Authors:

Apurba Chakrabarti (University of Michigan) John Giudicessi (Mayo Clinic) Fatima Ezzeddine (Mayo Clinic) Francisca Delling (University of California-San Francisco) Shalini Dixit (University of California, San Francisco) Yoojin Lee (University of California, San Francisco) Daniele Muser (Hospital of the University of Pennsylvania) Silvia Magnani (University Hospital) Aniek van Wijngaarden (Leiden University Medical Center) Nina Aimone Marsan (Leiden University Medical Centre) Marc Miller (Icahn School of Medicine at Mount Sinai) Jonathan Gandhi (Icahn School of Medicine at Mount Sinai) Maria Trivieri (Icahn School of Medicine at Mount Sinai) Jonaz Font (Caen-Normandy University hospital) Raphael Martins (CHU Rennes) James McCaffrey (The George Washington University School of Medicine & Health Sciences) Pasquale Santangeli (Cleveland Clinic) Francis Marchlinski (Hospital of the University of Pennsylvania) Himal Chapagain (UPMC) Don Mathew (University of Pittsburgh Medical Center(UPMC)) Krishna Kancharla (University of Pittsburgh) Faisal Syed (University of North Carolina, Chapel Hill) Ahad Abid (University of North Carolina) lukasz cerbin (University of Colorado) Wendy Tzou (University of Colorado Anschutz Medical Campus) lohit garg (University of Colorado School of Medicine) Domenico Della Rocca (St. David's Medical Center, Austin) Andrea Natale (Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX 78705, USA.) Sanghamitra Mohanty (Texas Cardiac Arrhythmia Institute, Austin, TX) Seth Sheldon (University of Kansas Medical Center) Ling Kuo (Taipei Veterans General Hospital) Kristina Haugaa (Oslo University Hospital, Rikshospitalet) Eivind Aabel (Department of Cardiology, Oslo University Hospital) Andres Enriquez (Queen's University) Shingo Maeda (AOI Universal Hospital) Amrish Deshmukh (University of Michigan) Michael Ghannam (University of Michigan) Frank Bogun (University of Michigan) Michael Ackerman (Mayo Clinic) Jackson Liang (University of Michigan)

Risk Factors for Sudden Cardiac Arrest and Ventricular Arrhythmias in Arrhythmogenic 1 2 **Mitral Valve Prolapse Syndrome**

- 3
- 4 Apurba Chakrabarti MD*¹, John R. Giudicessi MD, PhD*², Fatima M. Ezzeddine MD², 5
- Francesca N. Delling MD, MPH³, Shalini Dixit MD³, Yoo Jin Lee MD³, Daniele Muser MD⁴, 6
- 7 Silvia Magnani MD⁵, Aniek Van Wijngaarden MD⁶, Nina Ajmone Marsan MD, PhD⁶, Marc A.
- Miller MD⁷, Jonathan Gandhi MD⁷, Maria G. Trivieri MD, PhD⁷, Jonaz Font MD⁸, Raphael 8
- Martins MD, PhD⁹, James A. McCaffrey MD¹⁰, Pasquale Santangeli MD, PhD¹¹, Francis E. Marchlinski MD¹⁰, Himal Chapagain MD¹², Don Mathew MD¹², Krishna Kancharla MBBS¹², 9
- 10
- Faisal F. Syed MBChB¹³, Ahad Abid MD¹³, Lukasz Cerbin MD¹⁴, Wendy S. Tzou MD¹⁴, Lohit 11
- Garg MBBS¹⁴, Domenico G. Della Rocca MD, PhD¹⁵, Andrea Natale MD¹⁵, Sanghamitra 12
- Mohanty MD¹⁵, Seth H. Sheldon MD¹⁶, Ling Kuo MD¹⁷, Kristina H. Haugaa MD, PhD¹⁸, Eivind 13
- W. Aabel MD, PhD¹⁸, Andres Enriquez MD¹⁹, Shingo Maeda MD, PhD²⁰, Amrish Deshmukh 14
- MD¹, Michael Ghannam MD¹, Frank M. Bogun MD¹, Michael J. Ackerman MD, PhD^{**2}, 15
- 16 Jackson J. Liang DO^{**1}
- 17
- 1. Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, United 18 19 States.
- 20 2. Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States.
- 21 3. Division of Cardiology, University of California San Francisco, San Francisco, CA, 22 United States.
- 23 4. Cardiothoracic Department, University of Udine, Udine, Italy.
- 5. Cardiology Department and Intensive Care Unit, San Paolo Hospital, Università degli 24 Studi di Milano, Milan, Italy. 25
- 26 6. Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands.
- 27 7. Helmsley Electrophysiology Center, Mount Sinai School of Medicine, New York, NY, United States. 28
- 29 8. Department of Cardiology, University Hospital of Caen, Caen, France.
- 9. Department of Cardiology, Centre Hospitalier Universitaire de Rennes, Rennes, France. 30
- 10. Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, 31 Philadelphia, PA, United States. 32
- 11. Department of Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, OH, 33 34 United States.
- 12. Department of Cardiovascular Diseases, University of Pittsburgh, Pittsburgh, PA, United 35 36 States.
- 37 13. Division of Cardiology, University of North Carolina, Chapel Hill, Chapel Hill, NC, 38 United States
- 39 14. Division of Cardiology, University of Colorado Denver, Aurora, CO, United States.
- 15. Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX, United 40 41 States.
- 42 16. Department of Cardiovascular Medicine, University of Kansas School of Medicine, Kansas City, KS, United States. 43
- 17. Department of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan. 44
- 18. ProCardio Center for Research Based Innovation, Oslo University Hospital, 45 Rikshospitalet, Oslo, Norway. 46

47	19. Division of Cardiology, Queens University, Kingston, Ontario, Canada.
48	20. Arrhythmia Advanced Therapy Center, AOI Universal Hospital, Kawasaki, Japan.
49	
50	*Co-equal first authors
51	**Co-equal last authors
52	-
53	Short title: Ventricular Arrhythmias in Mitral Valve Prolapse
54	
55	Funding: None
56	Disclosures: No relevant relationships with industry
57	
58	Address for Correspondence:
59	Jackson J. Liang, DO
60	Internal Medicine-Cardiovascular
61	2139 Frankel Cardiovascular Center
62	1425 E. Ann Street, Ann Arbor MI 48109-5853
63	Liangjac@med.umich.edu
64	
65	Total Word Count: 3593
66	
67	
68	
69	
70	
71	
72	
73	
74	
75	
76	
77	
78	
79	
80	
81	
82	
83	
84	
85	
86	
87	
88	
89	
90	
91	
92	

93 94

95 ABSTRACT

96

Background: Patients with the arrhythmogenic mitral valve prolapse syndrome (AMVPS) are at
increased risk for life-threatening ventricular arrhythmias (VAs), but studies have been limited
by small sample sizes. We sought to assemble an international AMVPS registry to delineate
clinical, imaging, treatment characteristics, and risk factors for sudden cardiac arrest (SCA).

101 Methods: We retrospectively identified two groups of subjects with AMVPS: 1) the MVP-SCA

group with SCA, sustained ventricular tachycardia (VT), and ventricular fibrillation (VF); and 2)
 the MVP-PVC group with significant premature ventricular complexes (PVCs) only.
 Deidentified data was abstracted locally and combined centrally.

105 Results: We included 217 subjects with AMVPS: 148 (68%) had SCA or VT/VF (MVP-SCA

- 106 group) and 69 (32%) had PVCs only (MVP-PVC group). Phenotypically, both groups were 107 similar [mean age 44.2 \pm 16.7 years, 66% female, 76% with bileaflet prolapse, 55% with mitral 108 annular disjunction (MAD)]. Syncope was more common in the MVP-SCA group than the 109 MVP-PVC group (47% vs 22%, p=0.001) as were anterolateral T-wave inversions (TWIs, 22% 110 vs 7%, p=0.011). Prior mitral valve surgery was less common in the MVP-SCA group (6% vs 111 20%, p=0.002). These differences remained significant after multivariable adjustment. An
- electrophysiology (EP) study was negative in 15/45 (33%) of the MVP-SCA subjects.

113 **Conclusions:** In this international registry, AMVPS subjects were young, female, and had 114 bileaflet prolapse with MAD. A history of syncope and anterolateral TWIs were associated with 115 SCA. Prior mitral valve surgery was less common in SCA subjects. A negative EP study had 116 limited negative predictive value in high-risk patients.

117

118 Keywords: arrhythmogenic mitral valve prolapse syndrome, sudden cardiac arrest, premature
 119 ventricular contraction, mitral annular disjunction, electrophysiology study, T wave inversion

120 121

Abbreviations: AMVPS-arrhythmogenic mitral valve prolapse syndrome, CI: confidence
 interval, CMR-cardiac magnetic resonance imaging, DE-delayed enhancement, EF-ejection
 fraction, EPS-electrophysiology study, ICD-implantable cardiac defibrillator, LV-left ventricle,
 MAD-mitral annular disjunction, MV-mitral valve, MVP-mitral valve prolapse, OR-odds ratio,
 PVC-premature ventricular contraction, RV-right ventricle, SCA-sudden cardiac arrest, SD standard deviation, TWI-T wave inversion, VA-ventricular arrhythmias, VF-ventricular
 fibrillation, VT-ventricular tachycardia

- 129
- 130
- 131
- 132
- 133

134 INTRODUCTION

Mitral valve prolapse (MVP) is a common cause of primary mitral regurgitation worldwide,
affecting 1-3% of the general population.¹⁻³ While the majority of patients with MVP have

137 benign outcomes, a subset of patients may experience valvular or arrhythmic complications.

- 138 Valvular complications include endocarditis, thromboembolism, and stroke as well as valvular
- 139 heart failure and need for mitral valve surgery.^{4–6}

140

141 Recently, increasing attention has been placed on arrhythmic complications which include

sudden cardiac arrest (SCA), ventricular tachycardia (VT), ventricular fibrillation (VF), and

143 symptomatic premature ventricular complexes (PVCs). MVP patients with these arrhythmias and

144 no other plausible alternative etiologies have been labeled with the arrhythmogenic MVP

syndrome (AMVPS). Community dwelling patients with MVP experience SCA at rates as low as

146 0.14 per 100 patient-years.³ However, rates may be 0.4% or even higher in those referred to

147 tertiary centers or with risk factors.^{4,6} Given the relatively high prevalence of MVP, even a low

148 incidence of SCA and VT/VF translates into a significant public health concern. Indeed, autopsy

studies of younger patients with otherwise unexplained SCA have shown prevalence of MVP

150 between 2-11%.^{4,8,9}

151

Multiple prior studies have sought to identify risk factors to discriminate those at high risk of arrhythmic complications from those with a more benign outcome. These risk factors are electrocardiographic, cardiac monitoring, imaging abnormalities such as inferolateral T-wave inversions (TWIs), non-sustained VT and complex PVCs,^{3,7,9,10} thickened bileaflet prolapse with Barlow's valve morphology and severe mitral regurgitation,^{10–12} and papillary muscle and left

ventricular (LV) delayed enhancement on cardiac magnetic resonance imaging (CMR).^{7,13}
Recent research has shown that abnormal separation of the mitral annulus from the basal left
ventricular myocardium, termed mitral annular disjunction (MAD), is associated with SCA and
VT/VF.^{14–18}

161

To date, most studies of patients with AMVPS have utilized small sample sizes from single centers or populations with a small proportion of patients with SCA. These limitations have made it difficult to characterize the general AMVPS population at highest risk for SCA. We therefore sought to create an international registry of patients with MVP and SCA, VT or VF, or significant PVCs and to define the clinical, imaging, and treatment characteristics as well as risk factors for SCA.

168

169 **METHODS**

170 *Patient population*

171 Patients with MVP and VAs were retrospectively identified at 20 international centers. MVP was 172 defined according to the standard definition, with ≥ 2 millimeters of displacement of the mitral valve leaflets into the left atrium during systole by transthoracic cardiac imaging.¹⁹ Ventricular 173 174 arrhythmias (VAs) included unexplained SCA, or documented sustained monomorphic VT, polymorphic VT, VF, and significant PVCs. Significant PVCs were defined as symptomatic 175 176 PVCs, pleomorphic or bigeminal PVCs, PVCs with a >5% burden, or PVCs requiring anti-177 arrhythmic drug or catheter ablation therapy. The index enrollment event was the time of SCA or 178 VT/VF in those with sustained VA or SCA. In patients enrolled for significant PVCs, the time of 179 first evaluation for PVCs at the participating institution was considered the enrollment event.

180	VAs were attributed to MVP after evaluation excluding other known causes. Patients with
181	cardiomyopathy unrelated to MVP, arrhythmic syndromes, channelopathies, and prior
182	myocardial infarction were excluded. The study was approved by the Institutional Review Board
183	of the coordinating center (University of Michigan).
184	
185	Data abstraction
186	De-identified data was collected retrospectively at the individual institutional level into a
187	standardized worksheet and deidentified data were transmitted to a central database for analysis.
188	Data abstracted included baseline demographics, clinical comorbidities and medications,
189	presence of cardiac implantable electronic devices, electrocardiography, echocardiography,
190	ambulatory cardiac monitoring, and CMR. We also examined findings from invasive testing and
191	treatment when performed, including electrophysiology study, catheter ablation procedures, and
192	cardiac surgery. Testing procedures were done according to local institutional protocols and were
193	not standardized across the cohort. Not all subjects had all types of imaging or testing done.
194	
195	For analysis, inferolateral T-wave inversions (TWI) were defined as T-wave inversion in at least
196	two of leads II, III, aVF, I and aVL. Anterolateral TWI was defined as inversions in leads V5 or
197	V6. A Barlow morphology valve was defined as those with bileaflet prolapse with leaflets at
198	least 5mm in thickness. The grading of mitral regurgitation was determined based on local
199	institutional practice. Mitral annular disjunction (MAD) was defined as measurable systolic
200	separation of the mitral valve leaflet insertion point from the basal left ventricular myocardium
201	with excursion into the left atrium.

203	The patient population was stratified based on the presence of SCA or sustained VT/VF (MVP-
204	SCA) versus those with significant PVCs without SCA or VT/VF (MVP-PVC).

205

206 Statistical analysis

207 Continuous variables were reported as mean \pm standard deviation and were compared by

208 Student's t-test. Categorical variables were reported as percentages and compared using chi-

square tests. If any analysis group included fewer than 25 patients and failed a Shapiro-Wilks

210 normality test, we utilized non-parametric tests including a Mann-Whitney test for continuous

211 variables and the Fisher's exact test for categorical variables.

212

213 We also performed adjustment with multivariable logistic regression. We included variables that 214 had significant differences (p<0.05) between the MVP-SCA and MVP-PVC groups. We only 215 included variables where the difference could not be explained by inclusion criteria (e.g. PVC 216 group including patients with palpitations or higher PVC burden). Sensitivity analyses using 217 logistic regression models using plausibly significant characteristics that were not statistically 218 different were also done. These models included the following variables: age, sex, bileaflet 219 prolapse, MAD, left ventricular ejection fraction by echocardiography, inferolateral TWI as well 220 as prior beta blocker prescription, history of syncope, prior mitral valve surgery, and 221 anterolateral TWI. Given the possibility of interaction between age and mitral valve surgery (*i.e.* 222 the probability of SCA event and mitral valve surgery might be different if the subject required 223 mitral valve surgery at age 30 or age 70 years), models were created with and without mitral 224 valve surgery and age interaction term. Of note, CMR results were not used in multivariable

adjustment due to the significantly smaller sample size of patients who completed C

- 226 Statistical analysis was completed with STATA version 14.2 (College Station, Texas, USA).
- 227

228 RESULTS

- 229 Demographics
- 230 We identified 217 subjects across 20 institutions (Table 1). A total of 148 (68.2%) subjects had
- 231 prior SCA, sustained VT, or VF and these patients comprised the MVP-SCA group. Specifically,
- 232 96 subjects (44.2%) had SCA, 43 subjects (19.8%) had monomorphic VT, 23 subjects (10.6%)
- had polymorphic VT, 75 subjects (34.6%) had VF, and 8 subjects (3.7%) had electrical storm
- 234 (Figure 1). Some subjects had more than one VA. Sixty-nine subjects (31.8%) had significant
- 235 PVCs without SCA or VT/VF, and these patients comprised the MVP-PVC group. Overall, most
- subjects were young $(44.2 \pm 16.7 \text{ years})$ and female gender (n=144, 66.4%) with no differences
- between the groups.
- 238
- 239 Background therapy
- 240 Prior mitral valve repair/replacement was significantly less common in the MVP-SCA group
- 241 (n=8, 5.5%) compared to the MVP-PVC group (n=13, 19.7%, p=0.002, Table 1). Beta blockers
- 242 were less commonly prescribed in the MVP-SCA group compared to the MVP-PVC group
- 243 [n=51 (35.7%) versus n=35 (51.5%), respectively, p=0.029]. There was no difference in
- 244 prescription of anti-arrhythmic drug therapy between MVP-SCA and MVP-PVC groups.

245

246 Mitral valve apparatus

247	Combined data from echocardiography and cardiac magnetic resonance imaging (CMR) showed
248	that out of 204 patients with data on prolapsing leaflets, bileaflet prolapse was present in most
249	patients in both groups [MVP-SCA n=103 (73.1%), MVP-PVC n=53 (84.1%), p=0.108]. A
250	smaller subset of 152/217 (70.0%) patients had data on mitral valve leaflet thickness and
251	morphology. Of those 152 subjects, 99 (65.1%) had a Barlow morphology with no differences
252	between groups [MVP-SCA n=73 (67.6%), MVP-PVC n=26 (59.1%), p=0.351]. Less than half
253	of patients had moderate or worse mitral valve regurgitation (Table 2). MAD (from either
254	echocardiography or CMR) was present in a little over half patients [MVP-SCA n=82 (55.4%),
255	MVP-PVC n=38 (55.1%), p=0.963, Figure 2B]. There were no statistically significant
256	differences between the MVP-SCA and MVP-PVC groups for mitral valve characteristics.
257	
258	Symptoms and the AMVPS
259	Historical data about the presence of symptoms associated with the AMVPS were available in
260	172 (79.3%) subjects (Table 1). Syncope was significantly more common in the MVP-SCA
261	versus MVP-PVC group [n=53 (47.3%) versus n=13 (21.7%), p=0.001]. Palpitations were
262	significant less common in the MVP-SCA group (n=62, 55.4%) compared to the MVP-PVC
263	group (n=46, 76.7%, p=0.008). Lightheadedness was numerically less common in the MVP-SCA
264	versus MVP-PVC group [n=32 (28.6%) versus n=26 (43.3%), respectively] but the difference
265	was non-significant with a p=0.063. There were no differences in the prevalence of symptoms of
266	chest pain, near syncope, dyspnea, fatigue, or anxiety.
267	

268 Electrocardiography

269	In the 174 subjects (80.1%) where electrocardiographic (ECG) data was available, the corrected
270	QT interval in the MVP-SCA group was 438 ± 24 msec versus 445 ± 25 msec in the MVP-PVC
271	group (p=0.072, Table 3). While present in over half of patients, there was no difference in the
272	presence of inferolateral TWIs [MVP-SCA n=69 (59.5%), MVP-PVC n=29 (50.0%), p=0.234].
273	While anterolateral TWIs were less frequently seen in the overall cohort (n= $30, 17.2\%$), they
274	were present more often in the MVP-SCA group (n=26, 22.4%) than the MVP-PVC group (n=4,
275	6.9%, p=0.011).
276	
277	Ambulatory cardiac monitoring
278	One hundred twenty-eight subjects (59.0%) had data from ambulatory cardiac monitoring (Table
279	3). The PVC burden was significantly lower in the MVP-SCA group versus the MVP-PVC
280	group ($6.4\% \pm 7.0\%$ vs 9.6% \pm 9.6%, p=0.031). Most subjects had PVCs with a right bundle
281	branch (RBBB, Figure 2A) morphology (n=63, 88.7%) with no difference between groups.
282	Bigeminal PVCs were significantly less common in the MVP-SCA group. Most patients had at
283	least one episode of one non-sustained VT (n=96, 75.0%), but there was no difference between
284	groups. Eighty-two of 128 subjects had data on the maximum rate of episodes of non-sustained
285	VT. There was no difference in the prevalence of patients with a maximum rate of non-sustained
286	VT>180 beats per minute (bpm) between groups.

287

288 Echocardiography

289 One hundred seventy-nine subjects (82.5%) had complete data from echocardiography available

290 (Table 2). Overall, subjects in both groups had normal LV ejection fraction and LV size with no

291 differences between groups. Most patients did have left atrial enlargement but there was no

292	difference between groups. One-hundred patients (46.1%) had data on the presence of
293	Picklehaube sign. ^{20,21} Twenty-nine patients (29.0%) had the Picklehuabe sign, but there was no
294	difference between groups.
295	
296	Cardiac magnetic resonance imaging (CMR)
297	Ninety-seven subjects (44.7%) had contrast enhanced CMR data available (Table 2). There were
298	no differences in delayed enhancement (DE) distribution between the MVP-SCA and MVP-PVC
299	groups. Thirteen subjects (13.4%) had DE involving either the anterolateral or posteromedial
300	papillary muscles. More subjects had DE of either inferior (n=18, 18.6%) or inferolateral (n=31,
301	32.0%) LV myocardium. Forty-five subjects (46.4%) had at least one area of DE. In our cohort,
302	99 subjects (45.6%) had information on presence of inferior or inferolateral DE on CMR and
303	TWI on surface ECG. A total of 40/99 (40.4%) patients had DE in the inferior or inferolateral
304	LV myocardium. Of these 31/40 (77.5%) patients had inferolateral TWI and only 9/40 (22.5%)
305	had DE but no corresponding inferolateral TWI (p=0.019). Of the 2/97 (4.1%) that had
306	anterolateral DE in the LV myocardium, none had associated anterolateral TWI.
307	

308 *Electrophysiology study*

309 A total of 150 subjects underwent an electrophysiology study (EPS) with programmed

310 ventricular stimulation. Subjects in the MVP-SCA group were less likely to undergo EPS than in

the MVP-PVC group (Table 4). In those that did undergo an EPS, there was no difference in the

- 312 prevalence of inducible VT/VF between groups. Importantly, of the 45 subjects in the MVP-
- 313 SCA group who had prior SCA or sustained VT/VF and underwent EPS, 15/45 (33.3%) were
- non-inducible during an EPS despite a prior arrhythmic event. Of those in the MVP-SCA group

- with a negative EPS, 6/15 had prior monomorphic VT, 1/15 had polymorphic VT, 7/15 had VF
- and one had an unknown arrhythmia inciting SCA.
- 317
- 318 *Mitral valve surgery and device therapy*
- 319 After the index event, mitral valve repair/replacement was performed in a minority of patients
- 320 with no differences between either group [MVP-SCA n=11 (7.8%), MVP-PVC n=3, (5.6%),
- 321 p=0.761, Table 4]. Implantable cardiac defibrillators were placed commonly in both groups after
- 322 the index event but significantly more in the MVP-SCA group (n=128, 87.1%) versus the MVP-
- 323 PVC group (n=33, 47.8%, p<0.001).
- 324
- 325 Invasive catheter ablation
- 326 PVC ablation was performed less often in the MVP-SCA group (n=50, 35.0%) versus the MVP-
- 327 PVC group (n=35, 54.7%, p=0.008, Table 4). Of the 85 subjects who underwent PVC ablation,
- 328 the most common sites of origin for PVCs (Figure 3A) were the posteromedial papillary muscle
- 329 (n=48), anterolateral papillary muscle (n=37), mitral annulus (n=11, Figure 2C), left ventricular
- 330 (LV) inferolateral wall (n=9), fascicles (n=7), LV septum (n=7), LV inferior wall (n=6), LV
- 331 outflow tract (n=5), right ventricular (RV) outflow tract (n=5), or LV anterolateral wall (n=2).
- 332 VT ablation was performed in a minority of patients (Table 4) with no differences between
- 333 groups. Sites of origin for VTs (Figure 3B) included posteromedial papillary muscle (n=6),
- fascicles (n=6), mitral annulus (n=6), anterolateral papillary muscle (n=5), LV inferolateral wall
- 335 (n=4), LV inferior wall (n=3), right ventricular source (n=2), LV apex (n=1), and LV
- anterolateral wall (n=2). Each subject may have had more than one focus of PVC or VTs.

338 Multivariable risk adjustment

339 The presence of anterolateral TWIs, a history of syncope, a prior beta blocker prescription, and 340 prior mitral valve surgery had statistically significant (p<0.05) differences between MVP-PVC 341 and MVP-SCA groups. Other variables, such as PVC burden, the presence the PVC bigeminy, and a history of palpitations were also significantly different. However, these differences could 342 343 be explained by the inclusion criteria for PVC group which included PVC burden >5%, PVC 344 bigeminy, and symptomatic PVCs. Therefore, these variables were excluded. CMR data was also 345 excluded due to smaller sample sizes. A multivariable logistic regression model of the four 346 significant variables showed persistent significance of prior mitral valve surgery [Odds Ratio (OR) 0.17, 95% confidence interval (CI, 0.05, 0.57), p=0.004], anterolateral TWI [OR 5.4, 95% 347 348 CI (1.6, 17.7), p=0.005], and a history of syncope [OR 3.0, 95% CI (1.4, 6.6), p=0.007] but beta 349 blocker prescription was no longer significant [OR 0.51, 95% CI (0.25, 1.0), p=0.06]. This 350 model is shown in Figure 4.

351

352 Sensitivity analysis was done with additional logistic regression models including other 353 clinically significant variables that were not statistically different between groups (age, sex, 354 bileaflet prolapse, MAD, LV ejection fraction by echocardiography, inferolateral TWI as well as 355 prior beta blocker prescription, history of syncope, prior mitral valve surgery, and anterolateral 356 TWI). These are shown in supplemental data. These combined models showed that the presence 357 of anterolateral TWIs and a history of syncope remained significantly associated with increased 358 SCA and beta blocker prescription remained non-significantly associated with SCA. The 359 association of mitral valve surgery and SCA was significant if its interaction with age was

included (see supplemental Tables S1 and S2). No other variables were significantly associatedwith SCA.

362

363 **DISCUSSION**

364 This study represents the largest multicenter series characterizing patients with AMVPS at

365 highest arrhythmic risk, including those with SCA. This cohort of 217 subjects included 96

patients (44%) with SCA and 52 (24%) patients with sustained VT/VF. This study expands upon

the initial comprehensive description of AMVPS that stemmed from an analysis of 10/24 SCA

368 survivors with structurally normal hearts that had bileaflet MVP where the key components of

369 AMVPS were defined.⁹ In contrast, the largest previous case series examining AMVPS included

295 patients with some VAs but only 10 patients (3.3%) were SCA survivors.¹⁰ Although our

analysis compared MVP subjects with SCA or VT/VF versus those with significant PVCs, both

372 groups included subjects that would meet multiple risk criteria for SCA (e.g. non-sustained VT,

373 bigeminal PVCs, MAD).

374

375

female gender, with bileaflet prolapse and MAD (Figure 5). Over half had mild or less mitral
regurgitation. Cardiac monitoring shows frequent inferolateral TWIs, frequent PVCs (average
7.6%), typically with RBBB morphology, often with PVC bigeminy and non-sustained VT.
Forty-six percent of patients will have some DE on CMR, but only a minority will have papillary
muscle LGE in our study. These characteristics have also been previously documented in prior
studies.^{3,7,9,11,12,15,16,22,23}

In general, our cohort phenotypically characterizes patients with AMVPS as typically younger,

Our subjects were predominately female and younger age, which has been seen in most studies enriched with MVP patients with SCA.^{7,9,23–25} In other studies with a lower proportion of patients with SCA, the average age was higher and a greater proportion of males were seen.^{16,26} It is possible that the population at highest risk of SCA is younger and female although not all autopsy studies have shown a female or younger age predominance.⁸

388

389 Thus far, there is limited evidence supporting the therapeutic use of any medications for AMVPS. 390 In our study, beta blocker prescription was significantly less common in patients with MVP-SCA 391 than in those with MVP-PVC group. Beta blockers have been recommended in the past for patients with symptomatic VAs, including for patients with MVP,²⁷ but to our knowledge there 392 393 has not been any data supporting their efficacy specifically in MVP patients. The causality of this 394 association remains unclear; it is possible that those in the MVP-PVC group were more 395 frequently treated with beta-blockers for symptomatic PVCs. Indeed, after multivariable 396 adjustment, beta blocker prescription was not associated with reduced chance of SCA. 397 Nevertheless, the possible protective association between beta blockers and SCA or sustained 398 VT/VF warrants further exploration in prospective studies. A small case series has examined the 399 efficacy of flecainide in patients with AMVPS and arrhythmias not responding to beta blockers,²⁸ however data on specific anti-arrhythmic drugs was unavailable in our registry. 400 401 402 Studies examining the protective role of mitral valve surgery in treating AMVPS have shown mixed results in the past.^{29–33} In our study, a history of prior mitral valve surgery was 403 404 significantly less common in MVP-SCA patients although this relationship was weakened after

405 controlling for age (Figure 5). Another large retrospective study of MVP patients showed that the

406 association between VAs and excess mortality was abrogated in MVP patients that underwent mitral valve surgery but not those undergoing medical management.¹⁰ Others have hypothesized 407 408 that repeated mechanical strain from the abnormal mitral valve apparatus might contribute to cardiac fibrosis and arrhythmogenesis over time.³⁴ It follows logically that mitral valve repair or 409 replacement, which would potentially improve valve mechanics, may limit progression of 410 411 fibrosis and therefore reduce the onset of serious ventricular arrhythmias. However, it is also 412 possible that this association is from the bias that older survivors are more likely to undergo 413 valve surgery. Given that the majority of the patients in the current series had only mild or less 414 mitral regurgitation, surgical intervention would usually not be indicated for valvular reasons. In patients with valvular indications for surgery, arrhythmic benefits may play a supportive role for 415 416 surgery, but this concept requires further evaluation in prospective studies. 417 418 The existence of a symptom complex associated with MVP is controversial. In our study, a

history of syncope was more common in the MVP-SCA than the MVP-PVC group while
symptoms such as palpitations and lightheadedness, while somewhat common, were not
associated with SCA. This suggests that particular attention should be placed on MVP patients
with syncope compatible with an arrhythmic etiology. These patients may warrant further testing.
This is consistent with the published expert consensus statement.³⁵

424

Several studies have shown inferolateral TWIs associated with AMVPS and in our population
over half of patients did have inferolateral TWIs.^{7,16,18} A novel finding in the current study was
that anterolateral TWIs (involving precordial leads V5 or V6), while significantly less prevalent
overall, were significantly more common among MVP-SCA subjects compared with MVP-PVC

429	subjects (Figure 5). Anterolateral TWI were not associated with DE on CMR. In contrast, the
430	presence of DE in the LV inferior or inferolateral myocardium was associated with presence
431	inferolateral TWIs. This lends credence to the hypothesis that cardiac fibrosis leads to
432	repolarization abnormalities in the corresponding myocardium and may contribute to electrical
433	instability and arrhythmogenesis.
434	
435	Electrophysiology studies are performed in a wide variety of patient groups to help stratify risk
436	of VAs. The predictive validity of EPS in patients diagnosed with AMVPS is not well
437	documented. One-third of patients in the current series with a history of SCA or sustained
438	VT/VF still had a negative EPS, suggesting that EPS alone as a diagnostic study may have
439	limited negative predictive value in otherwise high-risk patients. Importantly, most centers
440	perform programmed ventricular stimulation from one or two right ventricular sites. However,
441	given the possibility of site-specificity for programmed ventricular stimulation, since the
442	arrhythmia substrates in MVP-SCA are predominantly in the LV, programmed stimulation from
443	both the right and left ventricles may increase predictive value of EPS.
444	
445	Our study has several important limitations. First, due to its retrospective nature, causality cannot
446	be inferred. Due to the multicenter design, there was variable work-up performed and access to
447	records; many subjects did not have all forms of testing. Missing data could introduce bias.
448	Additionally, the performance and interpretation of testing, imaging, and treatment could not be
449	standardized. Since our series did not have control group of low or average arrhythmia risk
450	MVP patients, we are unable to specifically identify risk factors that delineate patients at low and
451	high risk of arrhythmias.

452 CONCLUSIONS

453	In this	large internat	tional registry	, subjects wi	th arrhythmogen	ic mitral v	valve pro	lapse synd	rome
-----	---------	----------------	-----------------	---------------	-----------------	-------------	-----------	------------	------

- 454 were younger, female, and typically had bileaflet MVP, mitral annular disjunction, inferolateral
- 455 T-wave inversions, non-sustained VT, and frequent PVCs often with PVC bigeminy. Less than
- 456 half of patients had abnormal delayed enhancement on cardiac magnetic resonance imaging. A
- 457 history of syncope and anterolateral T-wave inversions were more common in patients who
- 458 survived SCA or sustained VT/VF than in those with PVCs alone. A history of prior mitral valve
- 459 surgery was less common in SCA and VT/VF patients than in PVC patients. A negative EP study
- 460 had limited negative predictive value in high-risk patients.
- 461
- 462
- 463
- 464
- 465
- 466
- 467
- 468

- 470
- 471
- 472
- 473
- 474

475 476	SOURCES OF FUNDING: None
470 477 478	DISCLOSURES: No relevant relationships with industry
479	
480	
481	
482	
483	
484	
485	

486 **REFERENCES**

487 Freed LA, Levy D, Levine RA, Larson MG, Evans JC, Fuller DL, Lehman B, Benjamin EJ. 1. 488 Prevalence and Clinical Outcome of Mitral-Valve Prolapse. N Engl J Med. 1999;341:1-7. 489 2. Devereux RB, Jones EC, Roman MJ, Howard BV, Fabsitz RR, Liu JE, Palmieri V, Welty 490 TK, Lee ET. Prevalence and correlates of mitral valve prolapse in a population-based 491 sample of American Indians: the strong heart study. Am J Med. 2001;111:679–685. 492 Nalliah CJ, Mahajan R, Elliott AD, Haggani H, Lau DH, Vohra JK, Morton JB, Semsarian 3. 493 C, Marwick T, Kalman JM, Sanders P. Mitral valve prolapse and sudden cardiac death: a 494 systematic review and meta-analysis. Heart. 2019;105:144-151. 495 Nishimura RA, McGoon MD, Shub C, Miller FA, Ilstrup DM, Tajik AJ. 4. 496 Echocardiographically Documented Mitral-Valve Prolapse: Long-Term Follow-up of 237 497 Patients. N Engl J Med. 1985;313:1305-1309. Avierinos J-F, Gersh BJ, Melton LJ, Bailey KR, Shub C, Nishimura RA, Tajik AJ, 498 5. 499 Enriquez-Sarano M. Natural History of Asymptomatic Mitral Valve Prolapse in the 500 Community. Circulation. 2002;106:1355–1361. 501 6. Düren DR, Becker AE, Dunning AJ. Long-term follow-up of idiopathic mitral valve 502 prolapse in 300 patients: a prospective study. J Am Coll Cardiol. 1988;11:42-47. 503 7. Basso C, Perazzolo Marra M, Rizzo S, De Lazzari M, Giorgi B, Cipriani A, Frigo AC, 504 Rigato I, Migliore F, Pilichou K, Bertaglia E, Cacciavillani L, Bauce B, Corrado D, Thiene 505 G, Iliceto S. Arrhythmic Mitral Valve Prolapse and Sudden Cardiac Death. Circulation. 506 2015;132:556-566. 507 Delling FN, Aung S, Vittinghoff E, Dave S, Lim LJ, Olgin JE, Connolly A, Moffatt E, 8. 508 Tseng ZH. Antemortem and Post-Mortem Characteristics of Lethal Mitral Valve Prolapse 509 Among All Countywide Sudden Deaths. JACC Clin Electrophysiol. 2021;7:1025–1034. 510 Sriram CS, Syed FF, Ferguson ME, Johnson JN, Enriquez-Sarano M, Cetta F, Cannon BC, 9. Asirvatham SJ, Ackerman MJ. Malignant Bileaflet Mitral Valve Prolapse Syndrome in 511 512 Patients With Otherwise Idiopathic Out-of-Hospital Cardiac Arrest. J Am Coll Cardiol. 513 2013;62:222-230. 514 10. Essayagh B, Sabbag A, Antoine C, Benfari G, Yang L-T, Maalouf J, Asirvatham S, 515 Michelena H, Enriquez-Sarano M. Presentation and Outcome of Arrhythmic Mitral Valve 516 Prolapse. J Am Coll Cardiol. 2020;76:637-649. 517 11. Turker Y, Ozavdin M, Acar G, Ozgul M, Hoscan Y, Varol E, Dogan A, Erdogan D, Yucel 518 H. Predictors of ventricular arrhythmias in patients with mitral valve prolapse. Int J 519 Cardiovasc Imaging. 2010;26:139–145.

520 521 522	12.	van Wijngaarden AL, Kruithof BPT, Vinella T, Barge-Schaapveld DQCM, Ajmone Marsan N. Characterization of Degenerative Mitral Valve Disease: Differences between Fibroelastic Deficiency and Barlow's Disease. <i>J Cardiovasc Dev Dis</i> . 2021;8:23.
523 524 525 526 527 528 529	13.	Constant Dit Beaufils A-L, Huttin O, Jobbe-Duval A, Senage T, Filippetti L, Piriou N, Cueff C, Venner C, Mandry D, Sellal J-M, Le Scouarnec S, Capoulade R, Marrec M, Thollet A, Beaumont M, Hossu G, Toquet C, Gourraud J-B, Trochu J-N, Warin-Fresse K, Marie P-Y, Schott J-J, Roussel J-C, Serfaty J-M, Selton-Suty C, Le Tourneau T. Replacement Myocardial Fibrosis in Patients With Mitral Valve Prolapse: Relation to Mitral Regurgitation, Ventricular Remodeling, and Arrhythmia. <i>Circulation</i> . 2021;143:1763–1774.
530 531 532 533	14.	Chakrabarti AK, Deshmukh A, Liang JJ, Madamanchi C, Ghannam M, Morady F, Bogun F. Mitral Annular Substrate and Ventricular Arrhythmias in Arrhythmogenic Mitral Valve Prolapse With Mitral Annular Disjunction. <i>JACC Clin Electrophysiol</i> . 2023;9(8 Pt 1):1265-1275.
534 535 536	15.	Dejgaard LA, Skjølsvik ET, Lie ØH, Ribe M, Stokke MK, Hegbom F, Scheirlynck ES, Gjertsen E, Andresen K, Helle-Valle TM, Hopp E, Edvardsen T, Haugaa KH. The Mitral Annulus Disjunction Arrhythmic Syndrome. <i>J Am Coll Cardiol</i> . 2018;72:1600–1609.
537 538 539	16.	Essayagh B, Sabbag A, Antoine C, Benfari G, Batista R, Yang L-T, Maalouf J, Thapa P, Asirvatham S, Michelena HI, Enriquez-Sarano M. The Mitral Annular Disjunction of Mitral Valve Prolapse. <i>JACC Cardiovasc Imaging</i> . 2021;14 (11):2073–2087
540 541 542 543	17.	Perazzolo Marra M, Basso C, De Lazzari M, Rizzo S, Cipriani A, Giorgi B, Lacognata C, Rigato I, Migliore F, Pilichou K, Cacciavillani L, Bertaglia E, Frigo AC, Bauce B, Corrado D, Thiene G, Iliceto S. Morphofunctional Abnormalities of Mitral Annulus and Arrhythmic Mitral Valve Prolapse. <i>Circ Cardiovasc Imaging</i> . 2016;9(8):e005030.
544 545 546	18.	van Wijngaarden AL, de Riva M, Hiemstra YL, van der Bijl P, Fortuni F, Bax JJ, Delgado V, Ajmone Marsan N. Parameters associated with ventricular arrhythmias in mitral valve prolapse with significant regurgitation. <i>Heart</i> . 2021;107:411–418.
547 548 549 550	19.	Zoghbi WA, Adams D, Bonow RO, Enriquez-Sarano M, Foster E, Grayburn PA, Hahn RT, Han Y, Hung J, Lang RM, Little SH, Shah DJ, Shernan S, Thavendiranathan P, Thomas JD, Weissman NJ. Recommendations for Noninvasive Evaluation of Native Valvular Regurgitation. <i>J Am Soc Echocardiogr</i> . 2017;30:303–371.
551 552	20.	Muthukumar L, Rahman F, Jan MF, Shaikh A, Kalvin L, Dhala A, Jahangir A, Tajik AJ. The Pickelhaube Sign. <i>JACC Cardiovasc Imaging</i> . 2017;10:1078–1080.
553 554 555	21.	Ignatowski D, Schweitzer M, Pesek K, Jain R, Muthukumar L, Khandheria BK, Tajik AJ. Pickelhaube Spike, a High-Risk Marker for Bileaflet Myxomatous Mitral Valve Prolapse: Sonographer's Quest for the Highest Spike. <i>J Am Soc Echocardiogr</i> . 2020;33:639–640.

556 22. Han H, Ha FJ, Teh AW, Calafiore P, Jones EF, Johns J, Koshy AN, O'Donnell D, Hare DL, 557 Farouque O, Lim HS. Mitral Valve Prolapse and Sudden Cardiac Death: A Systematic 558 Review. J Am Heart Assoc. 2018;7(23):e010584. 559 23. Syed FF, Ackerman MJ, McLeod CJ, Kapa S, Mulpuru SK, Sriram CS, Cannon BC, 560 Asirvatham SJ, Noseworthy PA. Sites of Successful Ventricular Fibrillation Ablation in 561 Bileaflet Mitral Valve Prolapse Syndrome. Circ Arrhythm Electrophysiol. 562 2016;9(5):e004005 563 24. Aabel EW, Chivulescu M, Lie ØH, Hopp E, Gjertsen E, Ribe M, Helle-Valle TM, 564 Edvardsen T, Hegbom F, Dejgaard LA, Haugaa KH. Ventricular arrhythmias in arrhythmic 565 mitral valve syndrome—a prospective continuous long-term cardiac monitoring study. 566 *Europace*. 2023;25(2):506-516. 567 25. Han H, Parsons SA, Teh AW, Sanders P, Neil C, Leong T, Koshy AN, Vohra JK, Kalman 568 JM, Smith K, O'Donnell D, Hare DL, Farouque O, Lim HS. Characteristic 569 Histopathological Findings and Cardiac Arrest Rhythm in Isolated Mitral Valve Prolapse 570 and Sudden Cardiac Death. J Am Heart Assoc. 2020;9(7):e015587. 571 26. Nordhues BD, Siontis KC, Scott CG, Nkomo VT, Ackerman MJ, Asirvatham SJ, 572 Noseworthy PA. Bileaflet Mitral Valve Prolapse and Risk of Ventricular Dysrhythmias and Death: Dysrhythmias and Death in BiMVP. J Cardiovasc Electrophysiol. 2016;27:463-468. 573 574 27. Miller MA, Dukkipati SR, Turagam M, Liao SL, Adams DH, Reddy VY. Arrhythmic 575 Mitral Valve Prolapse. J Am Coll Cardiol. 2018;72:2904-2914. 576 28. Aabel EW, Deigaard LA, Chivulescu M, Helle-Valle TM, Edvardsen T, Hasselberg NE, 577 Hegbom F, Lie ØH, Haugaa KH. Flecainide in patients with arrhythmic mitral valve 578 syndrome: A case series. Heart Rhythm. 2023;20:635-636. 29. Kav JH, Krohn BG, Zubiate P, Hoffman RL. Surgical correction of severe mitral prolapse 579 580 without mitral insufficiency but with pronounced cardiac arrhythmias. J Thorac Cardiovasc 581 Surg. 1979;78:259–268. 582 30. Pocock WA, Barlow JB, Marcus RH, Barlow CW. Mitral valvuloplasty for life-threatening 583 ventricular arrhythmias in mitral valve prolapse. Am Heart J. 1991;121:199-202. 31. Reece IJ, Cooley DA, Painvin GA, Okereke OUJ, Powers PL, Pechacek LW, Frazier OH. 584 585 Surgical Treatment of Mitral Systolic Click Syndrome: Results in 37 Patients. Ann Thorac 586 Surg. 1985;39:155-158. 587 32. Naksuk N, Syed FF, Krittanawong C, Anderson MJ, Ebrille E, DeSimone CV, Vaidya VR, 588 Ponamgi SP, Suri RM, Ackerman MJ, Nkomo VT, Asirvatham SJ, Noseworthy PA. The 589 effect of mitral valve surgery on ventricular arrhythmia in patients with bileaflet mitral 590 valve prolapse. Indian Pacing Electrophysiol J. 2016;16:187–191. 591 33. Vaidya VR, DeSimone CV, Damle N, Naksuk N, Syed FF, Ackerman MJ, Ponamgi SP, Nkomo VT, Suri RM, Noseworthy PA, Asirvatham SJ. Reduction in malignant ventricular 592

593 arrhythmia and appropriate shocks following surgical correction of bileaflet mitral valve 594 prolapse. J Interv Card Electrophysiol. 2016;46:137-143. 595 34. Basso C, Iliceto S, Thiene G, Perazzolo Marra M. Mitral Valve Prolapse, Ventricular 596 Arrhythmias, and Sudden Death. Circulation. 2019;140:952-964. 597 Sabbag A, Essayagh B, Barrera JDR, Basso C, Berni A, Cosyns B, Deharo J-C, Deneke T, 35. Di Biase L, Enriquez-Sarano M, Donal E, Imai K, Lim HS, Marsan NA, Turagam MK, 598 599 Peichl P, Po SS, Haugaa KH, Shah D, de Riva Silva M, Bertrand PB, Saba M, Dweck M, 600 Townsend SN, Ngarmukos T, Fenelon G, Santangeli P, Sade LE, Corrado D, Lambiase P, 601 Sanders P, Delacrétaz E, Jahangir A, Kaufman ES, Saggu DK, Pierard L, Delgado V, 602 Lancellotti P. EHRA expert consensus statement on arrhythmic mitral valve prolapse and 603 mitral annular disjunction complex in collaboration with the ESC Council on valvular heart 604 disease and the European Association of Cardiovascular Imaging endorsed cby the Heart Rhythm Society, by the Asia Pacific Heart Rhythm Society, and by the Latin American 605 Heart Rhythm Society. Europace. 2022;24(12):1981-2003. 606

607

	Sample	MVP-PVC	MVP-SCA	Total	P value
Total sample size	217	69 (31.8%)	148 (68 2)	217 (100)	
A go woong (± SD)	203	455(100)	170(00.2)	217(100)	0.403
Age, years $(\pm SD)$	203	43.3(19.9)	+3.7(13.+)	144.2(10.7)	0.495
Female, n (%)	217	44 (63.8)	100(67.6)	144 (66.4)	0.581
CAD, n (%)	215	2 (2.9)	5 (3.4)	/ (3.3)	1.00
LV ejection fraction	213	10 (14.7)	19 (13.1)	29 (13.6)	0.831
<50%, n (%)					
Prior MV surgery, n	212	13 (19.7)	8 (5.5)	21 (9.9)	0.002
(%)					
Beta blocker	211	35 (51.5)	51 (35.7)	86 (40.8)	0.029
prescription, n (%)		~ /			
Anti-arrhythmic	205	8 (12.1)	28 (20.1)	36 (17.6)	0.175
drug prescription, n		• ()	_ ()	2 0 (2110)	
(%)					
Symptoms of MVP					
symptoms of MIVI					
Syntatomic $p(0/1)$	170	12 (21 7)	52 (17 2)	((29.1))	0.001
Syncope, n (%)	172	13(21.7) 12(21.7)	33(47.3)	00(38.4)	0.001
Chest pain, n (%)	172	13 (21.7)	15 (13.4)	28 (16.3)	0.195
Palpitations, n	172	46 (76.7)	62 (55.4)	108 (62.8)	0.008
(%)					
Lightheadedness,	172	26 (43.3)	32 (28.6)	58 (33.7)	0.063
n (%)					
Dyspnea, n (%)	172	10 (16.7)	19 (17.0)	29 (16.9)	1.00
Fatigue, n (%)	172	11 (18.3)	20 (17.9)	31 (18.0)	1.00
Anxiety, n (%)	172	6 (10.0)	18 (16.1)	24 (14.0)	0.358

Table 1. Demographic, clinical, and symptom characteristics, 609

610 CAD-coronary artery disease, MV-mitral valve, MVP-mitral valve prolapse, LV-left ventricle, PVC-premature ventricular contraction, SCA-sudden cardiac arrest, SD-standard deviation

Echocardiography LV ejection fraction, % (± 179 58.0 (7.1) 58.3 (8.1) 58.2 (7.8) 0.797 SD) LV end diastolic diameter, 179 55.0 (6.2) 53.7 (7.0) 54.1 (6.8) 0.249 mm (± SD) Bileaflet prolapse, n (%) 179 40 (74.1) 89 (71.2) 129 (72.1) 0.694 Mitral annular 179 32 (59.3) 72 (57.6) 104 (58.1) 0.836 disjunction, n (%) Moderate or worse mitral 179 18 (33.3) 52 (41.6) 70 (39.1) 0.320 regurgitation, n (%) Left atrial enlargement, n 159 29 (61.7) 73 (65.2) 102 (64.2) 0.719 (%) Picklehaube sign, n (%) 100 6 (22.2) 23 (31.5) 29 (29.0) 0.460 Cardiac magnetic resonance imaging LV ejection fraction, % (± 97 54.5 (8.8) 56.9 (11.4) 56.1 (10.7) 0.317 SD) Bileaflet prolapse, n (%) 97 15 (48.4) 28 (42.4) 43 (44.3%) 0.663 Mitral annular 97 8 (25.8) 26 (39.4) 34 (35.1%) 0.255 disjunction, n (%) DE-anterolateral 97 <th></th> <th>Sample size</th> <th>MVP-PVC</th> <th>MVP-SCA</th> <th>Total</th> <th>P value</th>		Sample size	MVP-PVC	MVP-SCA	Total	P value
LV ejection fraction, % (± 179 58.0 (7.1) 58.3 (8.1) 58.2 (7.8) 0.797 SD) LV end diastolic diameter, 179 55.0 (6.2) 53.7 (7.0) 54.1 (6.8) 0.249 mm (± SD) Bileaflet prolapse, n (%) 179 40 (74.1) 89 (71.2) 129 (72.1) 0.694 Mitral annular 179 32 (59.3) 72 (57.6) 104 (58.1) 0.836 disjunction, n (%) Moderate or worse mitral 179 18 (33.3) 52 (41.6) 70 (39.1) 0.320 regurgitation, n (%) Left atrial enlargement, n 159 29 (61.7) 73 (65.2) 102 (64.2) 0.719 (%) Picklehaube sign, n (%) 100 6 (22.2) 23 (31.5) 29 (29.0) 0.460 Cardiac magnetic resonance imaging LV ejection fraction, % (± 97 54.5 (8.8) 56.9 (11.4) 56.1 (10.7) 0.317 SD) Bileaflet prolapse, n (%) 97 15 (48.4) 28 (42.4) 43 (44.3%) 0.663 Mitral annular 97 8 (25.8) 26 (39.4) 34 (35.1%) 0.255 disjunction, n (%) DE-anterolateral 97 3 (9.7) 5 (7.6) 8 (8.3) 0.708 papillary muscle, n (%) DE-LV inferior wall, n 97 6 (19.4) 12 (18.2) 18 (18.6) 1.00 (%) DE-LV inferolateral wall, 97 12 (38.7) 19 (28.8) 31 (32.0) 0.357 n (%)	rdiography					
SD) LV end diastolic diameter, 179 55.0 (6.2) 53.7 (7.0) 54.1 (6.8) 0.249 mm (± SD) Bileaflet prolapse, n (%) 179 40 (74.1) 89 (71.2) 129 (72.1) 0.694 Mitral annular 179 32 (59.3) 72 (57.6) 104 (58.1) 0.836 disjunction, n (%) Moderate or worse mitral 179 18 (33.3) 52 (41.6) 70 (39.1) 0.320 regurgitation, n (%) Left atrial enlargement, n (%) 159 29 (61.7) 73 (65.2) 102 (64.2) 0.719 (%) Picklehaube sign, n (%) 100 6 (22.2) 23 (31.5) 29 (29.0) 0.460 Cardiac magnetic resonance imaging LV ejection fraction, % (± 97 54.5 (8.8) 56.9 (11.4) 56.1 (10.7) 0.317 SD) Bileaflet prolapse, n (%) 97 15 (48.4) 28 (42.4) 43 (44.3%) 0.663 Mitral annular 97 8 (25.8) 26 (39.4) 34 (35.1%) 0.255 disjunction, n (%) DE-anterolateral 97 5 (16.1) 7 (10.6) 12 (12.4) 0.513 papillary muscle, n (%) DE-LV inferior wall, n 97 </td <td>jection fraction, % (±</td> <td>179</td> <td>58.0 (7.1)</td> <td>58.3 (8.1)</td> <td>58.2 (7.8)</td> <td>0.797</td>	jection fraction, % (±	179	58.0 (7.1)	58.3 (8.1)	58.2 (7.8)	0.797
LV end diastolic diameter, 179 55.0 (6.2) 53.7 (7.0) 54.1 (6.8) 0.249 mm (± SD) Bileaflet prolapse, n (%) 179 40 (74.1) 89 (71.2) 129 (72.1) 0.694 Mitral annular 179 32 (59.3) 72 (57.6) 104 (58.1) 0.836 disjunction, n (%) Moderate or worse mitral 179 18 (33.3) 52 (41.6) 70 (39.1) 0.320 regurgitation, n (%) Left atrial enlargement, n 159 29 (61.7) 73 (65.2) 102 (64.2) 0.719 (%) Picklehaube sign, n (%) 100 6 (22.2) 23 (31.5) 29 (29.0) 0.460 Cardiac magnetic resonance imaging LV ejection fraction, % (± 97 54.5 (8.8) 56.9 (11.4) 56.1 (10.7) 0.317 SD) Bileaflet prolapse, n (%) 97 15 (48.4) 28 (42.4) 43 (44.3%) 0.663 Mitral annular 97 8 (25.8) 26 (39.4) 34 (35.1%) 0.255 disjunction, n (%) DE-anterolateral 97 5 (16.1) 7 (10.6) 12 (12.4) 0.513 papillary muscle, n (%) DE-LV inferior wall, n 97 6 (19.4) 12 (18.2) 18 (18.6) 1.00 (%)						
mm (± SD) Bileaflet prolapse, n (%) 179 40 (74.1) 89 (71.2) 129 (72.1) 0.694 Mitral annular 179 32 (59.3) 72 (57.6) 104 (58.1) 0.836 disjunction, n (%) Moderate or worse mitral 179 18 (33.3) 52 (41.6) 70 (39.1) 0.320 regurgitation, n (%) Left atrial enlargement, n 159 29 (61.7) 73 (65.2) 102 (64.2) 0.719 (%) Picklehaube sign, n (%) 100 6 (22.2) 23 (31.5) 29 (29.0) 0.460 Cardiac magnetic resonance imaging LV ejection fraction, % (± 97 54.5 (8.8) 56.9 (11.4) 56.1 (10.7) 0.317 SD) Bileaflet prolapse, n (%) 97 15 (48.4) 28 (42.4) 43 (44.3%) 0.663 Mitral annular 97 8 (25.8) 26 (39.4) 34 (35.1%) 0.255 disjunction, n (%) DE-anterolateral 97 5 (16.1) 7 (10.6) 12 (12.4) 0.513 papillary muscle, n (%) DE-LV inferior wall, n 97 6 (19.4) 12 (18.2) 18 (18.6) 1.00 (%) DE-LV inferolateral wall,	nd diastolic diameter,	179	55.0 (6.2)	53.7 (7.0)	54.1 (6.8)	0.249
Bileaflet prolapse, n (%) 179 40 (74.1) 89 (71.2) 129 (72.1) 0.694 Mitral annular 179 32 (59.3) 72 (57.6) 104 (58.1) 0.836 disjunction, n (%) Moderate or worse mitral 179 18 (33.3) 52 (41.6) 70 (39.1) 0.320 regurgitation, n (%) Left atrial enlargement, n 159 29 (61.7) 73 (65.2) 102 (64.2) 0.719 (%) Picklehaube sign, n (%) 100 6 (22.2) 23 (31.5) 29 (29.0) 0.460 Cardiac magnetic resonance imaging LV ejection fraction, % (± 97 54.5 (8.8) 56.9 (11.4) 56.1 (10.7) 0.317 SD) Bileaflet prolapse, n (%) 97 15 (48.4) 28 (42.4) 43 (44.3%) 0.663 Mitral annular 97 8 (25.8) 26 (39.4) 34 (35.1%) 0.255 disjunction, n (%) DE-anterolateral 97 5 (16.1) 7 (10.6) 12 (12.4) 0.513 papillary muscle, n (%) DE-LV inferior wall, n 97 5 (16.1) 7 (10.6) 12 (12.4) 0.513 papillary muscle, n (%) DE-LV inferolateral wall, 97 <td>(± SD)</td> <td></td> <td></td> <td></td> <td></td> <td></td>	(± SD)					
Mitral annular 179 32 (59.3) 72 (57.6) 104 (58.1) 0.836 disjunction, n (%) Moderate or worse mitral 179 18 (33.3) 52 (41.6) 70 (39.1) 0.320 regurgitation, n (%) Left atrial enlargement, n 159 29 (61.7) 73 (65.2) 102 (64.2) 0.719 (%) Picklehaube sign, n (%) 100 6 (22.2) 23 (31.5) 29 (29.0) 0.460 Cardiac magnetic resonance imaging LV ejection fraction, % (± 97 54.5 (8.8) 56.9 (11.4) 56.1 (10.7) 0.317 SD) Bileaflet prolapse, n (%) 97 15 (48.4) 28 (42.4) 43 (44.3%) 0.663 Mitral annular 97 8 (25.8) 26 (39.4) 34 (35.1%) 0.255 disjunction, n (%) DE-anterolateral 97 5 (16.1) 7 (10.6) 12 (12.4) 0.513 papillary muscle, n (%) DE-LV inferior wall, n 97 6 (19.4) 12 (18.2) 18 (18.6) 1.00 (%) DE-LV inferiolateral wall, 97 12 (38.7) 19 (28.8) 31 (32.0) 0.357	flet prolapse, n (%)	179	40 (74.1)	89 (71.2)	129 (72.1)	0.694
disjunction, n (%) Moderate or worse mitral 179 18 (33.3) 52 (41.6) 70 (39.1) 0.320 regurgitation, n (%) Left atrial enlargement, n 159 29 (61.7) 73 (65.2) 102 (64.2) 0.719 (%) Picklehaube sign, n (%) 100 6 (22.2) 23 (31.5) 29 (29.0) 0.460 Cardiac magnetic resonance imaging LV ejection fraction, % (± 97 54.5 (8.8) 56.9 (11.4) 56.1 (10.7) 0.317 SD) Bileaflet prolapse, n (%) 97 15 (48.4) 28 (42.4) 43 (44.3%) 0.663 Mitral annular 97 8 (25.8) 26 (39.4) 34 (35.1%) 0.255 disjunction, n (%) DE-anterolateral 97 5 (16.1) 7 (10.6) 12 (12.4) 0.513 papillary muscle, n (%) DE-LV inferior wall, n 97 6 (19.4) 12 (18.2) 18 (18.6) 1.00 (%) DE-LV inferiolateral wall, 97 12 (38.7) 19 (28.8) 31 (32.0) 0.357	al annular	179	32 (59.3)	72 (57.6)	104 (58.1)	0.836
Moderate or worse mitral regurgitation, n (%) 179 18 (33.3) 52 (41.6) 70 (39.1) 0.320 Left atrial enlargement, n (%) 159 29 (61.7) 73 (65.2) 102 (64.2) 0.719 (%) Picklehaube sign, n (%) 100 6 (22.2) 23 (31.5) 29 (29.0) 0.460 Cardiac magnetic resonance imaging LV ejection fraction, % (± 97 54.5 (8.8) 56.9 (11.4) 56.1 (10.7) 0.317 SD) Bileaflet prolapse, n (%) 97 15 (48.4) 28 (42.4) 43 (44.3%) 0.6633 Mitral annular 97 8 (25.8) 26 (39.4) 34 (35.1%) 0.255 disjunction, n (%) DE-anterolateral 97 5 (16.1) 7 (10.6) 12 (12.4) 0.513 papillary muscle, n (%) DE-LV inferior wall, n 97 6 (19.4) 12 (18.2) 18 (18.6) 1.00 (%) DE-LV inferolateral wall, 97 12 (38.7) 19 (28.8) 31 (32.0) 0.357	nction, n (%)					
regurgitation, n (%) Left atrial enlargement, n 159 29 (61.7) 73 (65.2) 102 (64.2) 0.719 (%) Picklehaube sign, n (%) 100 6 (22.2) 23 (31.5) 29 (29.0) 0.460 Cardiac magnetic resonance imaging LV ejection fraction, % (± 97 54.5 (8.8) 56.9 (11.4) 56.1 (10.7) 0.317 SD) Bileaflet prolapse, n (%) 97 15 (48.4) 28 (42.4) 43 (44.3%) 0.663 Mitral annular 97 8 (25.8) 26 (39.4) 34 (35.1%) 0.255 disjunction, n (%) DE-anterolateral 97 3 (9.7) 5 (7.6) 8 (8.3) 0.708 papillary muscle, n (%) DE-posteromedial 97 5 (16.1) 7 (10.6) 12 (12.4) 0.513 papillary muscle, n (%) DE-LV inferior wall, n 97 6 (19.4) 12 (18.2) 18 (18.6) 1.00 (%) DE-LV inferolateral wall, 97 12 (38.7) 19 (28.8) 31 (32.0) 0.357 n (%)	erate or worse mitral	179	18 (33.3)	52 (41.6)	70 (39.1)	0.320
Left atrial enlargement, n 159 29 (61.7) 73 (65.2) 102 (64.2) 0.719 (%) Picklehaube sign, n (%) 100 6 (22.2) 23 (31.5) 29 (29.0) 0.460 Cardiac magnetic resonance imaging LV ejection fraction, % (± 97 54.5 (8.8) 56.9 (11.4) 56.1 (10.7) 0.317 SD) Bileaflet prolapse, n (%) 97 15 (48.4) 28 (42.4) 43 (44.3%) 0.663 Mitral annular 97 8 (25.8) 26 (39.4) 34 (35.1%) 0.255 disjunction, n (%) DE-anterolateral 97 3 (9.7) 5 (7.6) 8 (8.3) 0.708 papillary muscle, n (%) DE-posteromedial 97 5 (16.1) 7 (10.6) 12 (12.4) 0.513 papillary muscle, n (%) DE-LV inferior wall, n 97 6 (19.4) 12 (18.2) 18 (18.6) 1.00 (%) DE-LV inferolateral wall, 97 12 (38.7) 19 (28.8) 31 (32.0) 0.357 n (%)	rgitation, n (%)					
(%) Picklehaube sign, n (%) 100 6 (22.2) 23 (31.5) 29 (29.0) 0.460 Cardiac magnetic resonance imaging LV ejection fraction, % (± 97 54.5 (8.8) 56.9 (11.4) 56.1 (10.7) 0.317 SD) Bileaflet prolapse, n (%) 97 15 (48.4) 28 (42.4) 43 (44.3%) 0.663 Mitral annular 97 8 (25.8) 26 (39.4) 34 (35.1%) 0.255 disjunction, n (%) DE-anterolateral 97 3 (9.7) 5 (7.6) 8 (8.3) 0.708 papillary muscle, n (%) DE-posteromedial 97 5 (16.1) 7 (10.6) 12 (12.4) 0.513 papillary muscle, n (%) DE-LV inferior wall, n 97 6 (19.4) 12 (18.2) 18 (18.6) 1.00 (%) DE-LV inferolateral wall, 97 12 (38.7) 19 (28.8) 31 (32.0) 0.357 n (%)	atrial enlargement, n	159	29 (61.7)	73 (65.2)	102 (64.2)	0.719
Picklehaube sign, n (%) 100 6 (22.2) 23 (31.5) 29 (29.0) 0.460 Cardiac magnetic resonance imaging 100 6 (22.2) 23 (31.5) 29 (29.0) 0.460 LV ejection fraction, % (± 97 54.5 (8.8) 56.9 (11.4) 56.1 (10.7) 0.317 SD) Bileaflet prolapse, n (%) 97 15 (48.4) 28 (42.4) 43 (44.3%) 0.663 Mitral annular 97 8 (25.8) 26 (39.4) 34 (35.1%) 0.255 disjunction, n (%) DE-anterolateral 97 3 (9.7) 5 (7.6) 8 (8.3) 0.708 papillary muscle, n (%) DE-posteromedial 97 5 (16.1) 7 (10.6) 12 (12.4) 0.513 papillary muscle, n (%) DE-LV inferior wall, n 97 6 (19.4) 12 (18.2) 18 (18.6) 1.00 (%) DE-LV inferolateral wall, 97 12 (38.7) 19 (28.8) 31 (32.0) 0.357 n (%) DE-LV inferolateral wall, 97 12 (38.7) 19 (28.8) 31 (32.0) 0.357						
Cardiac magnetic resonance imaging LV ejection fraction, % (± 97 54.5 (8.8) 56.9 (11.4) 56.1 (10.7) 0.317 SD) Bileaflet prolapse, n (%) 97 15 (48.4) 28 (42.4) 43 (44.3%) 0.663 Mitral annular 97 8 (25.8) 26 (39.4) 34 (35.1%) 0.255 disjunction, n (%) DE-anterolateral 97 3 (9.7) 5 (7.6) 8 (8.3) 0.708 papillary muscle, n (%) DE-posteromedial 97 5 (16.1) 7 (10.6) 12 (12.4) 0.513 papillary muscle, n (%) DE-LV inferior wall, n 97 6 (19.4) 12 (18.2) 18 (18.6) 1.00 (%) DE-LV inferolateral wall, 97 12 (38.7) 19 (28.8) 31 (32.0) 0.357	lehaube sign, n (%)	100	6 (22.2)	23 (31.5)	29 (29.0)	0.460
imaging LV ejection fraction, % (± 97 54.5 (8.8) 56.9 (11.4) 56.1 (10.7) 0.317 SD) Bileaflet prolapse, n (%) 97 15 (48.4) 28 (42.4) 43 (44.3%) 0.663 Mitral annular 97 8 (25.8) 26 (39.4) 34 (35.1%) 0.255 disjunction, n (%) DE-anterolateral 97 3 (9.7) 5 (7.6) 8 (8.3) 0.708 papillary muscle, n (%) DE-posteromedial 97 5 (16.1) 7 (10.6) 12 (12.4) 0.513 papillary muscle, n (%) DE-LV inferior wall, n 97 6 (19.4) 12 (18.2) 18 (18.6) 1.00 (%) DE-LV inferolateral wall, 97 12 (38.7) 19 (28.8) 31 (32.0) 0.357	c magnetic resonance					
LV ejection fraction, % (± 97 54.5 (8.8) 56.9 (11.4) 56.1 (10.7) 0.317 SD) Bileaflet prolapse, n (%) 97 15 (48.4) 28 (42.4) 43 (44.3%) 0.663 Mitral annular 97 8 (25.8) 26 (39.4) 34 (35.1%) 0.255 disjunction, n (%) DE-anterolateral 97 3 (9.7) 5 (7.6) 8 (8.3) 0.708 papillary muscle, n (%) DE-posteromedial 97 5 (16.1) 7 (10.6) 12 (12.4) 0.513 papillary muscle, n (%) DE-LV inferior wall, n 97 6 (19.4) 12 (18.2) 18 (18.6) 1.00 (%) DE-LV inferolateral wall, 97 12 (38.7) 19 (28.8) 31 (32.0) 0.357 n (%)	g					
SD) Bileaflet prolapse, n (%) 97 15 (48.4) 28 (42.4) 43 (44.3%) 0.663 Mitral annular 97 8 (25.8) 26 (39.4) 34 (35.1%) 0.255 disjunction, n (%) DE-anterolateral 97 3 (9.7) 5 (7.6) 8 (8.3) 0.708 papillary muscle, n (%) DE-posteromedial 97 5 (16.1) 7 (10.6) 12 (12.4) 0.513 papillary muscle, n (%) DE-LV inferior wall, n 97 6 (19.4) 12 (18.2) 18 (18.6) 1.00 (%) DE-LV inferolateral wall, 97 12 (38.7) 19 (28.8) 31 (32.0) 0.357	jection fraction, % (±	97	54.5 (8.8)	56.9 (11.4)	56.1 (10.7)	0.317
Bileaflet prolapse, n (%) 97 15 (48.4) 28 (42.4) 43 (44.3%) 0.663 Mitral annular 97 8 (25.8) 26 (39.4) 34 (35.1%) 0.255 disjunction, n (%) DE-anterolateral 97 3 (9.7) 5 (7.6) 8 (8.3) 0.708 papillary muscle, n (%) DE-posteromedial 97 5 (16.1) 7 (10.6) 12 (12.4) 0.513 papillary muscle, n (%) DE-LV inferior wall, n 97 6 (19.4) 12 (18.2) 18 (18.6) 1.00 (%) DE-LV inferolateral wall, 97 12 (38.7) 19 (28.8) 31 (32.0) 0.357						
Mitral annular 97 8 (25.8) 26 (39.4) 34 (35.1%) 0.255 disjunction, n (%) DE-anterolateral 97 3 (9.7) 5 (7.6) 8 (8.3) 0.708 papillary muscle, n (%) DE-posteromedial 97 5 (16.1) 7 (10.6) 12 (12.4) 0.513 papillary muscle, n (%) DE-LV inferior wall, n 97 6 (19.4) 12 (18.2) 18 (18.6) 1.00 (%) DE-LV inferiolateral wall, 97 12 (38.7) 19 (28.8) 31 (32.0) 0.357	ıflet prolapse, n (%)	97	15 (48.4)	28 (42.4)	43 (44.3%)	0.663
disjunction, n (%) DE-anterolateral 97 3 (9.7) 5 (7.6) 8 (8.3) 0.708 papillary muscle, n (%) DE-posteromedial 97 5 (16.1) 7 (10.6) 12 (12.4) 0.513 papillary muscle, n (%) DE-LV inferior wall, n 97 6 (19.4) 12 (18.2) 18 (18.6) 1.00 (%) DE-LV inferolateral wall, 97 12 (38.7) 19 (28.8) 31 (32.0) 0.357 n (%)	al annular	97	8 (25.8)	26 (39.4)	34 (35.1%)	0.255
DE-anterolateral 97 3 (9.7) 5 (7.6) 8 (8.3) 0.708 papillary muscle, n (%) 0 0 0 0 0.708 DE-posteromedial 97 5 (16.1) 7 (10.6) 12 (12.4) 0.513 papillary muscle, n (%) 0 0 0 0 0 DE-LV inferior wall, n 97 6 (19.4) 12 (18.2) 18 (18.6) 1.00 (%) 0 0 0.357 0.357 0.357 n (%) 0 0 0 0 0	nction, n (%)					
papillary muscle, n (%) DE-posteromedial 97 5 (16.1) 7 (10.6) 12 (12.4) 0.513 papillary muscle, n (%) DE-LV inferior wall, n 97 6 (19.4) 12 (18.2) 18 (18.6) 1.00 (%) DE-LV inferolateral wall, 97 12 (38.7) 19 (28.8) 31 (32.0) 0.357 n (%)	ınterolateral	97	3 (9.7)	5 (7.6)	8 (8.3)	0.708
DE-posteromedial 97 5 (16.1) 7 (10.6) 12 (12.4) 0.513 papillary muscle, n (%) DE-LV inferior wall, n 97 6 (19.4) 12 (18.2) 18 (18.6) 1.00 (%) DE-LV inferolateral wall, 97 12 (38.7) 19 (28.8) 31 (32.0) 0.357 n (%)	llary muscle, n (%)					
papillary muscle, n (%) DE-LV inferior wall, n 97 6 (19.4) 12 (18.2) 18 (18.6) 1.00 (%) DE-LV inferolateral wall, 97 12 (38.7) 19 (28.8) 31 (32.0) 0.357 n (%)	oosteromedial	97	5 (16.1)	7 (10.6)	12 (12.4)	0.513
DE-LV inferior wall, n 97 6 (19.4) 12 (18.2) 18 (18.6) 1.00 (%) DE-LV inferolateral wall, 97 12 (38.7) 19 (28.8) 31 (32.0) 0.357 n (%) 0 0 0 0 0 0	llary muscle, n (%)					
(%) DE-LV inferolateral wall, 97 12 (38.7) 19 (28.8) 31 (32.0) 0.357 n (%)	LV inferior wall, n	97	6 (19.4)	12 (18.2)	18 (18.6)	1.00
DE-LV inferolateral wall, 97 12 (38.7) 19 (28.8) 31 (32.0) 0.357 n (%)						
n (%)	_V inferolateral wall,	97	12 (38.7)	19 (28.8)	31 (32.0)	0.357
)	- -	- />		- /- />	
DE-LV anterior wall, n 97 2 (6.5) 0 (0) 2 (2.1) 0.100	_V anterior wall, n	97	2 (6.5)	0 (0)	2 (2.1)	0.100
	· · · ·	~ =		0 (0)	0 (0 1)	0.100
DE-LV anterolateral wall, 97 2 (6.5) $0(0)$ 2 (2.1) 0.100	_V anterolateral wall,	97	2 (6.5)	0(0)	2 (2.1)	0.100

612 Table 2. Echocardiographic and cardiac magnetic resonance imaging (CMR) results

613

614 DE-delayed enhancement, MVP-mitral valve prolapse, LV-left ventricle, PVC-premature ventricular contraction, SCA-sudden cardiac arrest, SD-standard deviation

<u> </u>	Sample	MVP-PVC	MVP-SCA	Total	P value
	size				
Electrocardiography					
QTc, msec (SD)	174	445.3 (25.0)	438.1 (24.3)	440.5 (24.7)	0.072
Anteroseptal (V1-V4) TWI, n	174	12 (20.7)	23 (19.8)	35 (20.1)	1.000
(%)					
Anterolateral (V5-V6), TWI, n	174	4 (6.9)	26 (22.4)	30 (17.2)	0.011
(%)					
Inferolateral (II, III, aVF, I,	174	29 (50.0)	69 (59.5)	98 (56.3)	0.234
aVL) TWI, n (%)					
Ambulatory cardiac monitoring					
PVC burden, % (SD)	128	9.6 (9.6)	6.4 (7.0)	7.6 (8.2)	0.031
PVC RBBB morphology, n (%)	71	25 (86.2)	38 (90.5)	63 (88.7)	0.708
PVC LBBB morphology, n (%)	71	3 (10.3)	2 (4.8)	5 (7.0)	0.393
PVC bigeminy, n (%)	100	33 (91.7)	44 (68.8)	77 (77.0)	0.012
NSVT, n (%)	128	38 (80.9)	58 (71.6)	96 (75.0)	0.293
NSVT >180 bpm, n (%)	82	14 (45.2)	15 (29.4)	29 (35.4)	0.162

615	Table 3.	. Electrocardiogr	aphic and	ambulatory	cardiac	monitoring	results
~						THE THE FLIT	

616

617 Bpm-beats per minute, LBBB-left bundle branch block, MVP-mitral valve prolapse, NSVTnon-sustained ventricular tachycardia, PVC-premature ventricular contraction, RBBB-right bundle branch block, SCA-sudden cardiac arrest, SD-standard deviation, TWI-T wave inversions

ICD placed during follow-up, n (%) MV surgery during follow-up, n (%) EPS performed, n (%) EPS positive, n (%) PVC ablation, n (%) VT ablation, n (%) EPS-electrophysiology s mitral valve prolapse, F VT-ventricular tachycar	216 195 150 72 207 146 study, ICD-in PVC-prematu rdia	33 (47.8) 3 (5.6) 27 (64.3) 12 (44.4) 35 (54.7) 8 (18.2) mplantable care are ventricular	128 (87.1) 11 (7.8) 45 (41.7) 30 (66.7) 50 (35.0) 18 (17.7) diac defibrillato contraction, SC	161 (74.5) 14 (7.2) 72 (48.0) 42 (58.3) 85 (41.1) 26 (17.8) or, MV-mitral v CA-sudden card	<0.001 0.761 0.018 0.085 0.008 1.000 valve, MVP- diac arrest,
follow-up, n (%) MV surgery during follow-up, n (%) EPS performed, n (%) EPS positive, n (%) PVC ablation, n (%) <u>VT ablation, n (%)</u> EPS-electrophysiology s mitral valve prolapse, F VT-ventricular tachycar	195 150 72 207 146 study, ICD-in PVC-prematu rdia	3 (5.6) 27 (64.3) 12 (44.4) 35 (54.7) 8 (18.2) nplantable card are ventricular	11 (7.8) 45 (41.7) 30 (66.7) 50 (35.0) 18 (17.7) diac defibrillato contraction, SC	14 (7.2) 72 (48.0) 42 (58.3) 85 (41.1) 26 (17.8) or, MV-mitral v CA-sudden card	0.761 0.018 0.085 0.008 1.000 valve, MVP- diac arrest,
MV surgery during follow-up, n (%) EPS performed, n (%) EPS positive, n (%) PVC ablation, n (%) <u>VT ablation, n (%)</u> EPS-electrophysiology s mitral valve prolapse, F VT-ventricular tachycar	195 150 72 207 146 study, ICD-in PVC-prematu rdia	3 (5.6) 27 (64.3) 12 (44.4) 35 (54.7) 8 (18.2) nplantable care are ventricular	11 (7.8) 45 (41.7) 30 (66.7) 50 (35.0) 18 (17.7) diac defibrillato contraction, SC	14 (7.2) 72 (48.0) 42 (58.3) 85 (41.1) 26 (17.8) or, MV-mitral v CA-sudden card	0.761 0.018 0.085 0.008 1.000 valve, MVP- diac arrest,
follow-up, n (%) EPS performed, n (%) EPS positive, n (%) PVC ablation, n (%) <u>VT ablation, n (%)</u> EPS-electrophysiology s mitral valve prolapse, F VT-ventricular tachycar	150 72 207 146 study, ICD-in PVC-prematu rdia	27 (64.3) 12 (44.4) 35 (54.7) 8 (18.2) nplantable care are ventricular	45 (41.7) 30 (66.7) 50 (35.0) 18 (17.7) diac defibrillato contraction, SC	72 (48.0) 42 (58.3) 85 (41.1) 26 (17.8) or, MV-mitral v CA-sudden card	0.018 0.085 0.008 1.000 valve, MVP- diac arrest,
EPS performed, n (%) EPS positive, n (%) PVC ablation, n (%) <u>VT ablation, n (%)</u> EPS-electrophysiology s mitral valve prolapse, F VT-ventricular tachycar	150 72 207 146 study, ICD-in PVC-prematu rdia	27 (64.3) 12 (44.4) 35 (54.7) 8 (18.2) nplantable card are ventricular	45 (41.7) 30 (66.7) 50 (35.0) 18 (17.7) diac defibrillato contraction, SC	72 (48.0) 42 (58.3) 85 (41.1) 26 (17.8) or, MV-mitral v CA-sudden card	0.018 0.085 0.008 1.000 valve, MVP- diac arrest,
(%) EPS positive, n (%) PVC ablation, n (%) <u>VT ablation, n (%)</u> EPS-electrophysiology s mitral valve prolapse, F VT-ventricular tachycar	72 207 146 study, ICD-in PVC-prematu rdia	12 (44.4) 35 (54.7) 8 (18.2) nplantable care	30 (66.7) 50 (35.0) 18 (17.7) diac defibrillato contraction, SC	42 (58.3) 85 (41.1) 26 (17.8) or, MV-mitral v CA-sudden carc	0.085 0.008 1.000 valve, MVP- diac arrest,
EPS positive, n (%) PVC ablation, n (%) VT ablation, n (%) EPS-electrophysiology s mitral valve prolapse, F VT-ventricular tachycar	72 207 146 study, ICD-in PVC-prematu rdia	12 (44.4) 35 (54.7) 8 (18.2) nplantable card are ventricular	30 (66.7) 50 (35.0) <u>18 (17.7)</u> diac defibrillato contraction, SC	42 (58.3) 85 (41.1) 26 (17.8) or, MV-mitral v CA-sudden card	0.085 0.008 1.000 valve, MVP- diac arrest,
PVC ablation, n (%) <u>VT ablation, n (%)</u> EPS-electrophysiology s mitral valve prolapse, F VT-ventricular tachycar	207 146 study, ICD-in PVC-prematu rdia	35 (54.7) <u>8 (18.2)</u> nplantable caro ire ventricular	50 (35.0) <u>18 (17.7)</u> diac defibrillato contraction, SC	85 (41.1) 26 (17.8) or, MV-mitral v CA-sudden card	0.008 1.000 valve, MVP- diac arrest,
VT ablation, n (%) EPS-electrophysiology mitral valve prolapse, F VT-ventricular tachycar	<u>146</u> study, ICD-in PVC-prematu rdia	<u>8 (18.2)</u> nplantable caro ure ventricular	<u>18 (17.7)</u> diac defibrillato contraction, SC	26 (17.8) or, MV-mitral v CA-sudden carc	1.000 valve, MVP [.] diac arrest,
EPS-electrophysiology s mitral valve prolapse, F VT-ventricular tachycar	study, ICD-in PVC-prematu rdia	nplantable caro	diac defibrillato contraction, SC	or, MV-mitral v A-sudden carc	valve, MVP diac arrest,

618 Table 4. Percutaneous catheter ablation, cardiac implantable device therapy, and surgical

650

651 Figure 1. Ventricular arrhythmias in the AMVPS registry. A) The proportions of patients in the

652 MVP-PVC versus MVP-SCA groups. B) Specific ventricular arrhythmias for the MVP-SCA

653 group. Some subjects had more than one type of ventricular arrhythmia.

654

- 656
- 657
- 658
- 659

Figure 2. Representative AMVPS subject with PVC bigeminy, bileaflet MVP, MAD and mitral
annular origin of PVCs. A) Frequent right bundle superior axis PVCs B) CMR 3 chamber view
of the same subject with bileaflet MVP (arrow) and MAD (bracket) C) Electroanatomic map
created during invasive catheter ablation showing bipolar voltage and identifying a matching
focus (arrow) of the PVC at the mitral annulus in an area of abnormal voltage.

- ----

681 Figure 3. Sites of origin for PVCs and VTs in subjects undergoing catheter ablation. A)

682 Schematic demonstrating sites of origin for PVCs in 85 patients that underwent PVC ablation. B)

683 Sites of origin for VTs in 26 patients that underwent VT ablation. Some subjects had more than

684 one focus of PVC or VT.

Figure 4. Multivariable logistic regression model. Model analyzing the association of a history
of syncope, beta blocker prescription, mitral valve (MV) surgery, and anterolateral TWI with
SCA or VT/VF.

706

707

Figure 5. The Arrhythmogenic Mitral Valve Prolapse Syndrome (AMVPS): phenotype, 708 709 arrhythmias, and risk factors for SCA. Subjects with AMVPS have a typical phenotype with 710 associated clinical, electrocardiographic, echocardiographic findings, and cardiac magnetic 711 resonance imaging (MRI) characteristics (left column). These patients are at risk for otherwise 712 unexplained ventricular arrhythmias including SCA, VT/VF, and significant PVCs (middle 713 column). Clinical and electrocardiographic features more common in MVP patients with SCA or 714 sustained VT/VF compared to PVC patients are shown in the red box (right column, top half) 715 and features less common in SCA patients compared to PVC patients are shown in the green box 716 (right column, bottom half).