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Abstract 
Objective 
Investigate sleep and temporal lobe epilepsy (TLE) effects on EEG-derived brain networks. 
 
Methods 
High-density EEG was recorded during non-REM sleep (N2) and wakefulness in 23 patients and 
healthy controls (HC). Epochs without epileptic discharges were source-reconstructed in 72 brain 
regions and connectivity was estimated. Network integration (Efficiency, E) and segregation 
(Clustering Coefficient, CC) at global and hemispheric level (GE, avgCC, HE, HCC) were 
calculated. These were compared between groups across frequency bands and correlated with 
the individual proportion of wakefulness- or sleep-related seizures. 
 
Results 
Patients had higher delta GE, delta avgCC and theta avgCC than controls, irrespective of the 
vigilance state (TLE > HC, p<.01). During wakefulness, theta GE of patients was higher than 
controls (p<.001) and, for patients, theta GE during wakefulness was higher than during N2 
(p<.05). Wake-to-sleep differences in TLE were notable only in the ipsilateral hemisphere (HE 
and HCC, p<.05). Only measures from wakefulness recordings correlated with the proportion of 
wakefulness- or sleep-related seizures. 
 
Conclusions 
TLE network alterations are more prominent during wakefulness and at lower frequencies. 
Increased integration and segregation suggest a pathological 'small world’ configuration with a 
possible inhibitory role.  
 
Significance 
Network alterations in TLE occur and are easier to detect during wakefulness.  
 
Keywords: Temporal lobe epilepsy; functional connectivity; EEG; NREM sleep stage 2; brain 
networks 
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1 Introduction 
 

Epilepsy is the brain’s enduring predisposition to generate epileptic seizures due to paroxysmal, 

abnormal excessive or synchronous neuronal activity (Fisher et al., 2014). In 70% of patients, 

epilepsy is focal (Bosak et al., 2019). This means that seizures originate in networks limited to 

one hemisphere of the brain, although these networks can be widely distributed (Berg et al., 2010; 

Fisher et al., 2017). Depending on the specific networks involved, clinical presentation of seizures 

varies individually, and so does their interplay with the sleep-wake cycle. Depending on seizure 

type and epilepsy syndrome, seizures may occur predominantly or exclusively either during 

wakefulness or during sleep (Bazil, 2019; Jain and Kothare, 2015). While rapid eye movement 

(REM) sleep stage appears protective against seizures, most sleep-related seizures occur during 

non-REM sleep stages 1 and 2 (N1 and N2) (Bazil, 2019; Jain and Kothare, 2015). IEDs occur 

more frequently during sleep than during wakefulness, and more frequently during non-REM 

sleep than during REM sleep (Malow et al., 1999, 1998). On the other hand, IEDs during REM 

sleep appear more spatially restricted and more helpful to localize the epileptic focus than during 

non-REM sleep (Sammaritano et al., 1991; Yuan and Sun, 2020). In sum, sleep is a modulator of 

epilepsy, and their interaction is multifaceted.  

 

 

Epileptic networks have been studied mainly during wakefulness, and results suggest that 

connectivity analyses could help differentiate patients with temporal lobe epilepsy (TLE) from 

healthy controls (HC) (Verhoeven et al., 2018), localize the seizure onset zone (Staljanssens et 

al., 2017) and predict seizure freedom after surgery (Varatharajah et al., 2022). Recent results 

suggest that high integration -meaning a more efficient information transfer across brain regions- 

could be a biomarker of epilepsy: during segments of scalp electroencephalography (EEG) 

without IEDs, TLE patients showed more integrated brain networks than HC (Carboni et al., 2020). 

Moreover, patients with poorer surgery outcome showed higher functional connectivity between 

the propagation zone and the non-involved zone (Lagarde et al., 2018) and higher integration, as 

measured by the global efficiency (GE) of the IED network (Carboni et al., 2019). Despite these 

encouraging findings, functional connectivity analyses have not made their way into clinical 

practice yet (van Mierlo et al., 2014), likely due to the non-convergence of results from different 

studies (Slinger et al., 2021).  

 

Surprisingly, connectivity studies on epilepsy during sleep are much rarer. When looking at IED 

during wakefulness and NREM sleep, it was found that IED co-occurrence between brain regions 

increases during NREM sleep, especially in neocortical regions (Lambert et al., 2018). Given that 

medial temporal lobe structures have a higher propensity to generate spike even if they are not 

part of the seizure onset zone (Lambert et al., 2018), these results suggest that the IED-

propagation network from medial temporal structures to the neocortex is wider than in 

wakefulness. When using cortico-cortical evoked potentials as proxies of effective connectivity, it 

was shown that the connectivity between both epileptogenic and non-epileptogenic structures as 

well as brain excitability in general increased during NREM sleep (Arbune et al., 2020; Usami et 

al., 2015). Besides these few findings, the effects of wakefulness vs. sleep on brain network 

characteristics in patients with epilepsy vs. healthy controls have not yet been studied 

systematically, and we aimed at filling this gap.  

 

Based on previous findings (Carboni et al., 2020, 2019), we hypothesized that (1) network 

integration is higher in TLE patients than in HC subjects; (2) network alterations between 
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wakefulness and non-REM sleep are most pronounced in structures affected by the epilepsy as 

compared to the contralateral side; (3) the extent of network alterations between wakefulness and 

N2 sleep is coupled to the individual predisposition towards wakefulness- or sleep-related 

seizures. In addition to efficiency as a measure of network integration, we aimed at studying the 

clustering coefficient (CC) as a measure of network segregation.  

2 Methods 
2.1 Participants 

TLE patients were retrospectively selected from the database of the EEG and Epilepsy Unit at 

University Hospitals Geneva, based on the following criteria: age >18 years, diagnosis of TLE, 

available 257-channel EEG recording of at least 60 minutes, intact skull and no extratemporal 

brain lesion on the magnetic resonance imaging (MRI) scan. HC were retrospectively recruited at 

the University of Wisconsin–Madison, for another sleep research project (Perogamvros et al., 

2017; Siclari et al., 2017), according to the following criteria: older than 25 years old, with no 

insomnia symptoms and BMI <35 kg/m2. TLE patients and HC were matched according to age 

and sex. In TLE patients, based on all available information from patient history and video-EEG 

findings, proportions of wake- vs. sleep-related seizures were graded in 20%-steps. 

 

Among 511 patients with epilepsy screened, 41 met the inclusion criteria. Of these, 14 were 

excluded because their EEG recordings did not contain enough N2 sleep, and another 4 were 

excluded because they could not be age-matched with our control database. Eventually, 23 TLE 

patients (median age 36 years, range 24-60, 12 females, 8 left TLE, 13 right TLE, 2 bilateral TLE) 

and 23 HC (median age 36 years, range 24-61, 12 females) were retained for analyses. For 

individual clinical details, see Table 1. Resting state wakefulness and N2 sleep EEG epochs were 

available for all TLE patients and HC, except that 10 HC had no wake EEG. The study was carried 

out in accordance with the declaration of Helsinki. For TLE patients, written informed consent was 

waived for the reuse of clinical routine data. All healthy control subjects gave written informed 

consent. Ethical approval was granted by the ethics board of the District of Geneva and the 

institutional review board at the University of Wisconsin–Madison.   

 

2.2 Data acquisition and preprocessing 

High-density EEG recordings of patients (257 electrodes, Electrical Geodesics Inc., now Magstim 

EGI, Eugene, OR; sampling rate 250-1000 Hz) were acquired in the context of pre-surgical 

evaluation, sometimes overnight. A board-certified neurologist (BJV) extracted IED-free 

segments of wakefulness and of stable, i.e. arousal-free, non-rapid eye movement (NREM) sleep 

stage 2 (N2) according to the standard criteria (Iber et al., 2007). For wake EEG, task-free 

wakefulness was chosen, most often with closed eyes.  

 

High-density EEG was recorded from HC (257 electrodes, Electrical Geodesic Inc. sampling rate 

= 500 Hz) with a paradigm including serial awakenings from across the night, as reported in 

(Perogamvros et al., 2017; Siclari et al., 2017). Supplementary electrodes were used to monitor 

eye movements and to record submental electromyogram. Sleep scoring was performed over 30-

second epochs according to standard criteria (Iber et al., 2007), and segments of N2 sleep were 

extracted. For wake EEG, participants were fixating a cross as described in (Perogamvros et al., 

2017) and segments without artefacts (i.e. eye -blinks) were chosen for the analyses. A bandpass 

Butterworth filter was used to filter the data between 1 and 35 Hz and a notch Butterworth filter 

was applied at 50 Hz. Data were down-sampled to 250 Hz; sensors with a poor signal-to-noise 

ratio were visually identified and removed. Sensors placed on the cheeks and neck were 
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removed, leaving a maximum of 204 channels for the forward and inverse solution 

(Vorderwülbecke et al., 2020). Average re-referencing was applied, and 20 epochs of 2 seconds 

were extracted for each participant and state (wake vs. N2), where available (the required 

minimum was 15 epochs). Data containing K complexes was not considered for epoch selection 

to reduce variability between the selected epochs. 

 

2.3 Source reconstruction 

The MNI Colin-27 head served as a template for the source space reconstruction (Holmes et al., 

1998). Based on 1 mm3 isotropic resolution, a 3D cerebral grey matter mask was generated with 

Freesurfer (version 6.0.1) (Reuter et al., 2012). The grey matter mask was parcelled into 82 

regions of interest (ROI) based on Lausanne 1 scale parcellation (Cammoun et al., 2012; 

Hagmann et al., 2008), using the open-source Connectome Mapper 3 (Tourbier et al., 2020). 

Using Cartool 3.80 (version 6164) (Brunet et al., 2011), a regular 3D grid containing 5,020 solution 

points was distributed throughout the grey matter mask. The Locally Spherical Model with 

Anatomical Constraints (LSMAC) served as forward model, and the Local Autoregressive 

Average (LAURA) as inverse model (Michel and Brunet, 2019). By excluding the subcortical grey 

matter (thalamus, caudate, putamen, pallidum and accumbens area), the source space was 

restricted to 72 cortical ROIs. The time-series of the 72 ROI were reconstructed as the first 

singular vector computed by a singular-value decomposition of all the 3D source-time courses in 

the same ROI (Rubega et al., 2019). 

 

2.4 Connectivity 

We quantified the statistical dependencies between the 72 brain areas with the debiased weighted 

phase lag index (dwPLI), using the Matlab-based Fieldtrip toolbox (Oostenveld et al., 2011). In 

previous studies, we used metrics based on Granger-causal modelling (Carboni et al., 2020; Coito 

et al., 2016). However, since we compare vigilance states (N2 sleep and wakefulness) known to 

exhibit distinct frequency content, we chose an unbiased metric that could account for signal 

variations across different frequency bands. The resulting connectivity matrix (72 x 72 x 81, where 

81 is the number of frequency bin spacing from 0 to 40 Hz) was averaged across the different 

frequency bands. This yielded five average matrices for each participant in each vigilance state: 

delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), sigma (12-16 Hz) and beta (16-30 Hz). 

 

2.5 Graph analysis 

The connectivity matrices describe the brain as a network where the nodes are the different ROIs 

and the edges are their statistical dependencies. To characterize the integration and segregation 

of brain networks, we extracted the global efficiency (GE) and the average clustering coefficient 

(avgCC), respectively (Rubinov and Sporns, 2010). Briefly, the GE reflects how well information 

is propagated over distributed brain regions and the avgCC reflects the preponderance of 

clustered connectivity around individual nodes. They are the average of the nodal measures (𝐸𝑖 

and 𝐶𝐶𝑖) and are formally calculated as follows: 
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where d𝑖𝑗
𝑤 is the distance between node 𝑖 and node 𝑗 measured as the sum of the inverse of the 

strongest weights that directly connect 𝑖 and 𝑗, 𝑘𝑖 is the degree of the node and 𝑡𝑖
𝑤 is the number 

of triangles attached to the node (Latora and Marchiori, 2001; Rubinov and Sporns, 2010). These 

metrics were also calculated at the hemispheric level and at the level of the temporal lobes, 

yielding hemispheric efficiency and CC (HE and HCC) and temporal efficiency and CC (TE and 

TCC). More details are provided in the Appendix. For statistical analyses, we investigated the 

hemisphere ipsilateral to the epileptic focus and the contralateral one.  

 

2.6 Statistics 

We modelled the global metrics, GE and avgCC, for each of the 5 frequency bands individually 

with a linear mixed model (LMM). The LMM was chosen to account for missing values -HC for 

whom the recordings during wakefulness were not available (NHC,N2=23, NHC,W=13, NTLE,N2=23, 

NTLE,W=23). Group (PAT vs HC) and vigilance state (wakefulness vs N2 sleep) were modelled as 

fixed effects while subjects were modelled as random effects [𝑌 ~ 𝑔𝑟𝑜𝑢𝑝 ∗ 𝑠𝑡𝑎𝑡𝑒 + (1|𝐼𝐷)]. GE 

and avgCC were log-transformed and the model was fitted. Then, we ran a Type-II ANalyses Of 

VAriance (ANOVA) of the mixed effects using F-tests and the significance of the interaction (or 

main effect of Group and State) was Bonferroni-adjusted for the 5 tests ran (one for each 

frequency band). When significant interactions were found, a further Bonferroni correction was 

applied to account for the 4 post-hoc tests. Multilevel analyses were conducted in RStudio, 

version 2022.07.1, with R statistical language, version 4.1.2 (RStudio Team, Boston, MA, 2019).  

Then we looked at how graph measures changed, between vigilance states, in the ipsilateral and 

contralateral hemisphere (and temporal lobe). Results on HC are presented in the Appendix. For 

each hemisphere and frequency band, we compared the hemispheric and temporal graph metric 

(HE and HCC, and TE and TCC respectively) in N2 vs. wake with a two-sided Wilcoxon signed-

rank test. A false-discovery rate (FDR) correction was applied to correct for the 5 tests. For 

hemispheric and temporal-lobe analyses, we retained only the HC for whom we had recordings 

during both wake and sleep (N=13) and the patients who had either right or left TLE (N=21), but 

not bilateral (N=2). To avoid an effect of intrinsic physiological difference between the right and 

left hemisphere, the right and left hemispheres were flipped in a proportion of the HC (5/13=38%) 

corresponding to the proportion of LTLE (8/21=38%). 

In the TLE population, correlation analyses were run between the proportion of wake-related 

seizures and the network metrics (efficiency and clustering coefficient) calculated at the global, 

hemispheric and temporal level. Correlations were only performed for the frequency bands where 

significant differences emerged. A Spearman correlation test was chosen for its smaller sensitivity 

to outliers. Both FDR-corrected and uncorrected p values are reported. 

Finally, when the analyses on the global network metrics (GE or avgCC) resulted in a significant 

interaction, we ran an edge-wise analysis on the connectivity matrices. We used the network-

based statistic (NBS) method to identify any subnetwork that significantly differed between the 

two groups compared: more details are provided in the Appendix.  

Lastly, correlation between the power of the source-reconstructed signal and the global network 

metrics is provided in the Appendix. 
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3 Results  
3.1 Global network metrics 

3.1.1 Global efficiency In delta, a significant main effect of group [F(1,45.524)= 15.38, p= 0.0015] 

shows that GE was higher in TLE than in controls (Fig. 1, first row). In sigma, a significant main 

effect of vigilance [F(1, 38.069)= 16.93, p= 0.001] shows that GE during N2 sleep is larger than during 

wakefulness.  In theta, a significant group x vigilance interaction [F(1, 42.611)= 8.08, p= 0.0342] is 

found and post-hoc tests show that GE was higher in TLE than in HC during wakefulness [t(77.5)= 

-4.22, p=0.0003] and that, in TLE, GE is higher during wakefulness than N2 sleep [t(36.6)=  -2.85, 

p=0.0285].  

 

3.1.2 Average clustering coefficient In delta, a significant main effect of group [F(1,45.246)= 11.49, p= 

0.0073] shows that avgCC was higher in TLE than in controls (Fig. 1, second row). In sigma, a 

significant main effect of vigilance [F(1,38.49)= 13.74, p= 0.0033] shows that avgCC is higher during 

N2 sleep than during wakefulness. In theta, the group x vigilance interaction did not reach 

significance [F(1,43.753)= 6.7, p= 0.0651], but a main effect of the group [F(1,44.707)= 11.97, p= 0.006] 

shows that avgCC was higher in TLE than in controls.  

 

 
Fig 1: Results of the LMM analyses performed, individually, for each frequency band on: a) GE and b) 

avgCC. For each graph measure, the five frequency bands are reported. The figure reports the main effect 

of group in delta band (first column) and in theta band for avgCC (second column); the significant group x 

vigilance interaction in theta band for GE (second column); the main effect of vigilance in sigma band (fourth 

column). The asterisks indicate statistical significance (* for p<.05, ** for p<.01 and *** for p<.001). 

 

 

3.1.3 Correlation with seizure preponderance Correlation analyses were run for delta, theta and 
sigma bands (NTLE=23). They show that the proportion of wake-related seizures correlates with 
global network metrics only during wakefulness and only in delta. A positive linear correlation was 
found for delta GE measured during wakefulness (delta GE: rho=0.41, puncorr 0.05, pFDRcorr= 
0.17), meaning that for patients with high delta GE during wakefulness most of the seizures occur 
during the wakefulness. Instead, no correlation was observed during N2 sleep. Similarly, delta 
avgCC measured during wakefulness positively correlated with the percentage of wakefulness-
related seizures (delta avgCC: rho=0.45, puncorr 0.03, pFDRcorr= 0.2).  
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3.2 Hemispheric network metrics 

We then investigated whether the wake-to-sleep changes in network efficiency of TLE were 

lateralized toward the hemisphere ipsilateral or contralateral to the epileptic focus. 

 

3.2.1 Hemispheric efficiency We found significant changes of HE between wakefulness and sleep 

only in the ipsilateral hemisphere: HE dropped from wakefulness to N2 sleep in theta band (z=2.6, 

p=.0217) and increased in sigma (z=-2.8, p=.0217, see Fig. 2a). No change was observed in the 

other bands nor in any band in the contralateral hemisphere, nor in HC (Fig. S1a). 

 

3.2.2 Hemispheric clustering coefficient Similarly, we found significant changes of HCC between 

wakefulness and sleep only in the ipsilateral hemisphere: HCC decreased from wakefulness to 

N2 sleep in the theta band (z=2.7, p=.0353) and increased in sigma (z=-2.3, p=.0474, see Fig 

2b). No change was observed in the other bands nor in any band in the contralateral hemisphere, 

nor in healthy controls (Fig. S1b). 

 

 

 
Fig 2: Results of the Wilcoxon tests run on the hemispheric network metrics of TLE patients during 

wakefulness and N2 sleep. a) Hemispheric efficiency (HE) during wakefulness (yellow) and N2 sleep 

(green) in the hemisphere ipsilateral and contralateral to the epileptic focus. b) Hemispheric clustering 

coefficient (HCC) during wakefulness (yellow) and N2 sleep (green) in the hemisphere ipsilateral and 

contralateral to the epileptic focus. The asterisks indicate statistical significance (p<.05). 

 

 

3.3.3 Correlation with seizure preponderance Correlation analyses between the ipsilateral 

hemispheric metrics and the proportion of wake-related seizures were run in theta and sigma 

bands (NTLE=21). The ipsilateral theta HE measured during wakefulness resulted to be positively 
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correlated with the percentage of wake-related seizures (rho=0.51, puncorr 0.016, pFDRcorr= 0.063; 

Fig. 3a), while no correlation was found during sleep (Fig. 3b) nor in the sigma band.  

 

 

 
 
Fig. 3: Scatterplot and results of Spearman correlation between the percentage of wake-related seizures 
and the theta hemispheric efficiency (HE) of the ipsilateral hemisphere during wakefulness (a) and N2 sleep 
(b). The percentage of wake-related seizures is displayed along the y-axis, where, for example, 60% 
indicate the 60-80% range. 

 

3.3 Lobar network metrics 

At the temporal-lobe level, we investigated whether the wake-to-sleep changes in network 

efficiency and clustering coefficient were lateralized toward the ipsilateral or contralateral 

temporal lobe (NTLE=21).  We found significant changes of temporal-lobe segregation between 

wakefulness and sleep only in the ipsilateral hemisphere:  the TCC decreased from wakefulness 

to N2 sleep in the delta band (z=2.6, p=.0434), but no correlation with the percentage of wake-

related seizures was found.  

 

3.4 Edge-wise analysis 

As the multi-level analyses showed significant interactions in the theta band only, we ran NBS 

analyses in this frequency band (NTLE=21, NHC=13). The comparison of theta connectivity matrices 

during wakefulness between TLE and HC was the only one to hold a significant result (p=.004). 

Specifically, NBS identified a subnetwork comprising the ipsilateral hippocampus and 

parahippocampal gyrus that had stronger connections in TLE than in HC, during wakefulness 

(Fig. 4).  
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Fig. 4 Representation of the network differences occurring in theta frequency band. a), b) and c): Cortical 

regions are represented as nodes of the network (black dots), while edges represent the connections 

between the regions (red lines). The figure highlights the differences between the brain network of TLE and 

HC during wakefulness: red lines constitute the subnetwork that in TLE is stronger than in HC. For these 

analyses, the networks were reorganized according to the ipsilateral and contralateral hemispheres: in the 

figure, the right hemisphere is the one ipsilateral to the epileptic focus. d): the figure depicts the names of 

the ROIs that belong to this subnetwork, where the intensity of the color reflects the supra-threshold t-value 

of each connection. Ipsi, ipsilateral; Contra, contralateral; MFG, middle frontal gyrus; FusiG, fusiform gyrus; 

PHG, parahippocampal gyrus; Hipp, hippocampus; Isth, isthmus; Amg, amygdala.  

 

4 Discussion 
4.1 Network alterations in TLE are detected in wakefulness but not in sleep 

The significant interaction observed in theta frequency band shows higher GE in TLE patients 

than in HC during resting-state wakefulness, while such difference is not found during N2 sleep. 

Moreover, edge-wise analyses showed that a theta subnetwork with higher connectivity in 

patients (than in HC) is detectable only during wakefulness and comprises the ipsilateral 

hippocampus and parahippocampal gyrus, while no difference can be found between groups 

during N2. Additionally, a simple main effect of the group was found for 1) GE and avgCC in delta 

and 2) for avgCC in theta, showing that TLE patients’ brain networks at rest are not only more 

integrated but also more segregated than HCs’, irrespective of the vigilance state.  

 

These results confirm and expand previous findings of pathological higher integration in TLE vs 

controls during wakefulness, which are further corroborated by the fact that a different connectivity 

metric was employed (Carboni et al., 2020; Duma et al., 2022). Since theta activity is known to 

often participate in inhibitory processes during wakefulness (Nir et al., 2017), the change in 

network configuration may indicate pathological inhibition, which will be discussed in more detail 

below. The other significant interaction observed in theta band shows that GE measured in 

patients is higher during wakefulness than sleep, which is difficult to interpret as other studies 

looking at generalized network changes in TLE during sleep are lacking.  
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Altogether, our results suggest that whole-brain network alterations between HC and TLE are 

detectable during wakefulness, while there is no observable difference during N2 sleep. Indeed, 

the above-mentioned pathological inhibition, visible during wakefulness (Nir et al., 2017), seems 

to be undetectable during sleep, where theta activity is more prominent.  

 

4.2 Network metrics are altered in epilepsy during wake but not sleep 

The interpretation that “pathological theta networks are visible during wakefulness but hidden by 

healthy theta activity during N2 sleep” is supported by the fact that the difference between wake 

and sleep is significant only for the ipsilateral hemispheric measures (theta HE and HCC) but not 

for the contralateral ones (Fig. 2). At the lobar level, however, this was not the case, implying that 

the affected network may extend beyond the temporal lobe, as also indicated by the theta inter-

hemispheric subnetwork with stronger connections in TLE than HC (Fig. 4). Moreover, although 

not passing FDR correction, ipsilateral theta HE positively correlates with the proportion of wake-

related seizures only during wakefulness and not during sleep (Fig 3). In other words, while the 

theta network appears to be pathological in awake TLE patients, it does not seem related to the 

disease during N2 sleep. The same holds true for delta band, where no significant interaction was 

found via ANOVA. Although not surviving multiple-comparison correction, the results suggest a 

correlation of global network metrics with the disease only during wakefulness (GE, avgCC), and 

not sleep. This suggests that the delta network, which has also been associated with cortical 

inhibition (Pigorini et al., 2015), is more strongly associated with the pathology during wakefulness 

than during sleep.   

 

These results suggest that the wake state could more reliably inform us about the disease 

compared to sleep. This claim might seem controversial, as it is known that epileptic activity is 

more frequent during sleep with larger IED fields (Lambert et al., 2018; Malow et al., 1999, 1998). 

However, here we purposely selected EEG epochs not containing interictal epileptic activity, to 

study a “negative EEG” scenario. Given that IEDs are more easily detected during N2, more 

cortical spikes could have gone undetected in the wake epochs compared to the sleep epochs. 

These ‘hidden’ spikes could have contributed to the difference between groups during 

wakefulness, while sleep epochs may have been better ‘cleared’ of IEDs. Altogether, our results 

indicate that, in absence of IEDs and seizures, it could be easier to distinguish a physiologic brain 

from a pathologic one by looking at EEG-derived brain networks during wakefulness rather than 

N2 sleep.   

 

4.3 Combined higher integration and segregation exist in TLE 

Regarding the nature of these network changes, it is interesting to notice that GE and avgCC (and 

also HE and HCC) have similar patterns. In other words, brain integration and brain segregation 

do not seem to be mutually exclusive, but rather two faces of a coin, that co-exist and change 

simultaneously. Networks that are highly clustered (high avgCC) yet have characteristically short 

path lengths (high GE) are usually referred to as “small-world” (Watts and Strogatz, 1998). This 

configuration is characteristic of healthy functioning networks and is thought to facilitate neural 

synchronization (Ferri et al., 2007; Stam, 2004; Watts and Strogatz, 1998). In epilepsy, a brain 

network with a "small world" configuration was related to seizure generation (Netoff et al., 2004; 

Percha et al., 2005). During ictal discharges, the network exhibits this type of organization, while 

during interictal discharges, the network appears to be more randomly organized (Ponten et al., 

2007). A study found an increase of both avgCC and GE even during interictal activity -without 

exclusion of IEDs- in patients with generalized epilepsy (Chavez et al., 2010). We observed 
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similar trends for both network metrics at low frequencies, suggesting that this may also apply to 

pathologic networks during resting state EEG, free from scalp-visible interictal epileptiform 

activity. This further suggests that epileptic brain networks are not exclusively unbalanced toward 

more integrated systems (Carboni et al., 2020), but are rather characterized by both increased 

segregation and integration.  

 

4.4 Network changes in low frequencies suggest increased inhibition in TLE 

Another interesting aspect is that epilepsy-related network changes were found in the lower part 

of the frequency spectrum (delta and theta bands) and not at higher frequencies. Indeed, the main 

effect in sigma band reflects a difference related to the vigilance state -likely to be ascribed to 

sleep spindles (De Gennaro and Ferrara, 2003)- indicating higher integration and segregation 

during N2 sleep across both groups. The absence of correlation between the seizure 

preponderance and any network metric in sigma band (global and hemispheric) is yet another 

factor speaking in favor of this interpretation. Importantly there was no one-to-one 

correspondence between the power of the signal and the network metrics across frequency bands 

(see Appendix), suggesting that network analyses remain unbiased by the signal power and 

provide independent information. 

 

Physiologically, delta is fundamental for large-scale cortical integration (Bruns and Eckhorn, 

2004) and theta is a dominant hippocampal rhythm (Kahana et al., 1999). As already mentioned, 

theta activity was documented in the waking state of healthy individuals and was thought to reflect 

local functional inhibition (neuronal ‘off’ periods) (Nir et al., 2017). Delta and theta waves are also 

a normal characteristic of N2 sleep stage, occupying almost 20% of the epochs (Chokroverty, 

2009). Moreover, slow wave activity in awake adults is a well-recognized indicator of pathologic 

activity and cerebral dysfunction (Britton et al., 2016). In these terms, a greater theta GE and 

higher connectivity in patients than in controls could reflect pathological functional inhibition, 

especially in the ipsilateral hippocampus and parahippocampal gyrus (NBS results show higher 

connectivity in TLE, see Fig 4). Therefore, increased connectivity of inhibitory networks could be 

a marker of compensatory mechanisms in the context of epileptic activity rather than the marker 

of epileptic activity per se.  

 

Although we cannot distinguish between excitatory and inhibitory connections based on our 

connectivity analysis, recent intracranial EEG studies suggest that the main mechanism active 

during resting state in TLE is inhibitory. According to the Interictal Suppression Hypothesis, 

seizures are prevented during interictal activity by successful inhibition of the epileptogenic zone 

(EZ) (Johnson et al., 2023). To this regard, it was shown that regions belonging to the EZ were 

indeed those with the highest inward connections (sinks) (Gunnarsdottir et al., 2021; Johnson et 

al., 2023), likely reflecting inhibitory inputs from regions external to the EZ, that could be replaced 

by outward connections supporting seizure spread once the seizure begins (Narasimhan et al., 

2020). High functional segregation of the EZ was also shown at rest (Bandt et al., 2014; Johnson 

et al., 2023; Schevon et al., 2012). Even if we cannot distinguish between inward and outward 

connections, we can speculate that the widespread integration seen at the low frequencies mainly 

has an inhibitory role which, together with high level of segregation isolating the EZ, could 

represent a tentative control of the epileptic activity. Our previous studies suggested that the 

increased integration observed in patients was indicative of a wider pathological network within 

the brain that supported a greater spread of epileptic activity (Carboni et al., 2020, 2019). With 

this study, we reiterate the concept and speculate that, considering the concurrent segregation 
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increase, this more integrated and segregated network may have a compensatory interictal 

inhibitory role.  

 

4.5 Limitations 

The main limitations comprise the use of a template head model for source reconstruction instead 

of individual head models (because MRI was not available for HC), missing wake EEG for 10 HC, 

and, overall, the fact that EEG of TLE patients and HC was recorded at different sites and under 

different circumstances, i.e. in an epilepsy monitoring unit and a sleep laboratory. Sleep EEG of 

HC was consistently recorded at night whereas daytime naps were also considered for TLE 

patients. This renders our results specific for N2 but not for nighttime sleep or even a specific part 

of the night, so that effects of the circadian clock on the epileptic network (Karoly et al., 2021) 

were not regarded. Wake EEG of HC was taken from eyes-open segments while EEG of TLE 

patients was taken most often from closed-eyes segments, which might have introduced more 

variability in the alpha-band spectral power. However, given the absence of connectivity changes 

found in alpha band, this confound does not affect the interpretation of our results. Lastly, TLE 

patients were treated with antiseizure medications which may confound spectral power although 

spectral power and graph measures seem mostly unrelated in our study (see Fig S2). 

 

5 Conclusions 
Altogether, our results suggest global integration and global segregation increase in TLE, 

suggesting a pathological tendency toward a 'small world’ configuration. These global network 

alterations were observed, both during wakefulness and N2 sleep, mainly in the lower part of the 

frequency spectrum (delta and theta). In the interictal state, high functional integration and 

segregation might play a protective inhibitory role against epileptic activity.  

During N2 sleep, physiologic theta waves and potentially ‘purer’ spike-free epochs may 

complicate the detection of pathological connectivity patterns suggesting that, in absence of IEDs, 

it might be easier to detect epilepsy-related network alterations during wakefulness than during 

sleep.  
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ID_TLE Sex 

Age when 
epilepsy 
started 
(range) 

Duration of 
disease at 
recording 

(years) 

Percentage of 
seizures during 

wakefulness 
TLE side Etiology 

ILAE at 
12 

months 

ASM at 
evaluation 

P1 M 21-25 4 0-20% R HS 1 OXC 

P2 M 21-25 6 100% L 
HS + atrophy of the L mamillary body 

and L temporal lobe 
1 CBZ, VPA 

P3 M 6-10 20 40-60% L (unknown) 3 LEV, TPM 

P4 M 11-15 14 40-60% R Cavernoma 1 OXC, VPA 

P5 M 21-25 6 100% R HS + asymmetry of mamillary body 1 CBZ 

P6 M 16-20 17 0-20% R (unknown) 4 LTG, ZNS 

P7 M 0-5 32 40-60% R HS 1 (6mo) CLB, LTG, VPA 

P8 M 31-35 6 40-60% R FCD or glioma, unclear (MR only) NA OXC 

P9 M 16-20 27 100% L HS (MR only) 1 CBZ, LTG, TPM 

P10 M 36-40 10 60-80% B HS (MR only) NA LEV, LTG, VPA 

P11 M 26-30 24 100% L HS 1 
CBZ, CLB, LCM, 

LEV, LTG 

P12 F 6-10 14 40-60% L amygdaloidal origin, unclear NA VPA 

P13 F 21-25 7 40-60% R (unknown) 5 OXC, PGB 

P14 F 16-20 14 80-100% L (unknown) NA LEV, LCM 

P15 F 21-25 5 100% R Dysplasia 1 ZNS 

P16 F 26-30 6 100% L (unknown) NA LTG, PGB 

P17 F 26-30 8 100% L ganglioglioma I° 1 ZNS 

P18 F 11-15 25 40-60% B HS NA LTG, ZNS 

P19 F 36-40 7 100% R hippocampal gliosis 1 LTG, VPA, ZNS 

P20 F 26-30 18 60-80% R hippocampal gliosis 1 (6mo) LEV, LTG, ZNS 

P21 F 21-25 26 20-40% R (unknown) NA PER, TPM, VPA 

P22 F 21-25 27 60-80% R (unknown) 3 CBZ, TPM 

P23 F 21-25 35 40-60% R HS 1 LEV 

 

Table 1: Patient clinical details. Abbreviations: M, male; F, female; L, left; R, right; B, bi-temporal; HS, hippocampal sclerosis; FCD, focal cortical 

dysplasia; OXC, Oxcarbazepine; CBZ, Carbamazepine; VPA, Valproic acid; LEV, Levetiracetam; TPM, Topiramate; LTG, Lamotrigine; ZNS, 

Zonisamide; CLB, Clobazam; PGB, Pregabalin; LCM, Lacosamide; PER, Perampanel
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