minimal phenotyping may result in low specificity association signals, as shown in 
major depression,54,55 and individuals in community-based biobanks may represent those less 
severely affected, as shown in schizophrenia.56  
 
In conclusion, in this first large-scale multi-ancestry GWAS of BD, we identified 298 significant 
BD-associated loci, from which we demonstrate convergence of common variant associations 
with rare variant signals and highlight 36 genes credibly implicated in the pathobiology of the 
disorder. We identified differences in the genetic architecture of BD based on ascertainment and 
subtype, suggesting that stratification by subtype will be important in BD genetics moving 
forward. Several analyses implicate specific cell types in BD pathophysiology, including 
GABAergic interneurons and medium spiny neurons, as well as the enteroendocrine cells of the 
large intestine and delta cells of the pancreas. Enrichment of dopamine- and calcium-related 
biological processes were also identified, further contributing to our understanding of the 
biological aetiology of BD. 
 

Methods 
 

Sample description 
Details of each of the cohorts, including sample size, ancestry, inclusion/exclusion criteria for 
cases and controls as well as citations, are provided in Supplementary Table 1 and the 
Supplementary Note. We included three types of samples: 1) samples where participants were 
assessed using semi-structured or structured interviews (Clinical), 2) samples where 
participants were assessed using medical records, registries and questionnaire data 
(Community) and 3) samples where participants self-report a diagnosis of bipolar disorder (Self-
report). The Clinical samples included 55 cohorts, 46 of which were included in previous PGC-
BD GWAS publications3,10,11. The Community samples included 20 cohorts, 11 of which were 
included in the previous PGC-BD GWAS3. Finally, we included four Self-report cohorts from 
23andMe, Inc, in which individuals were classified as cases if they self-reported having received 
a clinical diagnosis or treatment for bipolar disorder in responses to web-based surveys (“Have 
you ever been diagnosed with, or treated for, bipolar disorder?”).  
Individual-level genotype and phenotype data were shared with the PGC for 53 ‘internal’ 
cohorts, while the remaining 26 ‘external’ cohorts contributed summary statistics data.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 27, 2024. ; https://doi.org/10.1101/2023.10.07.23296687doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.07.23296687
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

24 

The final multi-ancestry meta-analysis included up to 158,036 cases and 2,796,499 controls. 
The total effective n (Neff), equivalent to an equal number of cases and controls in each cohort 
(4�×�ncases�×�ncontrols/(ncases�+�ncontrols) is 535,720 with 82.3% of participants 
(proportion of Neff) of EUR ancestry, 4.4% of AFR ancestry, 4.2% of EAS ancestry and 9.1% of 
LAT ancestry.  
The majority of new cohorts included in this study were external community cohorts where 
subtype definitions were more difficult to determine, and as such the total number of BDI and 
BDII subtype cases does not differ remarkably from the previous PGC BD GWAS3 
(Supplementary Table 1). Thus, the previous BDI (25,060 cases and 449,978 controls) and BDII 
(6,781 cases and 364,075 controls) GWAS summary statistics data were used for BDI and BDII 
analyses in this study.  
 

Genotyping, quality control and imputation  
Technical quality control was performed separately on each cohort for which individual-level 
data were provided separately according to standards developed by the PGC57 including; SNP 
missingness�<�0.05 (before sample removal), subject missingness�<�0.02, autosomal 
heterozygosity deviation (Fhet�<�0.2), SNP missingness�<�0.02 (after sample removal), 
difference in SNP missingness between cases and controls�<�0.02, SNP Hardy–Weinberg 

equilibrium (P�>�1�×�10−10 in BD cases and P�>�1�×�10−6 in controls), and mismatches 

between pedigree and genetically-determined sex based on the F statistic of X chromosome 
homozygosity (female F < 0.2 and male F >0.8). In addition, relatedness was calculated across 
cohorts using identity by descent and one of each pair of related individuals (pi_hat�>�0.2) was 
excluded, prioritising exclusion of individuals related to the most others, controls over cases, 
and individuals from larger cohorts. Principal components (PCs) were generated using 
genotyped SNPs in each cohort separately using EIGENSTRAT v6.1.458. Genotype imputation 
was performed using the prephasing/imputation stepwise approach implemented in Eagle 
v2.3.559 and Minimac360 to the Haplotype Reference Consortium (HRC) reference panel v1.061. 
Data on the X chromosome were also available for all 53 internal cohorts and these were 
imputed to the HRC reference panel in males and females separately. The remaining 22 
external cohorts were processed by the contributing collaborative teams using comparable 
procedures. Identical individuals between PGC processed cohorts and external cohorts with 
suspected sample overlap were detected using genotype-based checksums 
(https://personal.broadinstitute.org/sripke/share_links/zpXkV8INxUg9bayDpLToG4g58TMtjN_P
GC_SCZ_w3.0718d.76) and removed from the PGC cohorts.  
 

Genome-wide association study (GWAS) 
For internal cohorts, GWASs were conducted within each cohort using an additive logistic 
regression model in PLINK v1.9062, covarying for the first five PCs and any others as required, 
as previously described3. Analyses of the X chromosome were performed in males and females  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 27, 2024. ; https://doi.org/10.1101/2023.10.07.23296687doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.07.23296687
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

25 

separately, with males scored 0 or 2 and females scored 0, 1 or 2. X chromosome analyses 
were performed only in individuals of EUR ancestry for which individual level data were 
available. For external cohorts, GWASs were conducted by the collaborating research teams 
using comparable procedures. To control test statistic inflation at SNPs with low minor allele 
frequency (MAF) in small cohorts, SNPs were retained only if cohort MAF was >1% and minor 
allele count was >10 in either cases or controls (whichever had smaller n).  
 
Initially, meta-analysis of GWAS summary statistics was conducted using inverse-variance-
weighted fixed-effects models in METAL (version 2011-03-25)63 across cohorts within ancestral 

groups. A GWS locus was defined as the region around a SNP with P < 5.0 × 10−8 with linkage 

disequilibrium (LD) r2 > 0.1, within a 3000 kb window, based on the LD structure of the ancestry 
matched HRC reference panel v1.061, except LAT (EUR panel used). Multi-ancestry meta-
analysis was similarly performed by combining cohorts with diverse ancestry using inverse-
variance-weighted fixed-effects models in METAL63. Given that >80% of the included 
participants were of EUR ancestry, the LD structure of the EUR HRC reference panel was used 
to define GWS loci.  
 
For all meta-analyses, SNPs present in <75% of total effective sample size (Neff) were removed 
from the meta-analysis results. In addition, we employed the DENTIST tool for summary data-
based analyses, which leverages LD from a reference sample (ancestry matched HRC 
reference panel v1.061, except LAT and multi-ancestry for which the EUR panel was used) to 
detect and filter out problematic variants by testing the difference between the observed z-score 
of a variant and a predicted z-score from the neighbouring variants64.  
 

To identify independent association signals (P�<�5�×�10−8), the GCTA forward selection and 

backward elimination process (command ‘cojo-slct’) was applied using the summary statistics 
from the EAS, EUR and multi-ancestry meta-analysis (both including and excluding the self-
report data), with the EAS and EUR HRC reference panels, respectively65,66.  
 
The genetic correlation between meta-analyses based on all new cohorts (118,284 cases and 
2,448,096 controls) and EUR cohorts from our previous PGC BD GWAS3 was rg = 0.64 (se = 
0.02), and rg = 0.91 (se = 0.04) when excluding self-reported cohorts. Concordance of the 
direction of associations in the present GWAS with associations in the previously published BD 
data were evaluated as described previously.67 
 

Heritability and Genetic Correlation 
LDSC13 was used to estimate the SNP-heritability (h2

SNP) of BD from EUR GWAS summary 
statistics, including all cohorts as well as sub-groups by ascertainment and BD subtype. 
Popcorn was used to estimate h2

SNP of BD from non-EUR GWAS summary statistics.68  h2
SNP 

was converted to the liability scale using a lifetime BD prevalence of 2%. LDSC bivariate genetic 
correlations (rg) were also estimated between EUR BD GWASs (with and without self-report 
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data) and eleven other psychiatric disorders as well, as 1390 human diseases and traits via the 
Complex Traits Genetics Virtual Lab (CTG-VL; https://vl.genoma.io) web platform.20 Adjusting 

for the number of traits tested, the Bonferroni corrected p-value was P < 3.569 ×�10−5. Cross-

ancestry bivariate genetic correlations were estimated using Popcorn.68 Differences in rg 
between phenotype pairs were tested as a deviation from 0 using the block jackknife approach 
implemented in LDSC.69 
The results of the Clinical and Community cohort meta-analyses were conditioned on genetic 
risks for BDI and BDII, to account for differences in proportion of the BD subtypes within these 
cohorts. Conditioning was conducted using multitrait-based conditional and joint analysis using 
GWAS summary data (mtCOJO),70 implemented in GCTA.65 mtCOJO is robust to sample 
overlap between the GWASs of the exposure and outcome. The conditioned summary statistics 
were evaluated for genetic correlation with SElf-reported BD using LDSC.  
 

MiXeR 
We applied causal mixture models (MiXeR)15,16,71 to investigate the genetic architecture of BD, 
specifically the overlap between Clinical, Community and Self-report samples, as well as BD 
subtypes. We first computed univariate analyses to estimate the polygenicity, discoverability 
and heritability of each trait. These were followed by bivariate analyses to compute the number 
of shared trait-influencing variants between pairs of traits, and finally trivariate analyses to 
compute the proportion of shared variants between all three traits analysed. We also 
determined the correlation of effect sizes of SNPs within the bivariate shared components.  
 

Polygenic prediction of bipolar disorder 
We used PRS-CS-auto21 to compute polygenic risk scores in target cohorts, using a discovery 
GWAS where the target cohort was left out. Given that the majority of the individuals included in 
the meta-analysis were of EUR descent, we used the EUR LD reference panel based on UK 
BioBank data as provided by PRS-CS developers (https://github.com/getian107/PRScs). Raw 
scores were standardised to Z scores, and covariates including sex, the first five PCs and any 
others as required (as above for each cohort GWAS) were included in the logistic regression 
model, via the glm() function in R, with family=binomial and link=logit. The variance explained by 
PRS (R2) was first converted to Nagelkerke’s pseudo-R2 via the fmsb package in R, then 
converted to the liability scale to account for proportion of cases in each cohort and the 
population prevalence of BD.72 We provide R2 values for BD assuming a population prevalence  
of 2%, based upon a recent multinational survey.14 The weighted average R2 values were then 
calculated using the Neff for each cohort. PRS-specific-medians and their confidence intervals 
were computed using nonparametric bootstrap replicates (10,000 resamples with replacement). 
The odds ratios for BD for individuals in the top quintile of PRS compared with those in the 
middle quintile were calculated for all cohorts. Similarly, the area under the curve (AUC) statistic 
was calculated via the pROC package in R73, for which we performed a training and testing 
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procedure by taking 80% of the individuals in a given cohort on which to train the model, and 
tested the predictability in the remaining 20% of individuals. Ten random samplings of training 
and testing sets were performed in all cohorts, and the median AUC after all permutations is 
provided Supplementary Tables 16-22. The median confidence intervals for the AUC were 
similarly averaged across the ten random permutations. These AUC statistics were calculated 
based on the logistic regression model that includes the standardised PRS as a predictor and 
PC covariates. In order to assess the gain in AUC due to the PRS itself, we subtracted the 
median AUC of the model containing only the covariates from the full model, reported in 
Supplementary Tables 16-22 as AUC.  
 

Gene-Level and gene-set association analysis 
Gene-level, gene-set and tissue-set associations were performed using a SNP-wise mean 
model (±10kb window) implemented in MAGMA22. Bonferroni correction was used to control for 
multiple testing. In addition, we performed gene-set analysis with GSA-MiXeR19, which 
quantifies partitioned heritability attributed to N=10,475 gene-sets from the GO74 and SynGO34 
databases, alongside their fold enrichment with respect to a baseline model. The GSA-MiXeR 
full model incorporates 18,201 protein-coding genes, using a joint model to estimate heritability 
attributed to each gene based on GWAS summary statistics and HRC59 reference panel to 
account for LD between variants. GSA-MiXeR's baseline model accounts for a set of 75 
functional annotations75, as well as accounting for MAF- and LD-dependent genetic architecture. 
GSA-MiXeR's heritability model is estimated using Adam (method for stochastic gradient-based 
optimization of the likelihood function)76. Standard errors of fitted parameters were estimated 
from the observed Fisher’s information matrix (the negative Hessian matrix of the log-likelihood 
function). 
Identified credible genes were further assessed for enrichment in synaptic processes using the 
SynGO tool (https://www.syngoportal.org/) with default settings 34.  

Cell type specific enrichment analyses 
Single-cell enrichment analyses of brain cell types were performed according to Mullins et al. 
(2021). Briefly, from five publicly available single-cell RNA sequencing datasets derived from 
human 77,78 and murine 79–81 brain tissues, the 10% of genes with highest gene expression 
specificity per cell type were extracted. After MAGMA22 gene analysis of the multi-ancestry 
GWAS summary statistics including self-report data using an annotation window of 35 kb 
upstream and 10 kb downstream of the gene boundaries and the 1000 Genomes phase 3 EUR 
reference panel, MAGMA gene-set analyses were conducted for all cell types in each dataset, 
respectively. Within each dataset, FDR-adjusted p-values below 0.05 were considered 
statistically significant.  
In addition, we performed an exploratory single-cell enrichment analysis in 914 cell types across 
29 non-brain murine tissues as implemented in FUMA82. Cell types with FDR-adjusted p-values 
below 0.05 were considered statistically significant. Moreover, to determine that identified 
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enrichment was not due to overlapping genes with neuronal cell-types we performed cross-
dataset conditional analyses of significantly enriched cell-types with murine brain tissue.  

Single-nucleus RNA-seq enrichment analyses 
We used the Human Brain Atlas single-nucleus RNA-seq (snRNAseq) dataset23 consisting of 
3.369 million nuclei sequenced using snRNAseq. The nuclei were from adult postmortem 
donors, and the dissections focused on 106 anatomical locations within 10 brain regions. 
Following quality control, the nuclear gene expression patterns allowed the identification of a 
hierarchy of cell types that were organized into 31 superclusters and 461 clusters. In the current 
paper we use the same naming system for the cell types and the brain regions as in Siletti et 
al23. We estimated SNP-heritability enrichment for the top decile of expression proportion 
(TDEP) genes (~1,300 genes) in each of the 31 superclusters and 461 clusters, respectively, 
using stratified LD score regression (S-LDSC)24 as described previously.25 We used FDR 
correction (FDR < 0.05) to account for multiple comparisons. 
 

Fine-mapping 
We performed functional fine-mapping of GWS loci via Polyfun-SuSiE26, using functional 
annotations of the baseline-LF2.2 UKB model and LD estimates from the Haplotype Reference 
Consortium (HRC) EUR (N = 21,265) reference panel. The maximum number of causal variants 
per fine-mapped region was adjusted accordingly based on the results from the conditional 
analysis. We excluded loci that fall within the MHC locus (6:28000000-34000000, build 
GRCh37) due to the known complexity of the LD architecture in that region. GWS loci ranges 
with a LD r2 above 0.1 were used as fine-mapping ranges. Putatively causal SNPs (PIP > 0.50 
and part of 95% credible set) were mapped to genes by performing variant annotation with 
Variant Effect Predictor (VEP) (GRCh37) Ensembl release 7527. 
 

Convergence of common and rare variant signal 
Data from the Bipolar Exome (BipEx) consortium4 (13,933 BD cases and 14,422 controls) were 
used to assess the convergence of common and rare variant signals, using a similar approach 
as previously used for schizophrenia41. This dataset includes approximately 8,2 k individuals 
with BDI and 3,4 k individuals with BDII, while the remainder of the sample lack BD sub-type 
information. Ultra rare variants (<=5 minor allele count) for damaging missense (missense 
badness, PolyPhen-2 and regional constraint (MPC) score >3) and protein-truncating variants 
(including: transcript ablation, splice acceptor variants, splice donor variants, stop gained and 
frameshift variants) were considered. An enrichment of rare variants in genes prioritised through 
fine-mapping in cases relative to controls were assessed using a Fisher’s Exact Test. Given the 
genetic overlap between bipolar disorder and schizophrenia, we repeated the analysis in data 
from the Schizophrenia Exome Meta-analysis (SCHEMA) cohort (24,248 schizophrenia cases 
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and 97,322 controls)28. Using the same approach as taken in the SCHEMA28 and BipEx4 
papers, background genes included all genes surveyed in each sequencing study, respectively.  
 

QTL integrative analysis  
We conducted different QTL integration analyses to elucidate molecular mechanisms by which 
variants associated with BD might be linked to the phenotype. Summary data-based Mendelian 
randomization (SMR) (v1.3)83 with subsequent heterogeneity in dependent instruments 
(HEIDI)70 tests were performed for expression quantitative trait loci (eQTLs), splicing 
quantitative trait loci (sQTLs), and methylation quantitative trait loci (mQTLs). Data on eQTLs 
and sQTLs were obtained from the BrainMeta study v2  (n = 2865),84 while data on methylation 
quantitative trait loci (mQTLs) were obtained from the Brain-mMeta study v1 (n = 1160).85 
Putatively causal SNPs identified from fine-mapping, as outlined above, were used as the QTL 
instruments  for the SMR analyses. Using the BD GWAS and QTL summary statistics, each 
putative causal SNP was analysed as the target SNP for probes within a 2 Mb window on either 
side using the --extract-target-snp-probe option in SMR. The EUR HRC LD reference panel was 
used for the analyses of the multi-ancestry meta-analysis. A Bonferroni correction was applied 

for 2021 tests, i.e. SNP-QTL probe combinations, in the eQTL analysis (PSMR < 2.47 ×�10−5), 

6755 tests in the sQTL analysis (PSMR < 7.40 ×�10−6) and 2222 tests in the mQTL analysis 

(PSMR < 2.25 ×�10−5). The significance threshold for the HEIDI test (heterogeneity in dependent 

instruments) was PHEIDI ≥ 0.01. Additional eQTL integration analyses were conducted using 

TWAS, FOCUS and isoTWAS. Details related to these analyses are provided in the 
Supplementary Note. 
 

Enhancer-promoter gene interactions 
To investigate enhancer-promoter (E-P) interactions influenced by BD GWAS variants, we 
utilized cell-type-specific E-P maps from a multi-omics dataset, which included joint snATAC-
seq & snRNA-seq and cell-specific Hi-C data from developing brains. We employed the activity-

by-contact (ABC) model32,33 for this analysis. Following the authors' guidelines, we excluded E-P 

interactions that (i) had an ABC score below 0.015, (ii) involved ubiquitously expressed genes or 

genes on the Y chromosome, or (iii) included genes not expressed in major brain cell types. 

Focusing on the BD GWAS, we selected only those E-P links that overlapped genome-wide 

significant SNPs (with peaks extended by 100 bp on both sides to increase overlap) or their LD 

buddies (R2 ≥ 0.8). This selection process yielded 11,023 E-P links. We then overlapped these 

putative disease-relevant variants with enhancer-promoter (E-P) links to prioritize causal genes. 
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To avoid multiple associations for a single variant, we applied the ABC-Max approach,33 

retaining only the E-P links with the highest ABC score for each peak. 
   

Credible gene identification 
We provide a set of credible genes by integrating information from various gene-mapping 
strategies, using a similar approach previously described (Supplementary Figure 9, 
Supplementary Table 31).86 First, genes identified through fine-mapping, and QTL (eQTL, 
mQTL and sQTL) analyses using SMR and proximity (nearest gene within 10 kb) to fine-
mapped putatively causal SNPs were included. The identified set of 116 genes were then 
further assessed based on gene-level associations (MAGMA),22 additional integrative eQTL 
analyses30,31 and enhancer-promoter gene interactions.32,33 The criteria for filtering genes from 
the different eQTL methods were: (i) SMR adjusted p-value less than 0.05 and HEIDI test p-
value greater than 0.01, (ii) TWAS adjusted p-values less than 0.05 and colocalization 
probability (COLOC.PP4) greater than 0.7, (iii) FOCUS posterior inclusion probability greater 
than 0.7 and within a credible set, (iv) isoTWAS permutation p-value less than 0.05, isoTWAS 
poster inclusion probability greater than 0.7 and within a credible set (Supplementary Figure 9). 
Genes annotated by at least one of these eQTL approaches were confirmed as having eQTL 
evidence (Supplementary Table 31). Thus, seven approaches were considered by which loci 
could be mapped to genes including, eQTL evidence (eQTL or TWAS or FOCUS or isoTWAS), 
mQTL, sQTL, VEP, proximity, MAGMA and E-P interactions.  

Clustering of credible genes by temporal variation 
Lifespan gene expression from the Human Brain Transcriptome project (www.hbatlas.org)35 was 
used to cluster the list of credible genes based on their temporal variation. The gene expression 
and associated metadata were acquired from the gene expression omnibus (GEO; accession: 
GSE25219). The data consists of 57 donors aged 5.7 weeks post conception to 82 years old 
with samples extracted across regions of the brain. Prior to filtering gene expression for the list 
of credible genes, gene symbols of both credible genes and the gene expression dataset were 
harmonized using the “limma” package in R which updates any synonymous gene symbols to 
the latest Entrez symbol. Gene expression was available for 33 of the 36 credible genes. Within 
a given brain region, each gene’s expression was then mean-centered and scaled. Outliers in 
gene expression more than 4 standard deviations from the mean were removed. To generate a 
single gene expression profile for each gene across the lifespan, at a given age, the mean gene 
expression for a given gene was taken across brain regions, and in some cases across donors. 
This resulted in a matrix where each gene had a single expression value for each age across 
the lifespan. This gene-expression by age matrix was then used to cluster the credible genes by 
the lifespan expression profiles using the R package “TMixClust”. This method uses mixed-
effects models with nonparametric smoothing splines to capture and cluster non-linear variation 
in temporal gene expression. We tested K=2 to K=10 clusters performing 50 clustering runs to 
analyse stability. The clustering solution with the highest likelihood (i.e., the global optimum 
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using an expectation maximization technique) is selected as the most stable solution across the 
50 runs for each of the trials testing 2-10 clusters. We compare the average silhouette width 
across the K=2 to K=10 clusters and select that with the maximum value as the optimal number 
of clusters. 
 

Drug enrichment analyses 
Gene-set analyses were performed restricted to genes targeted by drugs, assessing individual 
drugs and grouping drugs with similar actions as described previously 3,36. Gene-level and gene-
set analyses of the multi-ancestry GWAS summary statistics including self-report data were 
performed in MAGMA v1.10 22, as outlined above for cell type specific enrichment.  
Gene sets were defined comprising the targets of each drug in the Drug Gene Interaction 
database DGIdb v.5.0.6 37; the Psychoactive Drug Screening Database Ki DB 87; ChEMBL v27 
88; the Target Central Resource Database v6.7.0 89; and DSigDB v1.0 90; all downloaded in 
October 2020. Multiple testing was controlled using a Bonferroni-corrected significance 

threshold of P�<�5.41�×�10−5 (924 drug-sets with at least ten valid drug gene sets) for drug-

set analysis and P�<�5.49�×�10−4 (91 drug classes) for drug-class analysis, respectively. 

We also assessed whether any of the 36 credible genes were classified as druggable in the 
OpenTargets platform.  
In addition, gene-set analyses were also performed to test the enrichment of drug-gene 
interactions on only credible genes as described above. Moreover, we investigated if any lithium 
target genes, as well as their interaction partners, were among the 36 credible genes using the 
latest version of the human protein interactome91. We calculated the network-based separation 
(SAB) between credible genes and lithium target genes, where a significant overlapping network 
neighbourhood would be indicative of functional similarity92.  
 

Data availability 
Genome-wide association summary statistics for these analyses will be made available upon 
publication at https://www.med.unc.edu/pgc/download-results/. The full GWAS summary 
statistics for the 23andMe datasets will be made available through 23andMe to qualified 
researchers under an agreement with 23andMe that protects the privacy of the 23andMe 
participants. Please visit https://research.23andme.com/collaborate/#dataset-access for more 
information and to apply to access the data. After applying with 23andMe, the full summary 
statistics including all analysed SNPs and samples in the GWAS meta-analyses will be 
accessible to the approved researchers. Genotype data are available for a subset of cohorts, 
including dbGAP accession numbers and/or restrictions, as described in the ‘Cohort 
descriptions’ section of the supplementary materials. 
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Code availability 
Core analysis code for RICOPILI can be found at 
https://sites.google.com/a/broadinstitute.org/ricopili/. This wraps PLINK (https://www.cog-
genomics.org/plink2/), EIGENSOFT (https://www.hsph.harvard.edu/alkes-price/software/), 
Eagle2 (https://alkesgroup.broadinstitute.org/Eagle/), Minimac3 
(https://genome.sph.umich.edu/wiki/Minimac3), SHAPEIT3 
(https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html), METAL 
(https://genome.sph.umich.edu/wiki/METAL_Documentation) and LDSR 
(https://github.com/bulik/ldsc). For downstream analyses, MiXeR can be found at 
https://github.com/precimed/mixer, PRS-cs is at https://github.com/getian107/PRScs and GSA-
MiXeR is available at https://github.com/precimed/gsa-mixer. MAGMA can be found at 
https://ctg.cncr.nl/software/magma. PolyFun+SuSiE (https://github.com/omerwe/polyfun), TWAS 
(http://gusevlab.org/projects/fusion/), isoTWAS (https://github.com/bhattacharya-a-bt/isotwas) 
and SMR (https://github.com/XudongHan-bio/SMR) are also freely available.   
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