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Abstract

Glioblastoma is a highly aggressive cancer associated with a dismal prognosis, with a mere
5% of patients surviving beyond five years post-diagnosis. Current therapeutic modalities
encompass surgical intervention, radiotherapy, chemotherapy, and immune checkpoint
inhibitors (ICB). However, the efficacy of ICB remains limited in glioblastoma patients,
necessitating a proactive approach to anticipate treatment response and resistance.
In this comprehensive study, we conducted a rigorous analysis involving two distinct
glioblastoma patient cohorts subjected to PD-1 blockade treatments. Our investigation
unveiled that a significant portion, 60%, of patients exhibit persistent disease progression
despite ICB intervention. To elucidate the underpinnings of resistance, we characterized the
immune profiles of glioblastoma patients with continued cancer progression following
anti-PD1 therapy. These profiles revealed multifaceted defects, encompassing compromised
macrophage, monocyte, and T follicular helper responses, impaired antigen presentation,
aberrant regulatory T cell (Tregs) responses, and heightened expression of
immunosuppressive molecules (TGFB, IL2RA, and CD276). Building upon these resistance
profiles, we leveraged cutting-edge machine learning algorithms to develop predictive
models and accompanying software. This innovative computational tool achieved
remarkable success, accurately forecasting the progression status of 82.82% of
glioblastoma patients following ICB, based on their unique immune characteristics.
In conclusion, our pioneering approach advocates for the personalization of immunotherapy
in glioblastoma patients. By harnessing patient-specific attributes and computational
predictions, we offer a promising avenue for the enhancement of clinical outcomes in the
realm of immunotherapy. This paradigm shift towards tailored therapies underscores the
potential to revolutionize the management of glioblastoma, opening new horizons for
improved patient care.
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Introduction

Glioblastoma is the most common primary malignant central nervous system tumor, with an
incidence rate of 3.19 per 100,000 persons in the United States of America (1,2). The
median survival is only 15 months, the median progression-free survival is 7 months, and
less than 5% of the patients survive 5 years following diagnosis.
Therapeutic options include surgery, chemotherapy (temozolomide), radiotherapy and
immune checkpoint blockade (ICB) (2,3). However, most of the patients remain resistant to
PD-1 blockade in the adjuvant settings, except for patients with mismatch repair deficiency
(2,4–10). Importantly,pPatients who received neoadjuvant pembrolizumab with continued
adjuvant therapy following surgery had significantly extended overall survival compared to
patients that received adjuvant, post-surgical anti-PD-1 alone (2). It was associated with
upregulation of T cell and IFNγ related gene expression and downregulation of cell-cycle
related gene expression within the tumor, fewer monocytes in the blood compared with
patients that received adjuvant therapy. However, even in neoadjuvant settings, patient
resistance to ICB still occurs.
Thus, conducting a meta-analysis of glioblastoma patient cohorts will be instrumental in
characterizing the mechanisms underpinning response and resistance to ICB. Meta-analysis
of data from multiple cohorts may also facilitate the identification of optimal targets to
develop combination therapies and improve patient outcomes (2,5). The development of
software using machine learning approaches will enhance the precision of response and
resistance prediction to ICB. It will improve the diagnosis and subsequent therapeutic
strategies according to patient-specific characteristics.

Material and methods

RNAseq datasets and selection of cohorts
Patient cohort was selected using the CRI iAtlas Portal (11). We selected the following
RNAseq datasets for glioblastoma patients : Zhao 2019 - GBM, PD-1 (5), Prins 2019 - GBM,
PD-1 (2). We used the following group filters : Progression, Drug and GBM.
Non-Progressors are defined as patients with mRECIST of Partial Response, Complete
Response or Stable disease, whereas Progressors are those with Progressive Disease.
Then, we used the ICI Analysis Modules. The current version of the iAtlas Portal was built in
R using code hosted at https://github.com/CRI-iAtlas/iatlas-app. Assayed samples were
collected prior to immunotherapy.

Clinical description of patients
Merged datasets according to drug therapy are described in Table 1. For patients that
received Nivolumab, targeting PD1, there are 11 (40%) non progressors and 17 (60%)
progressors. For patients that received Pembrolizumab, targeting PD1, there are 15 (44%)
non progressors and 19 (56%) progressors.

Immune landscape of cancer in iAtlas
The initial release of iAtlas provided a resource to complement analysis results from The
Cancer Genome Atlas (TCGA) Research Network on the TCGA data set comprising over
10,000 tumor samples and 33 tumor types (The Immune Landscape of Cancer; here
referred to as Immune Landscape) (12).
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Statistics
Statistical significance of the observed differences was determined using the independent
Wilcoxon t-Test with multiple sample correction. All data are presented as mean±SEM. The
difference was considered as significant when the p value was below 0.05. * : p<0.05.

Software development to predict response to PD1 blockade
Patients from 2 cohorts received anti-PD-1 following glioblastoma. After pooling the cohorts,
progression was calculated according to the drug used for therapy. n=28 for Nivolumab and
n=34 for Pembrolizumab. The software, coded using python, html, css, mysql and django,
allows the registered clinician to diagnose a new patient or access the diagnosis of a
registered patient by indicating their medical identifier in a form, as we previously described
in other studies (13,14). The software calculates the probability of patients to respond to
anti-PD1 after form completion.

Results

Progression and overall survival of glioblastoma patients according to PD1 blockade in two
cohorts.

We calculated the progression and overall survival of glioblastoma patients who underwent
immune checkpoint therapy targeting PD1 in two cohorts. We aggregated the results based
on the progression status to each checkpoint combination (Table 1). For patients that
received Nivolumab, targeting PD1, there are 11 (40%) non progressors and 17 (60%)
progressors. For patients that received Pembrolizumab, targeting PD1, there are 15 (44%)
non progressors and 19 (56%) progressors. For patients receiving monotherapy targeting
PD1 with disease progression, overall survival remained below 30% (Figure 1). Conversely,
non-progressors following Pembrolizumab exhibited an overall survival rate around 60%.
Overall, 60% of patients with glioblastoma exhibited strong resistance to PD1 blockade
therapy.

Drug Nivolumab Pembrolizumab

Target PD1 PD1

Non progressors (nb) 11 15

Progressors (nb) 17 19

Non progressors (%) 40 44

Progressors (%) 60 56

Table 1) Response of patients with glioblastoma to PD1 blockade.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 6, 2023. ; https://doi.org/10.1101/2023.10.05.23296617doi: medRxiv preprint 

https://www.zotero.org/google-docs/?PqXiPX
https://doi.org/10.1101/2023.10.05.23296617
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1) Overall survival of glioblastoma patients according to PD1 blockade in 2
cohorts.
Patients from 2 cohorts received anti-PD-1 following glioblastoma. Overall survival was
calculated in these cohorts. n=28 for Nivolumab and n=34 for Pembrolizumab.

Immune response and resistance in glioblastoma patients following PD1 blockade.

We investigated the immune features associated with response and resistance to immune
checkpoint therapy in glioblastoma patients. Analyzing immune response using the CRI
iAtlas in patients who received anti-PD1 (Nivolumab or Pembrolizumab), we observed that
non-progressors to Pembrolizumab had more monocytes and T follicular helpers, while
progressors had more macrophages, especially M0, and Tregs (Figure 2). No significant
differences were observed for other immune subsets in the Pembrolizumab cohort, and no
difference at all in the Nivolumab cohort (Figure 2, Supplementary figure 1).

When examining the expression of immunomodulatory molecules, we found that progressors
following Pembrolizumab expressed more MHC molecules (HLA-DRB1, HLA-DQA1,
HLA-DRB5, HLA-DQB1) compared to non-progressors. This suggests that defects in antigen
presentation plays a role in the anti-tumor immune resistance (Figure 3). Surprisingly, we
observed upregulation of ITG2B, a gene related to T cell adhesion in progressors following
Pembrolizumab, suggesting that T cell responses are not sufficient to promote response.
Importantly, progressors following Pembrolizumab express more immunosuppressive
molecules such as TGFB, IL2RA and CD276. Progressors following Nivolumab exhibited
lower expression of BTN3A1, a gene involved in T cell activation, IL4 and ARG1. No
differences were observed in the expression of other immunoregulatory molecules and
immune checkpoints (including PD1, TIGIT, TIM3, LAG3, EDNRB, TLR4, VSIR, CD40,
TNFRSF, CD28, ICOS, VTCN1, CD70, CX3CL1, ENTPD1, GXMA, HMGB1, ICOSLG,
VEGF, KIR, IFN genes, interleukins, MICA, and other HLA genes) (Supplementary figure
2). Of note, the differences observed in one cohort were not observed in the other cohort
(Figure 1/2, Supplementary Figures 1/2). Overall, glioblastoma patients with cancer
progression following anti-PD1 therapy were characterized by defects in macrophage,
monocyte and T follicular helper responses, impaired antigen presentation, Tregs response
and immunosuppressive molecule expression (TGFB, IL2RA and CD276).
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Figure 2) Immune response in glioblastoma patients according to progression
following PD1 blockade.
62 patients received anti-PD-1 following glioblastoma. n=28 for Nivolumab (Zhao) and n=34
for Pembrolizumab (Prins). Immune response is measured using CRI iAtlas. p<0.05,
Wilcoxon t-test.

Figure 3) Immunomodulatory molecule expression in glioblastoma patients according
to progression following PD1 blockade.
62 patients received anti-PD-1 following glioblastoma. n=28 for Nivolumab (Zhao) and n=34
for Pembrolizumab (Prins). Immunomodulatory molecule expression is measured using CRI
iAtlas. p<0.05, Wilcoxon t-test.
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Software prediction of glioblastoma patient response to PD1 blockade.

To predict the personalized response of patients with glioblastoma to PD1 blockade, we
trained a RandomForestClassifier on the dataset, based on the features identified that are
differentially expressed between Progressors and Non-progressors after PD1 blockade
(Figures 2/3). The overall accuracy of our model is approximately 81.82%, which means
that it correctly predicted the Progression status for about 81.82% of the data points in the
test set (Figure 4). The classification report provides more detailed performance metrics,
including precision, recall, and F1-score for each class ('Non_Progressor' and 'Progressor').
Precision measures the accuracy of positive predictions. For 'Non_Progressor,' the precision
is 100%, indicating that all positive predictions for this class were correct. For 'Progressor,'
the precision is 80%, meaning that 80% of the positive predictions for this class were
accurate. Recall measures the ability of the model to identify all relevant instances of a
class. For 'Non_Progressor,' the recall is 33%, indicating that only 33% of the actual
'Non_Progressor' instances were correctly identified. For 'Progressor,' the recall is 100%,
meaning that all actual 'Progressor' instances were correctly identified. The F1-score is the
harmonic mean of precision and recall and provides a balance between the two. For
'Non_Progressor,' the F1-score is 0.50, and for 'Progressor,' it is 0.89. Support represents
the number of samples in each class in the test set. For 'Non_Progressor,' there are 3
samples, and for 'Progressor,' there are 8 samples. Overall, our model managed to
successfully predict the Progression status of 82,82% of the patients.

Figure 4) Performance of the algorithm predicting glioblastoma patient response to
PD1 blockade.

In accordance with the methods outlined in the study, we conducted predictions regarding
the response of a hypothetical patient to PD1 blockade (Figure 5). Based on her genetic
characteristics, the algorithm predicts that the patient has a 82,82% probability to be a
Progressor following anti-PD1 therapy. Thus, it may be better to choose a different therapy
for this patient.
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Figure 5) Software prediction of glioblastoma patient response to PD1 blockade.
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Glioblastoma patient data collection form. Global probability of the patient to respond to
different immune checkpoint blockades. Personalized probability of the patient to respond to
immune checkpoint blockade based on her genetic characteristics.

Discussion

By analyzing the progression of patients following ICB in 2 cohorts, we observed that 60% of
patients with glioblastoma exhibited strong resistance to PD1 blockade therapy.
Glioblastoma patients with cancer progression following anti-PD1 therapy were
characterized by defects in macrophage, monocyte and T follicular helper responses,
impaired antigen presentation, Tregs response and immunosuppressive molecule
expression (TGFB, IL2RA and CD276). CD276 regulates cell proliferation, invasion, and
migration in cancers (15). High expression of IL2RA, the alpha chain of the interleukin 2
receptor complex expressed on the surface of mature T cells, predicted worse survival
outcomes in patients with pancreatic ductal adenocarcinoma (16). TGFB is a key mediator of
many biological processes and was also associated with resistance to immunotherapy (17).
Progressors following Nivolumab also exhibited lower expression of BTN3A1, a molecule
that coordinates αβ and γδ T cells (18). Many clinical trials are still ongoing and may provide
more precise insights regarding immune resistance following ICB in these patients (4).
To better predict the ICB response of patients with glioblastoma, we developed machine
learning approaches. We successfully trained a RandomForestClassifier on the CRI iAtlas
dataset, based on the features that we identified as differentially expressed between
Progressors and Non-progressors after anti-PD-1 blockade. Our model managed to
successfully predict the Progression status of 82,82% of the patients. This model appears to
have good precision and recall for the 'Progressor' class, suggesting that it can effectively
identify 'Progressor' cases. However, there is room for improvement in identifying
'Non_Progressor' cases, as indicated by the lower recall for that class. Increasing the size of
the training dataset would help to improve the predictions of the model.
Finally, we developed a software to predict patient response to immune checkpoint blockade
that incorporated our machine learning approach. This software computes the probability of
being a Progressor or a Non-progressor to PD-1 blockade based on the patient's specific
immune characteristics. Developing such machine learning approaches based on patient
characteristics may help provide more relevant treatment to each patient.
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Supplementary Figures

Supplementary Figure 1) Immune response in glioblastoma patients according to
progression following PD1 blockade.
62 patients received anti-PD-1 following glioblastoma. n=28 for Nivolumab (Zhao) and n=34
for Pembrolizumab (Prins). Immune response is measured using CRI iAtlas. p<0.05,
Wilcoxon t-test.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 6, 2023. ; https://doi.org/10.1101/2023.10.05.23296617doi: medRxiv preprint 

https://www.zotero.org/google-docs/?8xE9LZ
https://www.zotero.org/google-docs/?8xE9LZ
https://www.zotero.org/google-docs/?8xE9LZ
https://doi.org/10.1101/2023.10.05.23296617
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 2) Immunomodulatory molecule expression in glioblastoma
patients according to progression following PD1 blockade.
62 patients received anti-PD-1 following glioblastoma. n=28 for Nivolumab (Zhao) and n=34
for Pembrolizumab (Prins). Immunomodulatory molecule expression is measured using CRI
iAtlas. p<0.05, Wilcoxon t-test.
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