1	Hs-CRP is associated with Heart Failure Hospitalization in Patients with
2	MAFLD and Normal LVEF Undergoing Coronary Angiography
3	
4	Running Title: Serum hs-CRP in MAFLD with HF
5	Authors' names:
6	Xiao-Dong Zhou,MM ^{1¶} , Qin-Fen Chen,MD ^{2,3¶} , Giovanni Targher,MD ^{4,5} , Christopher
7	D. Byrne,MD ⁶ , Michael D. Shapiro,MD ⁷ , Na Tian,MM ⁸ , Tie Xiao,BM ⁸ ,Ki-Chul
8	Sung,MD ⁹ , Gregory Y. H. Lip,MD ¹⁰ , Ming-Hua Zheng,MD,PhD ^{8,11,12*}
9	Institutions:
10	¹ Department of Cardiovascular Medicine, the Heart Center, the First Affiliated
11	Hospital of Wenzhou Medical University, Wenzhou 325000, China;
12	² Medical Care Center, the First Affiliated Hospital of Wenzhou Medical University,
13	Wenzhou 325000, China;
14	³ Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province,
15	Zhejiang Provincial Clinical Research Center for Mental Disorders, Wenzhou
16	Medical University, Wenzhou, 325000, China;
17	⁴ Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism,
18	University of Verona, Verona, Italy;
19	⁵ IRCCS Sacro Cuore Don Calabria Hospital, Negrar (VR), Verona, Italy;
20	⁶ Southampton National Institute for Health and Care Research Biomedical Research
21	Centre, University Hospital Southampton, and University of Southampton,
22	Southampton General Hospital, Southampton, UK;
23	⁷ Center for Prevention of Cardiovascular Disease, Section on Cardiovascular
24	Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA;

- ²⁵ ⁸MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of
- 26 Wenzhou Medical University, Wenzhou, China;
- ⁹Department of Internal Medicine, Division of Cardiology, Kangbuk Samsung
- 28 Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea;
- ²⁹ ¹⁰Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool
- 30 John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United
- 31 Kingdom; and Danish Center for Health Services Research, Department of Clinical
- 32 Medicine, Aalborg University, Aalborg, Denmark;
- ³³ ¹¹Institute of Hepatology, Wenzhou Medical University, Wenzhou, China;
- ¹²Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver
- 35 Disease in Zhejiang Province, Wenzhou, China.
- 36
- 37 **Co-first authors:** Xiao-Dong Zhou and Qin-Fen Chen
- **38 *Corresponding author:**
- 39 Ming-Hua Zheng, MD, PhD
- 40 MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of
- 41 Wenzhou Medical University, Wenzhou, China.
- 42 E-mail: zhengmh@wmu.edu.cn; phone: (86) 577-55579611; fax: (86) 577-55578522
- 43
- 44 Electronic word count: 3479
- 45 Number of figures and tables: 4 figures, 2 tables, 1 supplementary figure and 2
- 46 supplements.
- 47
- 48

49 **Conflict of Interest:**

- 50 GYHL: Consultant and speaker for BMS/Pfizer, Boehringer Ingelheim,
- 51 Daiichi-Sankyo, Anthos. No fees are received personally. He is a NIHR Senior
- 52 Investigator and co-principal investigator of the AFFIRMO project on multimorbidity
- 53 in AF, which has received funding from the European Union's Horizon 2020 research
- and innovation programme under grant agreement No 899871. Other authors have no
- 55 conflicts of interest.
- 56

57 Abstract

- 58 **Background:** Systemic chronic inflammation plays a role in the pathophysiology of
- 59 both heart failure with preserved ejection fraction (HFpEF) and metabolic
- 60 dysfunction-associated fatty liver disease (MAFLD).
- 61 **Aim:** This study aimed to investigate whether serum high-sensitivity C-reactive
- 62 protein (hs-CRP) levels were associated with the future risk of heart failure (HF)
- 63 hospitalization in patients with MAFLD and a normal left ventricular ejection fraction
- 64 (LVEF).
- 65 **Methods:** The study enrolled consecutive individuals with MAFLD and normal
- 66 LVEF who underwent coronary angiography for suspected coronary heart disease.
- 67 The study population was subdivided into non-HF, pre-HFpEF, and HFpEF groups at
- 68 baseline. The study outcome was the first hospitalization for HF.
- 69 **Results:** In 10,019 middle-aged individuals (mean age 63.3±10.6 years; 38.5%
- female), the prevalence rates of HFpEF and pre-HFpEF were 34.2% and 34.5%, with
- a median serum hs-CRP level of 4.5 mg/L (IQR: 1.9-10 mg/L) and 5.0 mg/L (IQR:
- 72 2.1-10.1 mg/L), respectively. Serum hs-CRP levels were significantly higher in the
- 73 pre-HFpEF and HFpEF groups than in the non-HF group. HF hospitalizations
- occurred in 1942 (19.4%) patients over a median of 3.2 years, with rates of 3.7% in
- non-HF, 20.8% in pre-HFpEF, and 32.1% in HFpEF, respectively. Cox regression
- analyses showed that patients in the highest hs-CRP level quartile had a ~4.5-fold
- 77 increased risk of being hospitalized for HF compared to those in the lowest hs-CRP
- ⁷⁸ level quartile (adjusted-Hazard Ratio 4.42, 95% CI 3.72-5.25).
- 79 **Conclusions:** There was a high prevalence of baseline pre-HFpEF and HFpEF in
- subjects with MAFLD. There was an increased risk of HF hospitalization in those
- 81 with elevated hs-CRP levels.

- 83 Keywords: high-sensitivity C-reactive protein, metabolic dysfunction-associated fatty
- 84 liver disease, heart failure with preserved ejection fraction, heart failure
- 85 hospitalization.

86 Introduction

87	Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly named
88	non-alcoholic fatty liver disease, is a highly prevalent metabolic liver condition
89	worldwide, affecting up to nearly 30% of the general adult population. ¹⁻⁵ Recent
90	cohort studies suggested that patients with MAFLD have an increased risk of
91	developing new-onset heart failure (HF), especially HF with preserved ejection
92	fraction (HFpEF). ⁶⁻⁸ A comprehensive meta-analysis of longitudinal cohort studies
93	(including ~11 million middle-aged individuals from different countries) showed that
94	MAFLD was associated with a 1.5-fold increased risk of new-onset HF over a median
95	of 10 years. ⁹
96	
97	Despite a normal left ventricular ejection fraction (LVEF), HFpEF is a common
98	chronic cardiac condition globally, where metabolic dysfunction (e.g., obesity and
99	type 2 diabetes) and low-grade chronic inflammation may contribute importantly to
100	its pathogenesis. ¹⁰⁻¹² HFpEF is associated with a substantially higher risk of adverse
101	cardiovascular events and all-cause mortality. ¹⁰⁻¹²
102	
103	Empiric evidence suggests that the unifying link between MAFLD and HFpEF is
104	low-grade chronic inflammation, which may adversely affect cardiomyocyte
105	function. ¹³⁻¹⁶ This low-grade inflammatory state is characterized by an increase in
106	various biomarkers in the bloodstream. ^{17,18} For example, high-sensitivity C-reactive
107	protein (hs-CRP) is one of the most widely used biomarkers for systemic
108	inflammation, and an increase in hs-CRP is predictive of adverse cardiovascular

- 109 events, such as myocardial infarction, stroke, and HF.¹⁹⁻²¹ However, to our knowledge,
- 110 the ability of serum hs-CRP level to predict future HF events in patients with MAFLD
- 111 and preserved LVEF has not been explored.
- 112
- 113 The main aims of our study were as follows: (1) to examine the prevalence of HFpEF
- among patients with MAFLD and suspected coronary artery disease (CAD)
- undergoing elective coronary angiography; and (2) to evaluate the associations
- between increased serum hs-CRP levels and the future risk of HF hospitalizations in
- 117 this patient population.
- 118
- 119 Methods
- 120 Study Design
- 121 This retrospective longitudinal study enrolled individuals diagnosed with MAFLD
- 122 and suspected CAD who had undergone conventional echocardiograms at the First
- 123 Affiliated Hospital of Wenzhou Medical University between January 2009 and
- 124 February 2023. The inclusion criteria were as follows: (1) aged 18 years or older; (2)
- diagnosis of MAFLD; (3) presence of LVEF \geq 50% on echocardiography; and (4)
- 126 acceptance to undergo an elective coronary angiography. Patients who did not meet
- 127 the inclusion criteria (mentioned above), patients who were unable to provide
- 128 informed consent, those who had had any acute inflammatory condition, and any
- 129 other organ failure, rheumatological disorder, malignancy, or those lost at follow-up,
- 130 were excluded from the study (as specified in **Supplementary Figure 1**).
- 131 Baseline data for all patients were collected retrospectively through electronic medical
- records, which provided various details such as medical history, demographic

- 133 variables, clinical and laboratory data, current use of medications, liver ultrasound
- results, echocardiography evaluation findings, and subsequent follow-up data.
- 135 The study was conducted in compliance with the Declaration of Helsinki, and the
- 136 ethics committee of the First Affiliated Hospital of Wenzhou Medical University
- 137 approved the study protocol with a waiver for informed consent due to the
- infeasibility of obtaining informed consent given the study's retrospective design. The
- 139 data that support the findings of this study are available from the first author
- 140 (zhouxiaodong@wmu.edu.cn) upon reasonable request.
- 141

142 MAFLD Diagnosis

143	In all patients, M.	AFLD was diagn	osed by the pres	esence of hepatic	steatosis on liver
115	in an panents, in	III DD mab alagii	obea of me pres	beinee or nepatre	

144 ultrasound or blood biomarkers/scores in combination with at least one of the

145 following metabolic risk factors: overweight/obesity, type 2 diabetes, or at least two

of the following metabolic abnormalities: 1) waist circumference $\geq 90/80$ cm in men

- and women; 2) blood pressure $\geq 130/85$ mmHg or specific drug treatment; 3) serum
- triglycerides \geq 150 mg/dl (\geq 1.70 mmol/L) or specific drug treatment; 4) serum

149 high-density lipoprotein (HDL)-cholesterol <40 mg/dl (<1.0 mmol/L) for men and

150 <50 mg/dl (<1.3 mmol/L) for women or specific drug treatment; 5) prediabetes,

defined as fasting glucose levels between 100 to 125 mg/dl [5.6 to 6.9 mmol/L], or

- 152 HbA1c levels ranging from 5.7% to 6.4% [39 to 47 mmol/mol]; 6) a Homeostasis
- 153 Model Assessment (HOMA) score for insulin resistance of ≥ 2.5 ; and 7) a plasma
- 154 hs-CRP level of >2 mg/L.^{22,23} FIB-4 index was calculated as follows: age \times aspartate

aminotransferase (U/L)/[platelet ($10^{9}/L$) × alanine aminotransferase 1/2 (U/L)].²⁴

- 156 Serum hs-CRP was measured using an immuno-turbidimetry assay in a Beckman
- 157 Coulter analyzer (AU5800).
- 158

159 Baseline HF status

The study population was subdivided into the non-HF, pre-HFpEF, and HFpEF groups 160 161 according to the presence or absence of HF symptoms and impaired cardiac function 162 at baseline. The diagnosis of pre-HFpEF was defined as asymptomatic patients 163 (absence of signs or symptoms of HF) with 'preserved' ejection fraction (LVEF \geq 50%) 164 who had at least one of the following conditions: evidence of structural heart disease 165 (including left atrial enlargement), and/or diastolic dysfunction, presence of multiple 166 cardiovascular risk factors with elevated levels of natriuretic peptides, or persistently elevated cardiac troponins, in the absence of competing diagnoses.^{25,26} The diagnosis 167 of HFpEF was defined as symptomatic patients with 'preserved' ejection fraction 168 169 (LVEF \geq 50%) who had at least one of the following conditions: evidence of structural 170 heart disease (including left atrial enlargement) and/or diastolic dysfunction, multiple 171 cardiovascular risk factors with elevated levels of serum natriuretic peptides, or persistently elevated cardiac troponins, in the absence of competing diagnoses.^{25,26} In 172 173 contrast to 'true HFpEF', the key clinical component of pre-HFpEF was the absence 174 of HF signs and symptoms.

175

176 Coronary Angiography

All study patients underwent elective coronary angiography to quantify the presence
of CAD. The reports of coronary angiographies of all patients were meticulously
reviewed and categorized in cooperation with the study's cardiologist, X-D Zhou.
Mild CAD was defined as coronary stenoses <50%, moderate CAD as stenoses
50-70%, and severe CAD as having at least one proximal coronary artery with >70%
stenosis based on angiography.²⁷

183

184 Study Outcomes

Clinical follow-up data were collected from inpatient and outpatient medical records to analyze the clinical study outcome. The length of the follow-up was determined as the time between the MAFLD diagnosis and the first occurrence of either the end of clinical follow-up or the time-to-event endpoints, whichever came first. Patients were followed until April 2023 to examine the clinical outcome for prognostic purposes systematically. The primary outcome of the study was the first hospitalization for HF.

191

192 Statistical Analysis

193 All statistical analyses were performed using the IBM SPSS software, version 23.0 for

194 Windows. Continuous variables were expressed as means \pm SD or medians

195 (interquartile ranges, IQR), and categorical variables as percentages. Statistical

196 comparisons between the study groups were carried out using the unpaired Student's

- 197 *t*-test (for normally distributed continuous variables), the Mann-Whitney U test (for
- 198 non-normally distributed continuous variables), and the chi-squared test (for
- 199 categorical variables). We performed unadjusted and adjusted Cox proportional
- 200 hazards models to examine the association between serum hs-CRP levels (stratified by

201	increasing quartiles, from Q1 to Q4) and the risk of HF hospitalization during the
202	follow-up period. The Cox proportional hazards models provided the hazard ratios
203	(HR) and 95% confidence intervals (CI). Furthermore, a Kaplan-Meier survival
204	analysis was also performed to calculate the event-free survival curves, and the
205	log-rank test was used to test the presence of any significant differences between the
206	curves. A statistically significant level was considered as P-value <0.05 (two-tailed).
207	
208	Results
209	Baseline Characteristics
210	The final sample for analysis consisted of 10,019 middle-aged Chinese patients (mean
211	age 63.3±10.6 years; 38.5% female) with MAFLD and suspected CAD who
212	underwent elective coronary angiography, after excluding patients who did not meet
213	the study's inclusion criteria (Supplementary Figure 1). At baseline, 3,133 (31.3%)
214	patients had non-HF, 3,427 (34.2%) had pre-HFpEF, and 3,459 (34.5%) had HFpEF,
215	respectively. Detailed baseline characteristics, traditional cardiovascular risk factors,
216	and laboratory parameters of patients stratified by different baseline HF statuses are
217	shown in Table 1. Patients with HFpEF were older, had more comorbidities, a more
218	atherogenic risk profile, a greater prevalence of severe coronary stenosis, larger left
219	ventricular end-diastolic diameter, higher FIB-4 score, and lower HSI score compared
220	to the other two patient groups. Serum hs-CRP levels both in the pre-HFpEF group
221	(4.5 mg/L; IQR: 1.9-10 mg/L) and in the HFpEF group (5.0 mg/L; IQR: 2.1-10.1
222	mg/L) were significantly higher than those in the non-HF group (2.7 mg/L; IQR:
223	1.1-5.0 mg/L).

224

225 Pre-HFpEF and HFpEF prevalence, and incident HF hospitalization

226	As shown in Figure 1, about two-thirds of patients had pre-HFpEF or HFpEF and the
227	prevalence rates of these two cardiac conditions increased across quartiles of serum
228	hs-CRP at baseline. During a median follow-up period of 3.2 years (IQR: 0.9-5.9
229	years), hospitalizations for HF occurred in 1942 (19.4%) patients, with an incidence
230	rate of 6.1 events per 100 person-years. As also shown in the figure (panel C), patients
231	with HFpEF or pre-HFpEF at baseline were more likely to be hospitalized for HF than
232	those in the non-HF group.

233

234 Hs-CRP and risk of incident HF hospitalization

235 As shown in **Table 2**, patients in the highest baseline quartile of hs-CRP levels had a 236 markedly higher risk of HF hospitalization compared to those in the lowest hs-CRP 237 quartile (unadjusted HR 6.937, 95% 5.857-8.215). Increased serum hs-CRP levels 238 were significantly associated with a higher risk of HF hospitalization (HR 4.421, 95%) 239 3.720-5.254), even after adjustment for age, sex, smoking history, alcohol intake, 240 BMI, hypertension, diabetes, dyslipidemia, atrial fibrillation, previous stroke, 241 previous myocardial infarction, chronic kidney disease, and current use of loop 242 diuretics, spironolactone, ACEI/ARB/ARNIs or beta-blockers. A Kaplan-Meier 243 survival analysis showed a significant incremental increase in the risk of HF 244 hospitalization across serum hs-CRP quartiles (P < 0.001 by the log-rank test, Figure 245 2).

246

247 Hs-CRP and increased risk of HF hospitalization in subgroups

We performed subgroup analyses to examine the significant associations between
serum hs-CRP quartiles and the risk of HF hospitalization. This risk remained
statistically significant even after adjusting for potential confounders, i.e., regardless
of the HF status (Table 2 and Figure 3), the severity of coronary stenoses
(Supplementary Table 1 and Figure 3), or FIB-4 score at baseline (Supplementary
Table 2 and Figure 4).

254

255 **Discussion**

256 The key findings from this analysis are summarized as follows: (1) pre-HFpEF and

257 HFpEF are two highly prevalent cardiac conditions affecting up to nearly two-thirds

of this patient population with MAFLD; (2) patients with pre-HFpEF or HFpEF are at

259 higher risk of being hospitalized for HF than the non-HF patient group, with incidence

rates of 3.7% in non-HF, 20.8% in pre-HFpEF, and 32.1% in HFpEF, respectively; (3)

serum hs-CRP levels are increased in patients with pre-HFpEF or HFpEF; and

262 increased hs-CRP levels predicted the future risk of hospitalization for HF, regardless

263 of the different HF status and the severity of coronary stenosis at baseline.

264

While serum hs-CRP levels are closely associated with an elevated risk of adverse cardiac events in individuals with cardiometabolic disease, there is limited data that specifically evaluate the connections between serum hs-CRP and HFpEF in patients with MAFLD. Our study provides novel data from a large cohort of MAFLD patients with suspected CAD to address this question.

270

271 Prevalence of HFpEF in MAFLD

272	Patients with MAFLD often have multiple cardiometabolic disorders leading to
273	myocardial remodeling and diastolic dysfunction over time. ²⁸⁻³⁰ However, these
274	individuals are more likely to develop HFpEF than patients with HF with reduced
275	LVEF (HFrEF). ^{31,32} Hence, understanding the prevalence of pre-HFpEF and HFpEF
276	among patients with MAFLD is clinically important for promptly identifying
277	individuals at higher risk of developing HF and who may benefit from targeted
278	pharmacotherapies to reduce their HF risk.
279	In the present large study, a significant proportion of our individuals with MAFLD
280	and normal LVEF had pre-HFpEF or HFpEF (about 34% for every condition).
281	Moreover, the overall rates of HF hospitalization we observed in our study were
282	nearly 5-8 times greater in the pre-HFpEF and HFpEF groups than in the non-HF
283	group, with rates of 20.8% in pre-HFpEF vs. 32.1% in HFpEF vs. 3.7% in non-HF.

285 Chronic inflammation may link MAFLD to HFpEF

- 286 Low-grade chronic inflammation is a common mechanism that may
- 287 pathophysiologically link MAFLD to the development and progression of

288 HFpEF.^{13,33,34} MAFLD, especially in its more advanced histological forms, may exert

- adverse effects mainly through the systemic release of multiple pro-inflammatory,
- 290 pro-oxidant, and pro-fibrotic mediators, thus contributing to the development of
- 291 various extrahepatic complications, including functional and structural cardiac
- abnormalities that can lead to new-onset HFpEF.³⁵⁻³⁸
- 293

294 Hs-CRP levels, pre-HFpEF or HFpEF and the future risks of HF hospitalization

295	The findings of our study highlight the importance of measuring serum hs-CRP levels
296	in patients with MAFLD and suspected CAD and represent an essential consideration
297	for hepatologists when assessing the future risk of HF hospitalization in this patient
298	population. Hepatologists may overlook hs-CRP measurements when MAFLD
299	presents with preserved LVEF and no obvious signs and symptoms of HF.
300	In our study, we found that compared to those with the lowest serum hs-CRP levels,
301	patients with increased hs-CRP levels not only had significantly higher prevalence
302	rates of pre-HFpEF and HFpEF but also had higher incidence rates of HF
303	hospitalization over a mean period of 3.2 years, irrespective of the severity of
304	coronary stenosis or different HF status at baseline. Thus, serum hs-CRP may be a
305	biomarker for predicting the future risk of HF hospitalization in patients with MAFLD.
306	The present findings also suggest that hepatologists need to pay greater attention to
307	the potential risk of HF in patients with MAFLD and normal LVEF.

308

309 Limitations

310 The current study has some important limitations. First, we conducted the research 311 retrospectively at a single academic center, which may have resulted in selection bias. 312 Second, we acknowledge that the study patients referred for elective coronary 313 angiography may have experienced referral bias, leading to an increased risk of 314 having HF among people suspected of CAD. Third, the length of follow-up was 315 relatively short. Finally, we recognize that using electronic medical records may have 316 led to an underestimation of HF hospitalization rates since these records may not have 317 captured instances where patients were admitted to hospitals outside our institution.

318

319 **Conclusions**

- 320 Among Chinese middle-aged individuals with MAFLD and suspected CAD
- 321 undergoing elective coronary angiography, there was a high prevalence of baseline
- 322 pre-HFpEF and HFpEF in subjects with MAFLD. There was an increased risk of HF
- 323 hospitalization in those with elevated hs-CRP levels.

324

325 **Funding:**

- 326 This paper was funded by grants from the National Natural Science Foundation of
- 327 China (82070588), High Level Creative Talents from Department of Public Health in
- 328 Zhejiang Province (S2032102600032) and Project of New Century 551 Talent
- 329 Nurturing in Wenzhou. GT is supported in part by grants from the School of Medicine,
- 330 University of Verona, Verona, Italy. CDB is supported in part by the Southampton
- 331 NIHR Biomedical Research Centre (NIHR203319), UK.

332

333 Authorship contribution statement:

- 334 Xiao-Dong Zhou: Conceptualization, Formal analysis, Investigation, Data curation,
- 335 Writing original draft, Visualization. Qin-Fen Chen: Conceptualization, Formal
- analysis, Investigation, Data curation, Writing original draft, Visualization.
- 337 Giovanni Targher: Investigation. Christopher D. Byrne: Investigation. Michael D.
- 338 Shapiro: Investigation. Na Tian: Investigation. Tie Xiao: Investigation. Ki-Chul
- 339 Sung: Investigation. Gregory Y. H. Lip: Investigation. Ming-Hua Zheng:
- 340 Conceptualization, Investigation, Supervision, Project administration, Funding
- 341 acquisition, Writing review & editing.

342 References

343	1.	Feng G, Valenti L, Wong V, Fouad Y, Yilmaz Y, Kim W, Sebastiani G,
344		Younossi ZM, Hernandez-Gea V, Zheng MH. Recompensation in cirrhosis:
345		unraveling the evolving natural history of nonalcoholic fatty liver disease. Nat
346		Rev Gastroenterol Hepatol. 2023:accepted in Sep 5, 2023.
347	2.	Younossi Z, Koenig A, Abdelatif D, Fazel Y, Henry L, Wymer M. Global
348		epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of
349		prevalence, incidence, and outcomes. Hepatology (Baltimore, Md).
350		2016;64:73-84. doi: 10.1002/hep.28431
351	3.	Duell PB, Welty FK, Miller M, Chait A, Hammond G, Ahmad Z, Cohen DE,
352		Horton JD, Pressman GS, Toth PP. Nonalcoholic Fatty Liver Disease and
353		Cardiovascular Risk: A Scientific Statement From the American Heart
354		Association. Arterioscler Thromb Vasc Biol. 2022;42:e168-e185. doi:
355		10.1161/atv.00000000000153
356	4.	Lazarus J, Mark H, Anstee Q, Arab J, Batterham R, Castera L, Cortez-Pinto H,
357		Crespo J, Cusi K, Dirac M, et al. Advancing the global public health agenda
358		for NAFLD: a consensus statement. Nature reviews Gastroenterology &
359		hepatology. 2022;19:60-78. doi: 10.1038/s41575-021-00523-4
360	5.	Li J, Zou B, Yeo YH, Feng Y, Xie X, Lee DH, Fujii H, Wu Y, Kam LY, Ji F, et
361		al. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in
362		Asia, 1999-2019: a systematic review and meta-analysis. Lancet Gastroenterol
363		Hepatol. 2019;4:389-398. doi: 10.1016/s2468-1253(19)30039-1

364	6.	Zhou XD, Cai J, Targher G, Byrne CD, Shapiro MD, Sung KC, Somers VK,
365		Chahal CAA, George J, Chen LL, et al. Metabolic dysfunction-associated fatty
366		liver disease and implications for cardiovascular risk and disease prevention.
367		Cardiovasc Diabetol. 2022;21:270. doi: 10.1186/s12933-022-01697-0
368	7.	Packer M. Atrial Fibrillation and Heart Failure With Preserved Ejection
369		Fraction in Patients With Nonalcoholic Fatty Liver Disease. The American
370		journal of medicine. 2020;133:170-177. doi: 10.1016/j.amjmed.2019.09.002
371	8.	Sun DQ, Targher G, Byrne CD, Wheeler DC, Wong VW, Fan JG, Tilg H, Yuan
372		WJ, Wanner C, Gao X, et al. An international Delphi consensus statement on
373		metabolic dysfunction-associated fatty liver disease and risk of chronic kidney
374		disease. Hepatobiliary Surg Nutr. 2023;12:386-403. doi:
375		10.21037/hbsn-22-421
376	9.	Mantovani A, Petracca G, Csermely A, Beatrice G, Bonapace S, Rossi A, Tilg
377		H, Byrne C, Targher G. Non-alcoholic fatty liver disease and risk of new-onset
378		heart failure: an updated meta-analysis of about 11 million individuals. Gut.
379		2022. doi: 10.1136/gutjnl-2022-327672
380	10.	Dunlay SM, Roger VL, Redfield MM. Epidemiology of heart failure with
381		preserved ejection fraction. Nat Rev Cardiol. 2017;14:591-602. doi:
382		10.1038/nrcardio.2017.65
383	11.	Sung K, Yoo T, Lee M, Byrne C, Zheng M, Targher G. Comparative
384		Associations of Nonalcoholic Fatty Liver Disease and Metabolic
385		Dysfunction-Associated Fatty Liver Disease With Coronary Artery

386	Calcification: A Cross-Sectional and Longitudina	l Cohort Study.

- 387 *Arteriosclerosis, thrombosis, and vascular biology.* 2023;43:482-491. doi:
- 388 10.1161/atvbaha.122.318661
- 389 12. AbouEzzeddine OF, Kemp BJ, Borlaug BA, Mullan BP, Behfar A, Pislaru SV,
- 390 Fudim M, Redfield MM, Chareonthaitawee P. Myocardial Energetics in Heart
- 391 Failure With Preserved Ejection Fraction. *Circulation Heart failure*.
- 392 2019;12:e006240. doi: 10.1161/circheartfailure.119.006240
- 393 13. Salah HM, Pandey A, Soloveva A, Abdelmalek MF, Diehl AM, Moylan CA,
- 394 Wegermann K, Rao VN, Hernandez AF, Tedford RJ, et al. Relationship of
- 395 Nonalcoholic Fatty Liver Disease and Heart Failure With Preserved Ejection
- 396 Fraction. *JACC Basic to translational science*. 2021;6:918-932. doi:
- 397 10.1016/j.jacbts.2021.07.010
- 398 14. Wang A, Li Z, Sun Z, Wang Y, Fu S, Zhang D, Ma X. Heart failure with
- 399 preserved ejection fraction and non-alcoholic fatty liver disease: new insights
- 400 from bioinformatics. *ESC heart failure*. 2023;10:416-431. doi:
- 401 10.1002/ehf2.14211
- 402 15. Salah HM, Pandey A, Van Spall HGC, Michos ED, McGarrah RW, Fudim M.
- 403 Meta-Analysis of Nonalcoholic Fatty Liver Disease and Incident Heart Failure.
- 404 *The American journal of cardiology*. 2022;171:180-181. doi:
- 405 10.1016/j.amjcard.2022.02.012
- 406 16. Minhas AMK, Bhopalwala HM, Dewaswala N, Salah HM, Khan MS, Shahid I,
- 407 Biegus J, Lopes RD, Pandey A, Fudim M. Association of Non-Alcoholic Fatty

- 408 Liver Disease With in-Hospital Outcomes in Primary Heart Failure
- 409 Hospitalizations With Reduced or Preserved Ejection Fraction. *Current*
- 410 *problems in cardiology*. 2023;48:101199. doi:
- 411 10.1016/j.cpcardiol.2022.101199
- 412 17. Lawler PR, Bhatt DL, Godoy LC, Lüscher TF, Bonow RO, Verma S, Ridker
- 413 PM. Targeting cardiovascular inflammation: next steps in clinical translation.
- 414 European heart journal. 2021;42:113-131. doi: 10.1093/eurheartj/ehaa099
- 415 18. Peters AE, Pandey A, Ayers C, Wegermann K, McGarrah RW, Grodin JL,
- 416 Abdelmalek MF, Bekfani T, Blumer V, Diehl AM, et al. Association of liver
- 417 fibrosis risk scores with clinical outcomes in patients with heart failure with
- 418 preserved ejection fraction: findings from TOPCAT. *ESC heart failure*.
- 419 2021;8:842-848. doi: 10.1002/ehf2.13250
- 420 19. Li Y, Zhong X, Cheng G, Zhao C, Zhang L, Hong Y, Wan Q, He R, Wang Z.
- 421 Hs-CRP and all-cause, cardiovascular, and cancer mortality risk: A

422 meta-analysis. *Atherosclerosis*. 2017;259:75-82. doi:

- 423 10.1016/j.atherosclerosis.2017.02.003
- 424 20. Gu HQ, Yang KX, Lin JX, Jing J, Zhao XQ, Wang YL, Liu LP, Meng X, Jiang
- 425 Y, Li H, et al. Association between high-sensitivity C-reactive protein,
- 426 functional disability, and stroke recurrence in patients with acute ischaemic
- 427 stroke: A mediation analysis. *EBioMedicine*. 2022;80:104054. doi:
- 428 10.1016/j.ebiom.2022.104054
- 429 21. Lee M, Lee K, Kim DW, Cho JS, Kim TS, Kwon J, Kim CJ, Park CS, Kim HY,

430 Yoo KD, et al. Relationship of Serial High-Sensitivity C-	 Reactive Protein
---	--------------------------------------

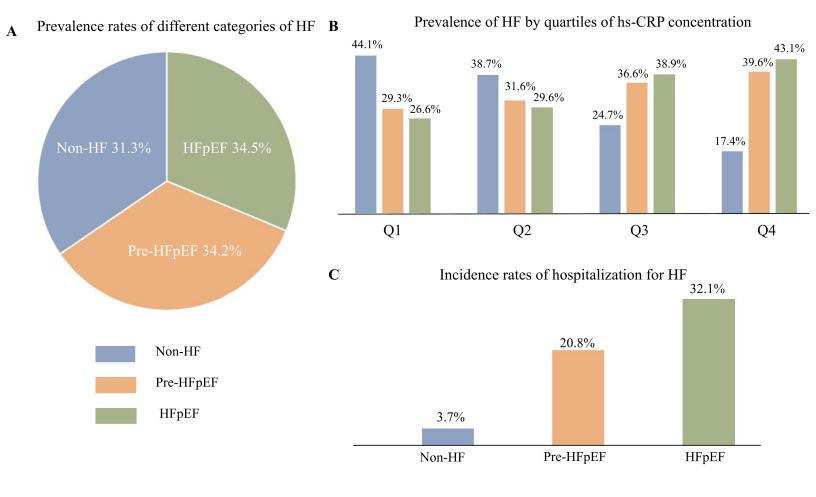
- 431 Changes to Long-term Clinical Outcomes in Stabilised Patients After
- 432 Myocardial Infarction. *The Canadian journal of cardiology*. 2022;38:92-101.
- 433 doi: 10.1016/j.cjca.2021.10.007
- 434 22. Eslam M, Alkhouri N, Vajro P, Baumann U, Weiss R, Socha P, Marcus C, Lee
- 435 WS, Kelly D, Porta G, et al. Defining paediatric metabolic
- 436 (dysfunction)-associated fatty liver disease: an international expert consensus
- 437 statement. *The lancet Gastroenterology & hepatology*. 2021;6:864-873. doi:
- 438 10.1016/s2468-1253(21)00183-7
- 439 23. Eslam M, Newsome P, Sarin S, Anstee Q, Targher G, Romero-Gomez M,
- 440 Zelber-Sagi S, Wai-Sun Wong V, Dufour J, Schattenberg J, et al. A new
- 441 definition for metabolic dysfunction-associated fatty liver disease: An
- 442 international expert consensus statement. *Journal of hepatology*.
- 443 2020;73:202-209. doi: 10.1016/j.jhep.2020.03.039
- 444 24. Kim BK, Kim DY, Park JY, Ahn SH, Chon CY, Kim JK, Paik YH, Lee KS,
- 445 Park YN, Han KH. Validation of FIB-4 and comparison with other simple
- 446 noninvasive indices for predicting liver fibrosis and cirrhosis in hepatitis B
- 447 virus-infected patients. *Liver Int.* 2010;30:546-553. doi:
- 448 10.1111/j.1478-3231.2009.02192.x
- 449 25. Ledwidge M, Dodd JD, Ryan F, Sweeney C, McDonald K, Fox R, Shorten E,
- 450 Zhou S, Watson C, Gallagher J, et al. Effect of Sacubitril/Valsartan vs
- 451 Valsartan on Left Atrial Volume in Patients With Pre-Heart Failure With

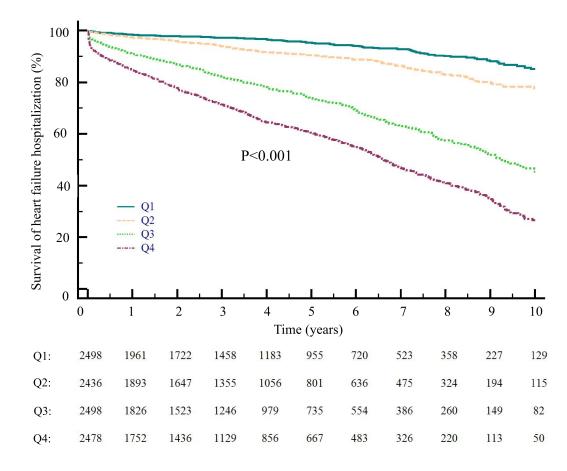
452		Preserved Ejection Fraction: The PARABLE Randomized Clinical Trial.
453		JAMA cardiology. 2023;8:366-375. doi: 10.1001/jamacardio.2023.0065
454	26.	Bayes-Genis A, Pascual-Figal D, Núñez J. The pre-HFpEF stage: a new entity
455		that requires proper phenotyping for better management. Eur J Prev Cardiol.
456		2021;28:935-936. doi: 10.1177/2047487320902326
457	27.	Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS,
458		Braun LT, de Ferranti S, Faiella-Tommasino J, Forman DE, et al. 2018
459		AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PC
460		NA Guideline on the Management of Blood Cholesterol: A Report of the
461		American College of Cardiology/American Heart Association Task Force on
462		Clinical Practice Guidelines. Circulation. 2019;139:e1082-e1143. doi:
463		10.1161/cir.000000000000625
464	28.	Zhou X, Targher G, Byrne C, Somers V, Kim S, Chahal C, Wong V, Cai J,
465		Shapiro M, Eslam M, et al. An international multidisciplinary consensus
466		statement on MAFLD and the risk of CVD. Hepatology international.
467		2023:1-19. doi: 10.1007/s12072-023-10543-8
468	29.	VanWagner LB, Wilcox JE, Colangelo LA, Lloyd-Jones DM, Carr JJ, Lima JA,
469		Lewis CE, Rinella ME, Shah SJ. Association of nonalcoholic fatty liver
470		disease with subclinical myocardial remodeling and dysfunction: A
471		population-based study. Hepatology (Baltimore, Md). 2015;62:773-783. doi:
472		10.1002/hep.27869
473	30.	Packer M. Atrial Fibrillation and Heart Failure With Preserved Ejection

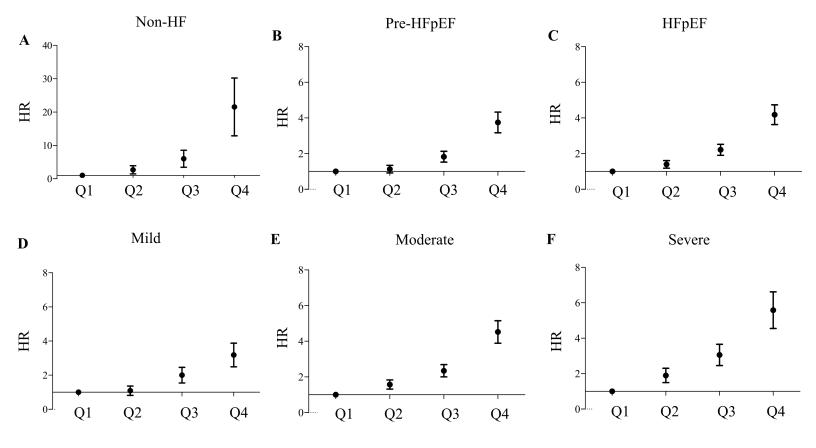
474		Fraction in Patients With Nonalcoholic Fatty Liver Disease. The American
475		journal of medicine. 2020;133:170-177. doi: 10.1016/j.amjmed.2019.09.002
476	31.	Fudim M, Zhong L, Patel K, Khera R, Abdelmalek M, Diehl A, McGarrah R,
477		Molinger J, Moylan C, Rao V, et al. Nonalcoholic Fatty Liver Disease and
478		Risk of Heart Failure Among Medicare Beneficiaries. Journal of the American
479		Heart Association. 2021;10:e021654. doi: 10.1161/jaha.121.021654
480	32.	Hage C, Löfgren L, Michopoulos F, Nilsson R, Davidsson P, Kumar C,
481		Ekström M, Eriksson MJ, Lyngå P, Persson B, et al. Metabolomic Profile in
482		HFpEF vs HFrEF Patients. Journal of cardiac failure. 2020;26:1050-1059. doi:
483		10.1016/j.cardfail.2020.07.010
484	33.	Mantovani A, Byrne CD, Benfari G, Bonapace S, Simon TG, Targher G. Risk
485		of Heart Failure in Patients With Nonalcoholic Fatty Liver Disease:
486		JACC Review Topic of the Week. J Am Coll Cardiol. 2022;79:180-191. doi:
487		10.1016/j.jacc.2021.11.007
488	34.	Lim GB. Neuromodulation reduces inflammation in HFpEF. Nature reviews
489		Cardiology. 2022;19:147. doi: 10.1038/s41569-022-00672-2
490	35.	Everett BM, Cornel JH, Lainscak M, Anker SD, Abbate A, Thuren T, Libby P,
491		Glynn RJ, Ridker PM. Anti-Inflammatory Therapy With Canakinumab for the
492		Prevention of Hospitalization for Heart Failure. Circulation.
493		2019;139:1289-1299. doi: 10.1161/circulationaha.118.038010
494	36.	Byrne C, Targher G. Non-alcoholic fatty liver disease-related risk of
495		cardiovascular disease and other cardiac complications. Diabetes, obesity &

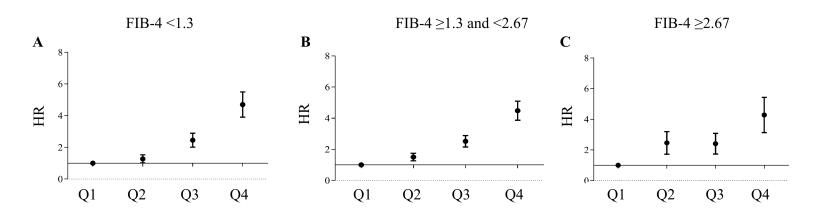
496 *metabolism*. 2022:28-43. doi: 10.1111/dom.14484

- 497 37. Zhou Y, Zhou X, Wu S, Fan D, Van Poucke S, Chen Y, Fu S, Zheng M.
- 498 Nonalcoholic fatty liver disease contributes to subclinical atherosclerosis: A
- 499 systematic review and meta-analysis. *Hepatology communications*.
- 500 2018;2:376-392. doi: 10.1002/hep4.1155
- 501 38. Franssen C, Chen S, Unger A, Korkmaz HI, De Keulenaer GW, Tschöpe C,
- 502 Leite-Moreira AF, Musters R, Niessen HW, Linke WA, et al. Myocardial
- 503 Microvascular Inflammatory Endothelial Activation in Heart Failure With
- 504 Preserved Ejection Fraction. *JACC Heart failure*. 2016;4:312-324. doi:
- 505 10.1016/j.jchf.2015.10.007
- 506


509	Table 1. Baseline Clinical and Biochemical Characteristics of Patients with MAFLD
510	and Suspected Coronary Artery Disease Stratified by Baseline Heart Failure Status.
511	Table 2. Associations between hs-CRP Concentration Quartiles and the Risk of Heart
512	Failure Hospitalization in Patients with Different Heart Failure Status at baseline
513	Supplementary Table 1. Associations between hs-CRP Concentration Quartiles and
514	the Risk of Heart Failure Hospitalization in Patients with Different Severity of
515	Coronary Stenosis at baseline.
516	Supplementary Table 2. Associations between hs-CRP Concentration Quartiles and
517	the Risk of Heart Failure in Patients with MAFLD and Different Categories of


518 MAFLD-related Score.


520 Figure Legends


521	Figure 1. Prevalence rates of different categories of HF (i.e., non-HF, preHFpEF, and
522	HFpEF) in the whole cohort (A) and patients stratified by quartiles (Q1 to Q4) of
523	serum hs-CRP concentrations (B). Incidence rates of hospitalization for HF according
524	to different HF categories at baseline (C).
525	Figure 2. Kaplan-Meier event-free survival curve of the risk for HF hospitalizations
526	in the whole cohort of patients stratified by serum hs-CRP quartiles. P-values were
527	tested by log-rank test. Under the x-axis are reported the number of subjects in each
528	quartile at each time.
529	
530	Figure 3. Hazard ratios (HR) and 95% confidence intervals for HF hospitalization in
531	patients stratified by different status of HF and severity of coronary stenosis at
532	baseline: (A) Non-HF; (B) Pre-HFpEF; (C) HFpEF; (D) Mild stenosis; (E) Moderate
532 533	baseline: (A) Non-HF; (B) Pre-HFpEF; (C) HFpEF; (D) Mild stenosis; (E) Moderate stenosis; and (F) Severe stenosis.
533	
533 534	stenosis; and (F) Severe stenosis.
533 534 535	stenosis; and (F) Severe stenosis. Figure 4. Hazard ratios (HR) and 95% confidence intervals for HF hospitalization in

539 Supplementary Figure 1. Flowchart of the study design.

	All	Non-HF	Pre-HFpEF	HFpEF	P-value	
Subjects, n	10019	3133	3427	3459		
Age, years	63.3±10.6	60.0 ± 9.6	63.9±10.7	65.8±10.7	< 0.001	
Male sex, n (%)	6162 (61.5%)	2017 (64.4%)	2048 (59.8%)	2097 (60.6%)	< 0.001	
BMI, kg/m ²	26.4±3.1	26.3±2.8	26.4±3.1	26.6±3.3	0.014	
Current smokers, n (%)	4182 (41.7%)	1304 (41.6%)	1452 (42.4%)	1426 (41.2%)	0.621	
Current drinking, n (%)	3270 (32.6%)	1065 (34%)	1112 (32.4%)	1093 (31.6%)	0.114	
Follow-up period, years	3.2 (0.9-5.9)	3.4 (1.2-5.9)	3.2 (1.0-6.0)	2.8 (0.7-5.7)	0.084	
Comorbidities, n (%)						
Hypertension	7790 (77.8%)	2328 (74.3%)	2720 (79.4%)	2742 (79.3%)	< 0.001	
Diabetes mellitus	4252 (42.4%)	1148 (36.6%)	1523 (44.4%)	1581 (45.7%)	< 0.001	
Dyslipidemia	6620 (66.1%)	2176 (69.5%)	2282 (66.6%)	2162 (62.5%)	< 0.001	
Atrial fibrillation	964 (9.6%)	175 (5.6%)	377 (11.0%)	412 (11.9%)	< 0.001	
Previous stroke	972 (9.7%)	237 (7.6%)	336 (9.8%)	399 (11.5%)	< 0.001	
Previous myocardial infarction	1828 (18.2%)	138 (4.4%)	834 (24.3%)	856 (24.7%)	< 0.001	
Chronic kidney disease	993 (9.9%)	130 (4.1%)	395 (11.5%)	468 (13.5%)	< 0.001	
Medications at admission, n (%)						
Loop diuretics	1838 (18.3%)	149 (4.8%)	715 (20.9%)	974 (28.2%)	< 0.001	
Spironolactone	1399 (14.0%)	143 (4.6%)	480 (14.0%)	776 (22.4%)	< 0.001	
ACEI/ARB/ARNIs	6303 (62.9%)	1761 (56.2%)	2239 (65.3%)	2303 (66.6%)	< 0.001	
Beta-blockers	6580 (65.7%)	1805 (57.6%)	2352 (68.6%)	2423 (70.0%)	< 0.001	
SGLT2-inhibitors	116 (1.2%)	25 (0.8%)	48 (1.4%)	43 (1.2%)	<0.001 <0.001 0.063	
MAFLD-related scores						

Table 1. Baseline Clinical and Biochemical Characteristics of Patients with MAFLD and Suspected Coronary Artery Disease Stratified by Baseline HeartFailure Status

FIB-4 index	1.9±2.4	1.5±2.5	2.0±2.2	2.1±2.5	< 0.001
Hepatic steatosis index (HSI)	37.0±5.3	37.5±4.9	36.8±5.5	36.8±5.3	< 0.001
Severity of coronary stenosis					< 0.001
Mild CAD (<50%)	1916 (19.1%)	808 (25.8%)	516 (15.1%)	592 (17.1%)	
Medium CAD (50-70%)	4412 (44.0%)	1493 (47.7%)	1435 (41.9%)	1484 (42.9%)	
Severe CAD (>70%)	3691 (36.8%)	832 (26.6%)	1476 (43.1%)	1383 (40.0%)	
Echocardiographic parameters					
LVEF, %	65.3±6.9	$67.0{\pm}6.0$	65.0±7.1	64.1±7.2	< 0.001
LAD, cm	41.6±6.7	40.5±5.2	41.9±6.9	42.5±7.4	< 0.001
LVDD, cm	48.6 ± 7.0	48.4±5.7	48.5±7.4	49.0±7.7	0.002
LVSD, cm	30.8 ± 5.8	30.3±4.6	30.8±5.9	31.3±6.5	< 0.001
PAP, mmHg	29.3±8.0	27.7±6.3	29.4±8.1	30.5±9.1	< 0.001
Laboratory values					
hs-CRP, mg/L	3.4 (1.6-8.3)	2.7 (1.1-5.0)	4.5 (1.9-10.0)	5.0 (2.1-10.1)	< 0.001
quartile 1 (≤3.26)	2549 (25.4%)	1123 (35.8%)	747 (21.8%)	679 (19.6%)	< 0.001
quartile 2 (3.26-7.00)	2463 (24.6%)	954 (30.5%)	779 (22.7%)	730 (21.1%)	
quartile 3 (7.01-36.9)	2515 (25.1%)	622 (19.9%)	914 (26.7%)	979 (28.3%)	
quartile 4 (>36.9)	2492 (24.9%)	434 (13.9%)	987 (28.8%)	1071 (31.0%)	
NT-proBNP, ng/L	146.0 (56.4-557.0)	46.1 (26.0-74.0)	189.0 (76.2-638.0)	334.0 (128.0-1276.0)	< 0.001
hs-cTnI, µg/L	0.0 (0.0-7.0)	0.0 (0.0-0.0)	0.0 (0.0-5.2)	3.0 (0.0-12.5)	< 0.001
eGFR, mL/min \times 1.73 m ²	90.5 (73.95-102.2)	96.4 (84.2-106.8)	87.9 (70.9-100.1)	85.8 (66.2-98.5)	< 0.001
Platelet count, 10 ⁹ /L	220±67	224±62	219±70	216±67	< 0.001
AST/ALT ratio	1.11 ± 0.47	1.20 ± 0.45	1.07 ± 0.44	1.06 ± 0.49	< 0.001
Albumin, g/dL	40.4 ± 8.5	41.7±8.4	39.8±9.3	39.8±7.8	< 0.001
HbA1c, %	7.0±2.2	6.7±1.4	7.0±1.6	7.1±3.1	< 0.001

Data are expressed as means \pm SD, medians (interquartile ranges, IQR), or percentages.

Abbreviations: ACEi: angiotensin converting enzyme inhibitor; ARBs: angiotensin II receptor blockers; ARNI: angiotensin receptor neprilysin inhibitor; BMI, body mass index; CAD, coronary artery disease; CI, confidence interval; HbA1c: glycated haemoglobin; MAFLD, metabolic dysfunction-associated fatty liver disease; hs-CRP, high-sensitivity C-reactive protein; hs-cTnI, high-sensitivity cardiac troponin I; NT-proBNP, N-terminal pro-brain natriuretic peptide; eGFR, estimated glomerular filtration rate; AST, alanine aminotransferase; AST, aspartate aminotransferase; LVEF, left ventricular ejection fraction; LAD, left atrial diameter; LVDD, left ventricular diastolic dysfunction; LVSD, left ventricular end-systolic dimension; PAP, pulmonary arterial pressure.

Groups	hs-CRP	Events, n	Model 1	Р	Model 2	Р	Model 3	Р
	quartile	(%)	Hazard ratio (95%		Hazard ratio (95%		Hazard ratio (95%	
	CI)			CI)			CI)	
All subjects	Q1 (N=2506)	154 (6.1%)	Ref.		Ref.		Ref.	
	Q2 (N=2520)	249 (9.9%)	1.546 (1.265-1.891)	< 0.001	1.488 (1.217-1.820)	< 0.001	1.487 (1.216-1.818)	< 0.001
	Q3 (N=2493)	492 (19.7%)	2.966 (2.475-3.554)	< 0.001	2.591 (2.161-3.108)	< 0.001	2.411 (2.010-2.893)	< 0.001
	Q4 (N=2500)	1047 (41.9%)	6.937 (5.857-8.215)	< 0.001	5.544 (4.672-6.579)	< 0.001	4.421 (3.720-5.254)	< 0.001
Non-HF	Q1 (N=1244)	8 (0.6%)	Ref.		Ref.		Ref.	
	Q2 (N=872)	14 (1.6%)	2.22 (0.931-5.291)	0.072	2.203 (0.924-5.253)	0.075	2.110 (0.883-5.040)	0.093
	Q3 (N=601)	26 (4.3%)	5.426 (2.456-11.988)	< 0.001	5.351 (2.419-11.836)	< 0.001	4.910 (2.216-10.883)	< 0.001
	Q4 (N=416)	69 (16.6%)	21.697 (10.434-45.117)	< 0.001	20.888 (9.978-43.726)	< 0.001	18.065 (8.589-37.998)	< 0.001
Pre-HFpEF	Q1 (N=655)	62 (9.5%)	Ref.		Ref.		Ref.	
	Q2 (N=833)	86 (10.3%)	1.047 (0.755-1.451)	0.783	1.091 (0.787-1.512)	0.603	1.171 (0.843-1.625)	0.346
	Q3 (N=954)	186 (19.5%)	1.911 (1.433-2.547)	< 0.001	1.777 (1.332-2.370)	< 0.001	1.734 (1.298-2.317)	< 0.001
	Q4 (N=985)	380 (38.6%)	4.083 (3.121-5.341)	< 0.001	3.663 (2.797-4.798)	< 0.001	3.179 (2.420-4.175)	< 0.001
HFpEF	Q1 (N=607)	84 (13.8%)	Ref.		Ref.		Ref.	
	Q2 (N=815)	123 (18.3%)	1.389 (1.063-1.815)	0.016	1.364 (1.044-1.783)	0.023	1.373 (1.050-1.795)	0.021
	Q3 (N=938)	369 (29.9%)	2.328 (1.824-2.972)	< 0.001	2.170 (1.699-2.772)	< 0.001	2.120 (1.658-2.712)	< 0.001
	Q4 (N=1099)	598 (54.4%)	4.698 (3.737-5.905)	< 0.001	4.108 (3.262-5.174)	< 0.001	3.502 (2.776-4.417)	< 0.001

Serum hs-CRP quartiles were defined as follows: Q1: \leq 3.26 mg/L; Q2: 3.26-7.00 mg/L; Q3: 7.01-36.9 mg/L; and Q4: >36.9 mg/L.

Cox regression Model 1: unadjusted;

Cox regression Model 2: adjusted for age and sex;

Cox regression Model 3: further adjusted for smoking, alcohol intake, BMI, hypertension, diabetes, dyslipidemia, atrial fibrillation, previous stroke, previous myocardial infarction, chronic kidney disease, and current use of loop diuretics, spironolactone, ACEI/ARB/ARNIs or beta-blockers.

Abbreviations: ACEi: angiotensin converting enzyme inhibitor; ARBs: angiotensin II receptor blockers; ARNI: angiotensin receptor neprilysin inhibitor; BMI, body

mass index; hs-CRP, high-sensitivity C-reactive protein.