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1 Abstract

In this paper, we present a simple model that shows how to optimally target
interventions based on the estimated risk of infectiousness of individuals. Our
model can help policymakers decide when to use different types of interventions
during a pandemic, depending on their precision, which is the fraction of pos-
itive predictions that are true positives. We show that targeted interventions,
even with very low precision, can impose a much smaller overall burden on the
population than non-targeted alternatives, such as lockdowns or mass testing.
To illustrate this, we use data from the NHS contact tracing system in the UK
to construct a risk function based on second degree contact tracing, which is
similar to the strategy used by Vietnam in 2020. We find that with moderate
precision (greater than 1/1000) and sufficient sensitivity (greater than 1−1/R0),
countries can cope with a large number of imported cases without resorting to
social distancing measures, while keeping the per-person probabilities of both
infection and quarantine very low. We also show that targeted strategies are
often orders of magnitude better than default strategies, making them robustly
beneficial even under significant uncertainty about most parameters.

2 Introduction

Pandemics impose a huge burden, both directly on health, and indirectly via
the cost of interventions used to contain them. In future pandemics, effective
vaccines and medication may not be immediately be available. In these cases,
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non-pharmaceutical interventions (NPIs) may be the only disease containment
option for months or years, whether implemented by government decree or spon-
taneously by individuals. Several studies have investigated the use of optimal
control to most effectively contain pandemics [1, 2, 3, 4], but they focused on
the optimal timecourse of population-wide interventions, where all options are
costly. For this reason, Camelo et al. analyzed the approach of targeting social
distancing based on age and activity, with the goal of reducing the chance of
infection amongst those most likely to experience severe disease [5].

Targeting can focus on those most at risk of infecting others, rather than
those most at risk of severe outcomes if infected. Birge et al. modeled the
targeted closure of neighborhoods in New York based on local disease preva-
lence [6]. Abdin et al. considered allocation of tests among compartments (e.g.
symptomatic vs. asymptomatic individuals, or regions) on the basis of potential
to stem onward transmission [7]. Using the estimated risk of infectiousness can
achieve the greatest reduction in transmission with the lowest burden inflicted
by control measures on the population. A qualitative version of this logic under-
lies several standard practices, including testing and quarantine of individuals
identified through contact tracing or symptoms. Explicit modeling of this gen-
eral approach is useful because it reveals when exactly it is helpful to use each
type of targeted intervention (based on estimated risk of infectiousness and dis-
ease prevalence). Furthermore, it reveals the potential for enormous reductions
in the cost of disease control using only moderately informative estimates of in-
fectiousness risk - which could potentially be achieved with existing technology
and infrastructure in many countries.

In [8], we evaluated how the risk of infectiousness of a given individual could
be used to make optimal quarantine decisions at the margin. In this manuscript,
we build a simplified model for an entire population, showing how disease control
capabilities depend on the available distribution of estimated infectiousness (for
example, as a function of symptoms, test results, contact tracing, geographic
base rate or profession). We will show that the per capita cost of a targeted
disease control strategy is proportional to the number of infected individuals,
rather than proportional to the total population. Since disease prevalence can
vary over many orders of magnitude (100 to 10−9) in a large population, so can
the per capita cost of disease control. Here cost means the total burden of both
control measures and disease on the population, in units of quality-adjusted
life years [9] or similar. Because quantities vary over such a scale, even very
imprecise information (e.g. about disease state, control costs, and population
risk) can be used to perform order of magnitude estimates to produce highly
actionable recommendations.

We frame the decision of how to make targeted recommendations for social
distancing as an optimization problem making use of estimated risk of infec-
tiousness for individuals within the population. The objective function of this
optimization problem depends on the cost of social distancing for a single indi-
vidual as a function of the degree of distancing. We show that when this cost
function is either linear or strongly convex, the optimization problem can be
simplified and solved efficiently.
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For simplicity we assume that individuals are either infectious or not, but
the analysis in this manuscript is also valid (and more accurate) if risk of be-
ing infectious is replaced with expected transmissions from each individual. A
method of classifying infectiousness risk can be summarized based on its preci-
sion (True Positives / (True Positives + False Positives)) and sensitivity (True
Positives / (True Positives + False Negatives)). Note that correctly detecting
all infectious individuals 3 days into a 10 day infectious period would correspond
to a sensitivity of 70%. Our assumption removes the complication of timing, in
which some days of peak infectiousness are more important than others. In Sec-
tion 5 we show how sensitivity and precision impact the minimum cost needed
to achieve a certain level of disease control.

As an example, consider a country with a population of 100M dealing with
100 daily importations of a pathogen with R0 = 3 and an infectious period of 5
days. With no controls, the cumulative per-person probability of infection would
rise to around 70% 1, with most people infected at a time during which medical
resources are unavailable. With only broad controls, a persistent 76% reduction2

in social contact would be required to reduce the annual chance of infection to
1/1000 during the wait for a vaccine or effective treatment. In comparison,
an intervention with 1% precision and 80% sensitivity could achieve the same
1/1000 annual chance of infection at an expected cost of 0.4 days in quarantine
per person per year, i.e. 0̃.01% temporally focused reduction in social contact.
Either increasing the precision to 10% or decreasing the daily importations to
10 would reduce the cost to 0.04 expected days of quarantine per year.

3 Model

3.1 Risk Function

Figure 1 shows how we construct a function describing the distribution of esti-
mated relative infectiousness in a population. This normalized risk as a function
of quantile function, f(q), will always be positive, monotonically decreasing, and
integrate to 1. It could take a variety of forms depending on the information
used, sophistication of risk analysis, as well as specifics of the population and dis-
ease. In Section 5 we will investigate how the shape of this function (specifically
the concentration of infection risk) influences the cost of disease containment.

3.2 Targeted Control of Transmission

In this model, we consider the ability to target interventions towards different
portions of the population. For example, at-home isolation is a control policy
targeted at particular individuals. The function D(q) represents the effect of
the targeted policy as the fractional reduction of expected transmissions from

11− 1/R0 = 0.66 with some overshoot
2Calculated based on steady infection level of I = 5 ∗ (100/100e6 + 1/1000 ∗ 1/365) and

social distancing set so derivative in Equation 4 is zero: β = (Aτ
I

+R0 − 1)/R0 = 0.76
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In the very simplest form the risk is consid-
ered uniform across the entire population
(we may not be certain about the absolute
magnitude of risk, but the distribution will
be normalized, so this does not matter).
Each bar in the figure to the left represents
the estimated risk of infectiousness of an
individual, and the individuals are sorted
by an arbitrary criteria (e.g. alphabetical
order of names).
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In the second simplest (and much more
useful) form, the population is split accord-
ing to a single criterion (e.g. self reported
symptoms). A fraction of each of these
two subpopulations can be tested to esti-
mate the disease prevalence in each of these
groups. The prevalence in the two tested
subpopulations can be used to estimate the
risk of being infectious with and without
symptoms for everyone in the whole popu-
lation. We sort the population by decreas-
ing risk.
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A continuous representation of population
quantiles is more convenient than a dis-
crete representation of individuals. We
construct a corresponding continuous ver-
sion of the risk function by interpolat-
ing between discrete risk values in the y
axis. Finally, we normalize the risk func-
tion (so that its integral is 1) so that it
describes the relative rather than absolute
risk within the population. Normaliza-
tion is convenient because many strategies
depend more on the fractional reduction
in reproduction number than the disease
prevalence.

Figure 1: Example steps to construct infection risk function.
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an infected person who is at risk quantile q. Assuming the risk estimator is
unbiased, the population-wide fractional reduction in transmissions, β, caused
by the control policy is:

β =

∫ 1

0

f(q)D(q)dq (1)

And the modified reproduction number (assuming negligible population im-
munity) is:

Rt = R0 · (1− β) (2)

3.3 Dynamics

Assuming the generation time, τ , is roughly unchanged by applied interventions,
the Malthusian growth rate, rt can be computed as shown in Equation 3 [10].

rt =
Rt − 1

τ
(3)

From Equation 2, we have Rt = R0(1 − β) (assuming that the majority of
the population remains susceptible3). With an import rate of A cases per unit
time divided by the total population size, the infection dynamics are given by
Equation 4.

dI

dt
= rtI +A =

R0(1− β)− 1

τ
I +A (4)

Here I(t) ∈ [0, 1] is the fraction of the population that is infected (and
infectious) at time t.

4 Minimizing Cost of Disease Control

For a given value of Rt, it is clearly beneficial to choose the control strategy
that minimizes the burden on the population. Because we’ve chosen to fix Rt,
health outcomes are constant and so their cost doesn’t need to be considered.
As in [8], we assume there is a convex function, Cost(d), describing the per-
person-day cost of reducing transmissions by fraction d. The policy choice can
be expressed as the following optimization problem over potential transmission
reduction functions, D(q) ∈ [0, 1] → [0, 1] (with β = 1−Rt/R0 as before) :

min
D∈[0,1]→[0,1]

∫ 1

0

Cost(D(q))dq

s.t.

∫ 1

0

f(q)D(q)dq ≥ β

(5)

If Cost() is an increasing linear function, then an optimal strategy4 is given

3Valid if I < 1/1000 and T < 100τ , so that S(t) = S(0)−
∫ T
0 I(t)/τdt ≥ 1− 100τ

1000τ
= 9

10
S(0)

4for the linear case the optimal strategy may not be unique
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by Equation 6 (Proof in Appendix A). Here F (σ) =
∫ σ

0
f(q)dq is the integral

of the risk function. This solution applies all interventions to the highest risk
fraction of the population until the required reduction in transmissions has been
achieved.

D∗(q) =

{
1 if q ≤ F−1(β)

0 if q > F−1(β)
(6)

If Cost() is a strongly convex function (i.e. if twice the reduction in social
contact incurs much more than twice the cost to the individual) then the opti-
mization problem over the space of functionsD() can be reduced to optimization
of a single scalar value, µβ . The proof for this is in Appendix B and the easier
form of Equation 5 is:

min
µβ∈R+

0

µβ

s.t.

∫ 1

0

f(q)Dµβ
(q)dq ≥ β

(7)

With Dµβ
(q) defined as:

Dµβ
(q) =


1 if [dCost(D)

dD ]D=1 ≤ µβf(q)

0 if [dCost(D)
dD ]D=0 ≥ µβf(q)

d, s.t. µβf(q) ∈ [dCost(D)
dD ]D=d otherwise

(8)

This solution essentially applies maximum control to any portion of the
population exceeding a risk threshold, no control to any portion below another
risk threshold, and intermediate levels of control depending on risk and the
slope of the cost function for the remainder. Both solutions 6 and 7 can be
numerically solved very efficiently.

5 Dependence on Sensitivity and Precision

Many NPIs and other interventions can be characterized by their precision (True
Positives / (True Positives + False Positives)) and sensitivity (True Positives
/ (True Positives + False Negatives)). As an example, a mass testing strategy
that detects half of all infected individuals during half of their infectious window
would have a sensitivity of 25%. The precision depends on the number of non-
infected contacts multiplied by the number of days that they meet the same
criteria (per true positive). Early contact tracing studies for COVID-19 found
a secondary attack rate (SAR) of 1% amongst casual contacts [11]. If strategies
like testing to reduce quarantine time are not used, then the precision would
be slightly lower than this SAR (because all contacts would be recommended
to quarantine for longer than the infectious period). Several other strategies
could similarly be characterized using precision and sensitivity: for example,
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quarantining residential areas based on wastewater surveillance might have (at
worst) a precision equal to the inverse of the wastewater catchment size and a
sensitivity depending on the reliability (and timing) of detection.

Given the sensitivity and precision, a simplified version of the risk function
can be constructed as a piece-wise constant function with two categories, as in
Equation 9.

f(q) =

{
r1 if q ∈ [0, a]

r2 if q ∈ (a, 1]
(9)

The parameters a, r1, and r2 are initially unknown, but can be solved for us-
ing the disease prevalence I, sensitivity γ, and precision ρ. Equation 10 describes
the proportion a classed as “positive”, a fraction proportional to r1 of which are
True Positives. The normalization of the risk function to 1 conveniently makes
the product a · r1 equal to the sensitivity γ. Equation 11 specifies that the ratio
of true positives (Iγ) to true and false positives (a) equals the precision (ρ).
Equation 12 requires that the resulting risk function is normalized.

γ = ar1 (10)

ρ = Iγ/a (11)

ar1 + (1− a)r2 = 1 (12)

The parameters describing the piecewise function are then:

a = Iγ/ρ (13)

r1 = ρ/I (14)

r2 =
1− γ

1− Iγ/ρ
(15)

One additional requirement is imposed: if the filter is ‘worse’ than randomly
guessing (precision < prevalence), then a uniform risk function is used instead
(r1 = r2 = 1). In practice we likely would still want to use this information,
but it would not provide a huge benefit, so this approximation is reasonable for
an order-of-magnitude analysis. This requirement prevents nonsensical answers
with a > 1 or r1 < r2.

With the risk function constructed, the minimum cost control policy can be
evaluated for any combination of control, prevalence, sensitivity and precision.
Equation 16 is the cost of the optimal solution when Cost(d) = d (Proof in
Appendix D). This is the lowest achievable cost when reducing transmissions
by fraction β using a filter with sensitivity γ and precision ρ.
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MinControlCost(β, I, γ, ρ) =


β, ρ ≤ I
βI
ρ , (β ≤ γ) and (ρ > I)
β−γ+(1−β)Iγ/ρ

1−γ , (β > γ) and (ρ > I)

(16)

Figure 2 shows the minimum cost of control for filters with different precision
and sensitivity. When the required level of control exceeds the sensitivity of
the filter, the cost increases dramatically because the entire population must
socially distance. The dependence on precision is much less sharp - so long
as precision exceeds disease prevalence the filter provides some benefit. The
bottom left region of each subplot in Figure 2 represents the second condition
in Equation 16, in which both sensitivity and precision are adequate. In this
region, Cost = βI

ρ , so the cost of the intervention is proportional to I/ρ. This
means that the absolute value of precision is not important, but only the relative
size compared to disease prevalence. So for example, a filter with a precision of
10−5 could be extremely useful when I < 10−7.

6 Example Risk Functions: First and Second
Degree Contact Tracing

We can similarly analyze the usefulness of empirically estimated infection risk
among notified contacts using data from the NHS COVID-19 app published in
Ferretti, Wymant et al. [12]. The data is split using a risk-scoring algorithm that
divides each notified contact into one of 14 bins based on duration and proximity
of exposure. The risk of infection is measured by recording the fraction of
contacts within each bin that report a positive test after being notified5. This
yields a piecewise constant (not-yet normalized) risk function, fC1

(q) where q
now represents quantile within contacts instead of within the population.

The information on risk among first degree contacts can be extrapolated to
estimate infection risk amongst second degree contacts. This is useful to model
whether it would be beneficial to expand to second degree contact tracing, an
optional that the scaling offered by digital contact tracing makes much more
practicable. The main motivation for considering second degree (forward) con-
tact tracing is if the speed of transmission is so fast that by the time first degree
contacts have been notified they may have already infected others 6. One so-
lution is to make testing and contact tracing faster, but if that isn’t possible
another option is to immediately notify second degree contacts.

Given the fraction of all infections that are detected as first (pI1) degree
contacts, and that are detected as second degree (pI2) contacts, we can con-
struct f(q) for the whole population. We assume that the risk distribution from

5This is an underestimate of infection risk because not all infected contacts will be tested
or test positive. Because this is an underestimate of infection risk it provides a lower bound
on the usefulness of risk information from digital contact tracing

6Backward contact tracing is not modeled here, but it can be used to alleviate difficulties
with case detection
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Figure 2: Minimum per-capita cost of control depending on required fractional
reduction in expected transmissions (x axis) and disease prevalence (y axis).
Results are shown for a linear cost function where total social isolation is a cost
of 1. Horizontally, subpanels vary according to sensitivity γ, while vertically
they vary according to precision . The horizontal line in each plot is set at the
threshold where ρ = I (above which there is insufficient precising for targeting),
and the vertical line is set so β = γ (to the right of which even perfect isolation
of targeted individuals is insufficient without also introducing population-wide
measures). Each of the sub-regions split by the dotted blue lines corresponds
with a case in Equation 16.

detected first degree contacts is representative so that without interventions
there are an average of R0/E[risk of infection|contact] contacts per infected in-
dividual. We assume for simplicity each contact is a unique individual. The
approach used to create the combined risk function is described in Appendix E.
Assuming that very reliable contact tracing is being done, but disease spread is
quite fast (e.g. influenza with a generation time between 2-4 days [13]), we may
prevent roughly half of transmissions via first degree tracing, so that second
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degree contacts would have the majority of the remaining infection risk. In this
scenario (and assuming a very high test reporting rate), pI1 = pI2 = 0.45 is a
potential allocation of infection risk.

Figure 3 shows the risk quantile function using just first degree tracing (pI1 =
0.45, pI2 = 0) and both first and second degree tracing (pI1 = pI2 = 0.45). The
highest risk individuals are first degree contacts, so the functions superimpose
on the left. However, when low disease prevalence makes it useful to distinguish
among lower risk individuals, second degree tracing makes this possible.

The minimum possible cost of achieving a fractional reduction in transmis-
sions can be computed for these two risk quantile functions. With a linear social
distancing cost function (Cost(d) = d), the minimum cost of control is the in-
verse of the integral of f(q) (as shown in Appendix A). Figure 4 is constructed
using this approach, showing the minimum cost of control for different values
of disease prevalence. Both sub-figures are similar when the required control is
low, however the scenario with second degree tracing included is able to achieve
higher control values at much lower cost when the disease prevalence (I) is less
than 10−4.
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Figure 3: Risk function for first degree contact tracing (red) and both first
and second degree contact tracing (blue). Due to assumption of non-clustered
contact network structure, the addition of second degree tracing doesn’t change
high-risk estimates. However, it provides significantly more information about
moderate risk contacts. As discussed before, the value of this moderate-risk
information depends on disease prevalence.
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Figure 4: Minimum cost of control (for various values of fraction reduction in
transmissions, β, and the fraction of the population infected, I) using the risk
function from first degree contact tracing (A) and both first and second degree
contact tracing (B). For low values of β, the cost is similar. For higher values
of β and with I < 10−3, having access to risk information from second degree
contact tracing dramatically lowers the cost of control.

7 Optimizing trade-offs between health and the
burden of disease control

By assigning a cost to each infection, we can find the optimal control strategy
that minimizes a weighted sum of control costs and infection costs by varying β.
The cost per infection can be expressed in the same units as the cost of control
using a metric like Quality Adjusted Life Years [9]. There may be uncertainty
about the exact weights to assign to different outcomes, but these will likely be
within an order of magnitude. The minimum possible cost of a disease trajectory
(again assuming that infection-acquired immunity is negligible) from time 0 to
T is then:

∫ T

0

[MinControlCost(β(t), I(t), γ, ρ) + InfectionCost · I(t)/τ ]dt (17)

I(t) and β(t) are directly linked because the applied control influences the
infection rate as shown in Equation 4.

7.1 Application: Steady Imported Cases

If possible, complete elimination of novel pandemics is often the most efficient
option. However, complete disease elimination can be very difficult to achieve
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after substantial global spread. Strict border control to partially prevent local
introductions of a pathogen is another option, although restricted travel does
have a cost. The optimization problem with a variable importation rate is posed
in Appendix F. For simplicity, in this section we will assume that the number
of daily imported cases is fixed (this could happen if public health has limited
control over movement into the region). Within this importation constraint, we
can search for the best local disease control strategy.

We will further simplify the problem by restricting our search to (quasi)
stationary solutions. We can find (quasi) stationary solutions by choosing β and
I so the rate of change in Equation 4 is zero. With A and I set, the fractional
reduction in transmissions (β) is constrained such that β = 1− I−τ ·A

R0I
.

The ongoing cost (per-person daily expected reduction in quality-adjusted-
life from infection and disease mitigation) of a stationary solution can be cal-
culated using Equation 17. Figure 5 shows an example of how cost depends
on disease prevalence for a few scenarios with access to filters of different pre-
cision and sensitivity. In this example, R0 = 3, 100 cases are imported daily
in a country with a population of 100 million, and the cost of each infection
is 292 isolation days (equal to a 2% chance of a 20 year reduction in lifespan,
then multiplied by 2 under the assumption that a day of full isolation is half
the cost of dying a day earlier). At high disease prevalence, the expected cost
of infection dominates the sum. As disease prevalence decreases, the cost of
control remains similar but the cost of infection decreases, so the overall cost
goes down. For each of the scenarios, when disease prevalence becomes lower
than filter precision, the cost of control begins to decrease more rapidly. As the
disease prevalence becomes quite low, the relative importance of the imported
cases increases, so the fractional reduction in transmissions needs to be very
high. The fractional reduction in transmissions needed for stability exceeds 1.0
when I < A · τ , which is not possible to achieve. For all of these curves, the on-
going cost can be minimized by choosing a disease prevalence that is set by the
tradeoff between required control (which decreases with increasing prevalence),
cost of control (which increases with prevalence at a rate depending on filter
characteristics), and cost of disease (which obviously increases with prevalence).

This minimization problem is described by Equation 18. Figure 6 shows
the minimum cost of stable disease control as precision and sensitivity vary for
scenarios with different values of R0 and import rate (A). In most scenarios, if
γ > (1−1/R0) and ρ > 200Aτ , then the per-person cost is less than 0.01 (in units
of fraction of time in isolation). This is reasonable, because having a sensitivity
greater than 1− 1/R0 allows the disease to be controlled entirely with targeted
interventions. Having a precision greater than 200Aτ means that with strong
control, I could be held around 2Aτ , and the fraction of the population impacted
by targeted interventions at a time would be less than I

ρ = 2Aτ
200Aτ = 1

100 .

min
β∈[0,1],I∈[0,1]

MinControlCost(β, γ, ρ) + I ∗ InfectionCost/τ

s.t. 0 =
R0(1− β)− 1

τ
I +A

(18)
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Figure 5: Daily per-person cost (in units of isolation-days) depending on dis-
ease prevalence, with control constrained so the system is stable (dI/dt = 0 in
Equation 4) given imported cases. Each curve shows the minimum possible cost
depending on the sensitivity and precision of the available filter. The curves
differentiate when they reach the disease prevalence where the available preci-
sion becomes useful (precision greater than disease prevalence). High sensitivity
filters (the two examples with 90%) are able to achieve low-cost equilibria near
I = 1e− 5. The cost of all scenarios increases at low disease prevalence because
the relative influence of imported cases increases, meaning the fractional reduc-
tion in transmissions needs to be larger to maintain stability. At higher disease
prevalence (> 1/1000), the daily cost increases because the cost of infection
becomes significant.

With a filter sensitivity large enough to independently control transmis-
sion with targeted interventions (γ > 1 − 1/R0), each introduction results in

1
1−R0(1−γ) additional infections, τ(

1
1−R0(1−γ) ) infectious days, and

τ
ρ (

1
1−R0(1−γ) )

days of quarantine or isolation. With a reasonably good filter (e.g ρ = 1/100,
R0(1− γ) = 0.8), the cost per introduction could be on the order of 103 or 104

quarantine days. In a large country (e.g. with 108 people), the per-capita cost
per introduction could be on the order of 10−4 or 10−5 expected quarantine
days. As an example, with A = 10−6 (100 introductions per day in a country
of 100M), τ = 5, R0 = 3, γ = 0.8, and ρ = 1/100, the annual chance of in-
fection is 1/1095, and the expected annual number of days in isolation is 0.45.
In general, this means that while a large number of importations would require
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Figure 6: Minimum cost of stable (dI/dt = 0) control depending on filter pre-
cision and sensitivity. Each panel is for a scenario with different values of R0

and importation rate (A). The cost is in units of Quality Adjusted Days per
person, and is the sum of the average burden imposed by disease control and
risk adjusted cost of infection. The low cost region (Cost < 0.01) is roughly
bounded by γ > 1− 1/R0 and ρ > 200Aτ in each sub-figure.

an unsustainable cost of control, with a moderate or low importation rate and
a sufficiently strong filter, disease control would not significantly impact the
average person.

8 Discussion

In this manuscript we developed computational tools to optimally target in-
terventions based on risk of infectiousness. We showed that in some scenarios
risk-targeted interventions can reduce the cost of disease control by several or-
ders of magnitude compared to broad distancing. These methods can either be
used to optimize interventions for specific infection risk and cost functions, or
to provide more general recommendations based on a reasonable cost function
and the summarized precision and sensitivity of a candidate filter.

In general, the cost of targeted interventions depends on precision relative to
disease prevalence, not absolute precision7. Because of this, disease control gets
much more efficient if the infection rate in the population can be reduced. The

7Similar to the dependence of the optimal risk threshold on disease prevalence in [8]

14

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 6, 2023. ; https://doi.org/10.1101/2023.10.06.23296661doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.06.23296661
http://creativecommons.org/licenses/by/4.0/


importation rate limits the minimum achievable disease prevalence because even
with Rt below 1, imported cases can sustain the epidemic. If it is possible to
control the importation rate, the optimal combined strategy can be computed
as described in Appendix F. Even if the importation rate cannot be reduced to
zero, low cost control can still be achieved with access to a sufficiently sensitive
and precise filter.

High precision filters are preferable, but in some scenarios the ability to make
use of lower precision information could enable disease control with targeted in-
terventions where it was previously not possible. Lower precision information is
often faster, more reliable, and cheaper to collect. For example, testing wastew-
ater for every 10,000 homes is much easier to do than individually testing the
entire population (especially in the beginning of a pandemic when testing ca-
pacity is lower).

Many existing strategies only roughly estimate infection risk. For order-of-
magnitude estimates this is sufficient, but there is substantial room for refine-
ment. Data on potential risk factors combined with test results can be used
to train statistical models to much more accurately predict infection risk. As
an example, Ferretti and Wymant et al [12] use data from the NHS app to
train gradient-boosted trees to predict infection status based on duration and
proximity of exposure. Isotonic regression [14] can be used to convert model
prediction scores into calibrated probabilities.

The analysis in this manuscript is conditioned on the decision to perform
highly successful disease control where the vast majority of the population is
not infected. It would be prudent to separately compare the ongoing cost of
control against alternatives like mass infection, including in the wake of the
development of an only partially effective vaccine.

Even when only a small fraction of the infected population can be detected
and convinced to isolate, targeting interventions based on infection risk can sig-
nificantly reduce the cost of disease control by partially substituting for broad
social distancing [8]. However, to reduce the cost by several orders of magnitude
by eliminating the need for broad social distancing altogether, the sensitivity
of targeted interventions must be greater than 1 − 1/R0. There are signifi-
cant real world challenges associated with achieving this level of sensitivity, but
some countries did demonstrate the success of targeting infection control based
on low precision information during the COVID-19 pandemic [15]. Duplicating
this approach in other countries is difficult because successful isolation of in-
fectious individuals is crucial, but many are not comfortable strongly enforcing
it. A potential solution is to strongly incentivize cooperation with important
recommendations, which we hope to investigate in future work. Despite exist-
ing challenges, the potential for huge reductions in the cost of disease control
motivates further investigation of risk-targeted strategies.
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Appendices

A Minimization with Linear Control Cost

For a linear (and positively sloped) control cost, Cost(d) = A ∗ d with A > 0,
the problem in Equation 5 is equivalent to the problem in Equation 19.

min
D∈[0,1]→[0,1]

∫ 1

0

D(q)dq

s.t.

∫ 1

0

f(q)D(q)dq ≥ β

(19)

Here we will show that the optimal solution to Equation 19 can be found by
solving the (easier) scalar optimization problem in Equation 20.

min
σ∈[0,1]

σ

s.t.

∫ 1

0

f(q)Dσ(q)dq ≥ β
(20)

With:

Dσ(q) =

{
1 if q ≤ σ

0 if q > σ
(21)

Proof 8:
First, we note that any solution, Dσ(q), that is feasible for Equation 20

is also feasible for equation 19. Next we show that if Dσ∗(q) is optimal for
Equation 20 then it is also optimal for Equation 19.

Equation 19 has convex constraints and a linear objective function, so it
is a convex optimization problem. Therefore a locally optimal solution is also
globally optimal (but not necessarily unique). We will show that the solution
Dσ∗(q) is locally optimal for Equation 19 by demonstrating that any feasible
perturbations increase the objective value.

Let Ψa,b denote the set of functions with non-negative value, support [a, b],
and that integrate to 1. Then all feasible perturbations of Dσ∗(q) are contained
in:

{Dσ∗(q)− θψ1(q) + ϕψ2(q)|ψ1(q) ∈ Ψ0,σ∗ , ψ2(q) ∈ Ψσ∗,1, θ ≥ 0, ϕ ≥ 0} (22)

The optimal solution to 20, Dσ∗(q), must have
∫ 1

0
f(q)Dσ(q)dq = β because

if
∫ 1

0
f(q)Dσ(q)dq < β it would be infeasible and if

∫ 1

0
f(q)Dσ(q)dq > β then

the solution isn’t optimal because a lower objective value could be achieved

8There is likely also a way to show this is as an application of Pontryagin’s maximum
principle
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by reducing σ. Since
∫ 1

0
f(q)Dσ∗(q)dq = β, we must have θ

∫ 1

0
f(q)ψ1(q)dq ≤

ϕ
∫ 1

0
f(q)ψ2(q)dq so that the perturbed solution still satisfies the constraint.

Because the support of the two perturbation functions is known, the inequal-

ity can be rewritten as θ
∫ σ∗

0
f(q)ψ1(q)dq ≤ ϕ

∫ 1

σ∗ f(q)ψ2(q)dq. Since f(q) is
monotonically decreasing:

∫ σ∗

0

f(q)ψ1(q)dq ≥
∫ σ∗

0

f(σ∗)ψ1(q)dq = f(σ∗)

∫ σ∗

0

ψ1(q)dq = f(σ∗) (23)

And:

∫ 1

σ∗
f(q)ψ2(q)dq ≤

∫ 1

σ∗
f(σ∗)ψ2(q)dq = f(σ∗)

∫ 1

σ∗
ψ2(q)dq = f(σ∗) (24)

Therefore, for the perturbed solution to be feasible we require θf(σ∗) ≤
θ
∫ σ∗

0
f(q)ψ1(q)dq ≤ ϕ

∫ 1

σ∗ f(q)ψ2(q)dq ≤ ϕf(σ∗), or more simply θ ≤ ϕ.

The change in objective value from the perturbation is
∫ 1

0
(−θψ1(q) + ϕψ2(q))dq =

ϕ−θ. Because θ ≤ ϕ this means that for all feasible perturbations of Dσ∗(q) the
objective function does not decrease. Therefore Dσ∗(q) is locally and globally
optimal for Equation 19.

A.0.1 Rearranging results

Finally, we can further simplify the problem by rewriting Equations 20 and 21
as:

min
σ∈[0,1]

σ

s.t. F (σ) =

∫ σ

0

f(q)dq ≥ β
(25)

We’ve previously shown that the optimal solution to the problem must have
F (σ∗) = β. While F (q) < 1 it must be strictly increasing because there is
remaining risk so F ′(q) = f(q) > 0. Therefore, F (q) is invertible over the
domain of interest and we can write σ∗ = F−1(β). Therefore Equation 6 is
equivalent to, Dσ∗(q).

B Minimization with Strongly Convex Control
Cost

When the function Cost(d) in Equation 5 is strongly convex, then the opti-
mization over the space of functions D(q) can be replaced by the much easier
optimization over a single scalar value µβ in Equation 7.

Proof:
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We will show Equation 7 is equivalent to Equation 5 for any discretization
of D(q) and f(q) and take the limit as the discretization size goes to 0.

The discretized version of Equation 5 is:

min
d∈RN

N∑
i=1

1

N
Cost(di)

s.t.
N∑
i=1

1

N
dif(i/N) ≥ β

di ≥ 0∀i ∈ 1 : N

di ≤ 1∀i ∈ 1 : N

(26)

This is an optimization problem with a strongly convex objective and linear
constraints defining a compact, non-empty feasible space. Therefore any vector
satisfying the KKT conditions is globally optimal.

The KKT conditions for this problem are:

1

N
Cost′(di)− µ0,i + µ1,i − µβ

1

N
f(i/N) ∈ 0 ∀i ∈ 1 : N (27)

N∑
i=1

1

N
dif(i/N) ≥ β (28)

di ≥ 0 ∀i ∈ 1 : N

di ≤ 1 ∀i ∈ 1 : N
(29)

µ0,i ≥ 0 ∀i ∈ 1 : N

µ1,i ≥ 0 ∀i ∈ 1 : N

µβ ≥ 0

(30)

µ1,i(1− di) = 0 ∀i ∈ 1 : N

µ0,i · di = 0 ∀i ∈ 1 : N
(31)

Here Cost′(d) is the one dimensional subdifferential of Cost(d) (which must
exist because the function is strongly convex). µ0 corresponds to the dual
variables for the ≥ 0 constraint, µ1 for the ≤ 1 constraint, and µβ a single dual
variable for the disease control constraint.

The simplification is possible because for any value of µβ the vector d is
uniquely defined. By leaving β unspecified for now and fixing µβ we can compute
this unique solution. Due to the complementary slackness constraints, µ1,i is
zero unless di = 1 and µ0,i is zero unless di = 0. Each value of di will be either
0, 1, or a value between 0 and 1, so we can check each of these cases for equation
27 separately.

Case di = 0: 1
NCost

′(0)−µ0,i −µβ
1
N f(i/N) ∈ 0. Because Cost(d) is a non-

decreasing function9 Cost′(d) ≥ 0. µ0,i, µβ and f(i/N) are all non-negative, so
this equation is only be satisfied if 1

NCost
′(0) ≥ µβ

1
N f(i/N).

9it would not make sense for more distancing to reduce the cost
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Case di = 1: 1
NCost

′(1) + µ1,i − µβ
1
N f(i/N) ∈ 0. By similar reasoning, this

equation is only satisfied if 1
NCost

′(1) ≤ µβ
1
N f(i/N)

Case di ∈ (0, 1): 1
NCost

′(di) − µβ
1
N f(i/N) ∈ 0. For this equation to be

satisfied there must be some di ∈ (0, 1) s.t. 1
NCost

′(di) = µβ
1
N f(i/N).

Because Cost(d) is strongly convex, there are no two values di1, di2 with
di1 ̸= di2 s.t. Cost′(di1) = Cost′(di2). Therefore for any µβ and f(i/N),
Equation 27 has the following unique solution.

di(µβ) =


0 if Cost′(0) ≥ µβf(i/N)

1 if Cost′(1) ≤ µβf(i/N)

d∗ s.t. µβf(i/N) ∈ Cost′(d∗) otherwise

(32)

So for any value of µβ , there is a unique solution d(µβ). Each value di is
monotonically increasing with µβ so the fractional reduction in transmissions

(β), and the total cost (
∑N

i=1
1
NCost(di)) are also monotonically increasing with

µβ . Because Equation 26 must have a unique solution, it is sufficient to find
the smallest value of µβ such that the solution vector d(µβ) satisfies the control

constraint:
∑N

i=1
1
N dif(i/N) ≥ β. The simplified discretized problem is then:

min
µβ∈R+

0

µβ

s.t.
N∑
i=1

1

N
di(µβ)f(i/N) ≥ β

(33)

Taking the limit as N → ∞ yields Equation 7.

C Minimization of Linear Control Cost with Piece-
wise Constant Risk Function

For the case where the control cost is linear and the risk function is piecewise
constant with two segments it is useful (and possible) to generate an explicit
optimal solution.

In this case, f(q) is defined by Equation 9 (with 0 ≤ a ≤ 1 and 0 ≤ r1 ≤
r2 ≤ 1). Here, Equation 5 can be simplified to Equation 34.

min
D∈[0,1]→[0,1]

∫ 1

0

D(q)dq

s.t.

∫ a

0

r1D(q)dq +

∫ 1

a

r2D(q)dq ≥ β

(34)

One optimal solution can be computed using the simplification from Equa-
tion 20. This yields the following solution:
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Dσ∗(q) =

{
1 if q ≤ σ∗

0 if q > σ∗ (35)

With:

σ∗ =

{
β/r1 if a ≥ β/r1

a+ (β − ar1)/r2 otherwise
(36)

We will show there is another optimal solution for this case by constructing
it and demonstrating that it is feasible and obtains the same objective value as
solution 35.

This other optimal solution is:

D(q) =

{
d1 if q ∈ [0, a]

d2 if q ∈ (a, 1]
(37)

d1 = min(1,
β

ar1
) (38)

d2 =
β − ar1d1
(1− a)r2

=

{
0 if d1 ≤ 1
β−ar1
(1−a)r2

if d1 = 1
(39)

This solution essentially applies all control to the highest risk group until
that saturates (at d1 = 1) and then applies the remaining control needed to the
lower risk group.

Solution 37 satisfies the two constraints: d1, d2 ∈ [0, 1] if β ∈ [0, 1], and:

ad1r1 + (1− a)d2r2 =

{
ar1β/(ar1) if β ≤ ar1

ar1 + (1− a)r2
β−ar1
(1−a)r2

otherwise
= β (40)

Solution 37 has an objective value of:

ad1 + (1− a)d2 =

{
aβ/(ar1) if β ≤ ar1

a+ (1− a) β−ar1
(1−a)r2

otherwise
(41)

This objective value is identical to the one from solution 35 (which is just the
value of σ∗). Because the proposed solution is feasible and attains the optimal
objective, it is also optimal.

D Simplified Optimal Solution Given Filter Pre-
cision and Sensitivity

The solution from the previous section can be used for the special case where the
shape of the piece-wise risk function depends on filter sensitivity and precision
as given by equations 13, 14, and 15 (and again using a linear cost function).
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D(q) =

{
d1 if q ∈ [0, Iγ/ρ]

d2 if q ∈ (Iγ/ρ, 1]
(42)

d1 = min(1,
β

(Iγ/ρ)(ρ/I)
) (43)

d2 =
β − (Iγ/ρ)(ρ/I)d1

(1− Iγ/ρ)( 1−γ
1−Iγ/ρ )

=

{
0 if d1 ≤ 1

β−(Iγ/ρ)(ρ/I)

(1−Iγ/ρ)( 1−γ
1−Iγ/ρ

)
if d1 = 1

(44)

This solution can be simplified algebraically to yield the minimal objective
value given by Equation 16.

E Construction of whole-population risk quan-
tile function with first and second degree trac-
ing

The quantile function of second degree contact tracing risk (fC2(q)) can be
roughly constructed using fC1

(q). We assume that the contact network struc-
ture is tree-like, that is, there are no contacts that are notified of exposure
multiple times. In reality, the contact network structure is likely to be much
more clustered, with some people notified of exposure from multiple links; more
sophisticated models attempt to account for this [16]. The risk function gener-
ated by the ‘tree-like’ assumption is the least-dense possible, and so it provides
a lower bound on the usefulness of second degree contact tracing.

The risk of a second degree contact can be generated by taking the product
of two independently generated first degree contact risks, as in Equation 45.

r2 = fC1(u1) · fC1(u2), with u1, u2 i.i.d. ∼ Unif(0, 1) (45)

fC2(q) = Qr2(q) (46)

Then fC2
(q) is defined by Equation 46, where Qr2(q) is the quantile function

applied to the random variable r2. This computation is fairly simple when
dealing with binned risk data: the risk of a second degree contact is the product
of two first degree risks, and the probability of that scenario is the product of
each of the first degree probabilities. Ferretti, Wymant et al. [12] classified risk
on the basis of duration of exposure and strength of Bluetooth signal recording
between smartphones, and computed the probability of subsequently reporting
a positive test for SARS-CoV-2. We discretized this into 14 first degree risk
bins, yielding 196 second degree risk bins, which are then sorted in order of
decreasing risk.

The constructed quantile functions are only for detected first and second
degree contacts. To use the same approach for minimizing the cost of control
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from Section 4, the contact risk needs to be combined in one function, f(q),
depending on the infection risk of the whole population. If we assume that
pI1 fraction of infectious individuals are identified as first degree contacts, pI2
fraction are identified as second degree contacts, and the remaining 1−pI1 −pI2
infection risk is evenly distributed amongst the whole population, then we can
combine these quantile functions.

The fraction of the whole population that is identified as a first degree con-
tact, pc1 , or second degree contact, pc2 , can be calculated using equations 47
and 48. These equations expand on the relation P (C1|I)P (I) = P (I|C1)P (C1).

I · pI1 = pc1

∫ 1

0

fC1
(q) (47)

I · pI2 = pc2

∫ 1

0

fC2
(q) (48)

To normalize the risk functions, we divide by the disease prevalence I. Fi-
nally, we add in the remaining risk (1 − pI1 − pI2) equally among the whole
population, yielding equation 49.

f(q) =


fC1

(q/pc1)/I + 1− pI1 − pI2 if q ∈ [0, pc1 ]

fC2
((q − pc1)/pc2)/I + 1− pI1 − pI2 if q ∈ (pc1 , pc1 + pc2 ]

1− pI1 − pI2 if q ∈ (, pc1 + pc2 , 1]

(49)

F Further Optimizations: Border Policy and Dy-
namic Control

The optimization approach from the previous section can be extended to handle
variable importation rates and dynamic disease control strategies. In this section
we will introduce these problems at a high level.

Previously we assumed the importation rate of new cases was a fixed quan-
tity. In reality, policy makers can influence this value through travel restrictions,
testing requirements, quarantine, and other measures. If the cost of reducing
the daily importation rate to a value A can be estimated, then we can represent
this cost estimation with the function BorderCost(A). This function would
likely have a very low cost at high values of A, the cost would increase dramat-
ically as control measures begin to impact trade routes, and potentially diverge
at low values due to very difficult to control undocumented border crossings.
The overall (static) optimization problem is then given by Equation 50. Intro-
ducing more flexibility at worst leaves the minimum cost unchanged, but could
potentially allow for much more efficient solutions by moving the importation
rate to a level much lower than the precision of the available filter.
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min
β∈[0,1],I∈[0,1],A∈[0,1]

MinControlCost(β, I) + InfectionCost · I/τ +BorderCost(A)

s.t. 0 =
R0(1− β)− 1

τ
I +A

(50)
Finally, we can consider the optimization of dynamic disease trajectories.

The (time-invariant) optimal solution can be found by solving for β(I) and
A(I): functions that determine the disease control strategy depending on the
current disease prevalence. This optimization problem is given by Equation 51.

min
β(I)∈[0,1]→[0,1],A(I)∈[0,1]→[0,1]

∫ T

0

[MinControlCost(β(I), I) + InfectionCost · I/τ +BorderCost(A(I))]dt

s.t.
dI

dt
=
R0(1− β(I))− 1

τ
I +A(I)

I(0) = I0
(51)
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