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ABSTRACT 

The prevalence, inter-relationships, and longitudinal behavior of type 1 (T1) and type 2 (T2) immune 

responses in asthma are uncertain, as is the role of viruses as determinants of these responses. Here, we 

performed whole transcriptome network analysis on sputum cells collected from Severe Asthma Research 

Program (SARP)-3 patients before and after treatment with intramuscular corticosteroid and again at 1 and 

3-year follow-up visits. We used network analysis to analyze whole-transcriptome gene expression and 

metagenomic analysis of these RNA-seq data to detect viruses. We identified T1 and T2 airway networks, 

the expression of which showed that 26% and 44% of patients had T1-high and T2-high asthma at baseline, 

respectively. Asthma severity outcomes were worse in T2-high asthma than in T1-high asthma and most 

severe in the subgroup of patients (14%) with combined T1- and T2-high disease. Corticosteroid treatment 

suppressed T2 but not T1 gene expression, and corticosteroid-associated improvements in FEV1 occurred 

only in patients with T1-L/T2-H disease and not in T1-H/T2-H patients. Although T1 and T2 inflammation 

at baseline was a significant predictor of T1 and T2 inflammation at follow-up visits, most patients had 

variable rather than persistent expression of T1 and T2 network genes. Viral metagenomic analyses 

uncovered that 24% of asthma sputum samples tested positive for a virus and high viral carriage was 

associated with an 11-fold increased risk of T1-high disease. Together our results uncover a relatively high 

burden of T1-high and T1/T2-high disease subtypes in severe asthma, which are corticosteroid-resistant 

and manifest with sub-clinical viral infection.  
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INTRODUCTION 

The clinical heterogeneity of asthma is explained by variability in underlying cellular and molecular 

mechanisms and the classification of asthma using its specific molecular features (endotyping) has evolved 

to inform precision medicine treatments. The best established asthma endotype is type 2-high asthma which 

describes patients who have upregulated airway expression of type 2 (T2) cytokines (IL-4, IL-5, and IL-

13) and increased airway infiltration by eosinophils and mast cells (1, 2). Milder forms of T2-high asthma, 

often occurring in younger and atopic patients, are usually responsive to corticosteroid treatment (3), but 

more severe T2-high disease, usually in older patients who frequently report sinusitis and nasal polyps as 

co-morbidities, are less corticosteroid responsive (4-6). The reasons for differing steroid responses in these 

patients are not known. Similarly, recently developed therapeutic proteins, which block ligands and 

receptors in the T2 inflammatory cascade, are clinically effective in many but not all patients with T2-high 

disease (7-10). Further complicating our understanding and treatment of the T2 endotype is a lack of data 

regarding the longitudinal persistence of T2 inflammation within patients. The identification of multiple T2 

pathway genes harboring asthma risk genetic variants suggests that the propensity to airway T2 

inflammation is an inherited patient-level characteristic (11, 12) that is molecularly/cellularly “wired” into 

the airway of a patient. Yet the invasiveness of airway sampling has prevented the repeated, longitudinal 

collection of patient airway specimens required to investigate this idea.  

 

Although there is uncertainty regarding the inflammatory drivers of disease among non-T2 forms of asthma, 

more abundant IFN-γ gene expression, Th1 cells, and secreted mediators of Th1 inflammation have been 

reported in airway tissues from subsets of asthma patients (13-17), suggesting a possible T1-high asthma 

endotype. The presence of IFN-γ-driven T1 airway inflammation is associated with neutrophilic airway 

inflammation, itself a marker of corticosteroid-resistant, severe asthma (6, 13).  Supporting a genetic 

predisposition towards T1 inflammation, several studies have identified variants in T1 pathway genes 

(IL12A, IL12RB1, STAT4, and IRF2) associated with airflow obstruction and asthma severity (18). 

Respiratory viral infections, the primary trigger of acute exacerbations, induce airway IFN-γ and Th1 
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responses, raising the possibility that persistent viral illnesses or sub-clinical viral infections may underlie 

expression of T1 airway inflammation in subsets of asthma patients. Supporting this possibility is the 

finding that 80% of children with asthma who have high expression of interferon-stimulated genes in their 

nasal airway epithelium also asymptomatically carry common respiratory viruses in their nasal airway (19). 

Additional questions are raised by recent reports that both T1 and T2 airway inflammation are upregulated 

in some patients, (20) despite the traditional viewpoint that T1 and T2 inflammatory pathways are counter-

regulatory (21). This possibility is supported by studies showing concomitant airway eosinophilia (T2 

marker) and neutrophilia (T1 marker) in subgroups of patients characterized by more severe asthma (2, 5, 

16, 22). 

 

The Severe Asthma Research Program (SARP)-3 is a US-based, multicenter, longitudinal cohort study of 

molecular phenotypes of asthma in which patients with asthma, enriched for those with severe disease, 

undergo deep phenotyping at baseline and longitudinally for at least 3 years. The SARP-3 protocol includes 

repeated collections of induced sputum cells (processed for cell counts and RNA isolation) and a 

corticosteroid response test (systemic administration of triamcinolone acetonide). Here, using the SARP-3 

sputum cell RNA resource, we generated whole-transcriptome gene expression to determine the frequency, 

clinical features (including corticosteroid responsiveness), and longitudinal behavior of T1-high, T2-high, 

and T1/T2-high asthma endotypes. We also leveraged viral metagenomic analysis of these RNA-seq data 

to determine the frequency of subclinical viral airway infection and the relationships between infection and 

T1 and T2 immune responses.  

 

RESULTS 

The frequency, intersection, and clinical characteristics of patients with airway T1-high and T2-high 

asthma endotypes 
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Whole transcriptome sequencing data were generated on 782 sputum cell samples collected from 37 healthy 

adults and 347 adults with asthma in the SARP study cohort (table S1). Of the 745 asthma samples, 260 

were collected from patients at their pre-steroid baseline study evaluation visit, where a triamcinolone 

acetonide (TA) injection was administered, 174 were collected 1-3 weeks later, at the post-TA evaluation 

visit, and the remainder were collected at annual follow-up visits (Fig. 1). Using transcriptome data from 

all 782 samples in a weighted gene co-expression network analysis (WGCNA), we identified 42 co-

expressed gene networks, which were functionally annotated through pathway, gene ontology, and cell-

type enrichment analyses (fig S2). Among these were T1 (65 genes) and T2 (48 genes) inflammation 

networks (Fig. 2A, 2B). The T1 network was strongly enriched for marker genes of CD8 T cells, natural 

killer (NK) cells, and T helper 1 (Th1) cells and contained the Th1 master transcription factor gene (TBX21), 

interferon gamma gene (IFNG), chemotactic factor RANTES (CCL5), and genes critical to interferon 

signaling (STAT1, CXCL9, CXCL10, CXCL11, Fig. 2A). The T2 network was enriched for marker genes of 

eosinophils, basophils/mast cells, and T Helper 2 (Th2) cells. Moreover, the T2 network included IL4, IL5, 

IL13, the IL-33 signaling receptor gene (IL1RL1), eosinophil transcription factor genes (GATA1, GATA2, 

CEBPE), and the eosinophil chemotactic gene, CCL26 (Fig. 2B).  

 

To determine the frequency of patient subgroups with high expression of T1 and T2 networks at baseline, 

we independently clustered all sputum samples using expression of the T1 and T2 network genes. We found 

that 26% of patients had high expression of T1 network genes (T1-high) and 44% were T2-high (Fig. 2A, 

2B). Examining the intersection of these classifications, 14.2% of patients were dual-inflamed (T1-H/T2-

H), and T2-high endotype status was associated with 1.9-fold increased risk of also being T1-high (p=0.03, 

Fig. 2C). In addition, we found that 29.6% of patients were T2-high alone (T1-L/T2-H), 11.5% were T1-

high alone (T1-H/T2-L), and 44.6% of patients were neither T1-high or T2-high (T1-L/T2-L) (Fig. 2C). 

Blood and sputum eosinophils were higher in T2-high than in T2-low patients (Fig. 2D, fig. S3). In contrast, 

sputum neutrophil and lymphocyte numbers (but not blood numbers of these cells) were higher in T1-high 

patients than in T1-low patients (Fig. 2D, fig. S3). Dual-inflamed patients exhibited sputum cell profiles 
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reflective of both T1 and T2 inflammation, with elevated numbers of eosinophils, neutrophils, and 

lymphocytes, relative to T1-L/T1-L patients (Fig. 2D).  

 

Both T1-high and T2-high groups were older than the non-inflamed group (table 1). T2-H patients tended 

to have greater disease severity, as reflected in measures of lung function, medication use (including oral 

and inhaled corticosteroid), and exacerbation history, than the T1-H patients. However, the T1-H/T2-H 

patients had the worst asthma severity by these criteria (table 1). These T1-H/T2-H patients were also the 

oldest and had the latest age of asthma onset.  

 

Coincident T1 inflammation in T2-high patients blunts the FEV1 response to triamcinolone acetonide 

To determine if airway T1 or T2 inflammation is suppressed by corticosteroid treatment, we analyzed gene 

network expression data from sputum cells collected before and 1-3 weeks after intramuscular TA injection 

in 158 patients (Fig. 1). Among T1-high patients, we found that T1 network expression was not significantly 

downregulated by TA treatment (Fig. 3A). In contrast, among T2-high patients, T2 network expression was 

strongly downregulated (Fig. 3B). Examining the dual-endotype groups, we found that the TA-induced 

decrease in T2 network expression occurred in both T1-L/T2-H and T1-H/T2-H patients (Fig. 3C), but not 

in T1-L/T2-L or T1-H/T2-L patients (Fig. 3C). In addition, we found a strong linear relationship between 

T2 network expression pre-treatment and the amount of suppression in expression of the T2 network by 

TA treatment. Specifically, high T2 network expression levels pre-treatment were associated with larger 

TA-related decreases in T2 network expression, and this was true for both the T1-L/T2-H and T1-H/T2-H 

subgroups (Fig. 3D). 

 

We next explored whether the size of TA-associated changes in T2 network expression were associated 

with the magnitude of lung function responses. As noted above, TA decreased T2 network expression in 

both the T1-L-/T2-H and T1-H/T2-H subgroups, but we found that TA treatment only increased FEV1 in 

the T1-L/T2-H group, but not in the T1-H/T2-H group) (Fig. 3E). The T1-L/T2-L and T1-H/T2-L 
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subgroups had small or absent FEV1 responses to TA treatment. In addition, TA-induced decreases in T2 

inflammation correlated inversely with changes in FEV1 in the T1-L/T2-H group but not in the T1-H/T2-

H group (Fig. 3F). Together, these results show that corticosteroids have strong suppressive effects on 

airway T2 network expression but not on T1 network expression, and that the usual beneficial effects of 

steroids on lung function in T2-high patients are blunted when they have concomitant T1 inflammation. 

 

Airway endotype is a patient characteristic with variable expression over time 

The ability of TA treatment to suppress airway T2 inflammation suggests that expression of the T2 endotype 

could vary within patients across time, reflecting changes in treatment, and potentially by other disease-

modifying factors or exposures. To investigate this, we examined whether patient T2 endotype at the pre-

steroid baseline visit was a significant predictor of T2 status at the 1- (n=113) and/or 3-year follow-up visits 

(n=111). In logistic regression analyses modeling patient endotype at follow-up visits, we found that 

patients classified as T2-high at baseline were more likely to be T2-high at follow-up visits (OR = 6.93, 

p=1.0x10-8, fig. S4A). For a subset of these patients (n=72), sputum cell gene expression data were available 

at all three timepoints, allowing us to examine longitudinal endotype persistence over a three-year period 

(Fig. 4A). Among 58.3% of patients who were T2-high at least once across the three visits, 31% were T2-

high at all timepoints (persistently T2-high), whereas the remaining 69%, variably expressed T2 

inflammation. The remaining 41.7% of patients were T2-low at all timepoints. Together, these results 

strongly suggest that the T2 endotype is a patient characteristic, but that additional factors influence whether 

a T2-capable patient expresses this endotype at any point in time. We similarly examined evidence for the 

airway T1 endotype being a patient characteristic. We found that T1-high patients at baseline were more 

likely to be T1-high at the 1- and 3-year follow-up visits (OR=4.95, p=8.2x10-6, fig. S4B). Among those 

with sputum cell gene expression data at all three timepoints, we found that 52.8% were persistently T1-

low (Fig. 4B). Among those who expressed the T1 endotype at least once across this time period, only 

11.8% did so persistently, whereas 88.2% were variably T1-high (Fig. 4B). These results indicate that while 
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airway T1 inflammation is also a patient characteristic, endotype expression among predisposed patients is 

more variable than for airway T2 inflammation.    

 

Lower airway respiratory virus carriage is associated with expression of the T1 endotype 

We next hypothesized that the high within-patient variability in T1 endotype expression is due to periodic 

respiratory virus carriage. To investigate this, we performed viral metagenomics analysis of the sputum 

RNA-seq dataset, including only baseline pre-steroid, year 1 and 3 visit, and healthy control samples (605 

total samples from 377 participants). We found that 24.3% and 21.6% of asthma and healthy sputum 

samples, respectively, were positive for respiratory virus reads (Fig. 5A). These viral detections were 

dominated by human rhinoviruses (A, B, and C species; 47% of detections) and coronaviruses (40% of 

detections; Fig. 5A, fig. S5A-B). Examination of viral read counts associated with these detections revealed 

a bi-modal pattern, with virus low and high groups (Fig. 5B). Although T1 network expression was not 

elevated among the virus-low compared to the non-viral group, it was increased 1.8-fold among the virus-

high group (p=1.35x10-34, Fig. 5C).  Examining the association between T1 endotype status and viral 

detection groups, we found 20% of T1-high samples were virus-high, versus only 2% of the T1-low 

samples, an 11-fold increase in the odds of virus-high samples also being T1-high (Fig. 5D). In contrast, 

T2 network expression was not significantly associated with virus carriage, nor were virus positive samples 

more likely to be T2-high (fig. S5C-D). Supporting the clinical significance of asymptomatic viral carriage, 

we found a lower FEV1 in virus-high/T1-high patients than in T1-high patients with low or absent viral 

carriage (Fig. 5E). Together, these results reveal that lower airway carriage of respiratory viruses is common 

in adults with asthma and may drive airway T1 inflammation and lower lung function.    

 

DISCUSSION 

Here, we leveraged transcriptomic and metagenomic analysis of sputum cells collected during periods of 

clinical stability over a 3-year period from participants in the Severe Asthma Research Program (SARP)-3 
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to determine the frequency, persistence, corticosteroid responsiveness, respiratory virus dependence, and 

associated clinical features of patient subsets with airway inflammation driven by expression of type 1 (T1) 

and type 2 (T2) cytokines. In particular, we used co-expression network analysis and hierarchical clustering 

of T1 and T2 gene networks to determine that nearly half of the SARP-3 cohort had T2-high asthma and a 

quarter had T1-high asthma. Moreover, although traditionally viewed as orthogonal inflammation 

pathways, we found that 14% of patients exhibited both T1 and T2 airway inflammation. Patients with T2-

high asthma tended to have more severe asthma than patients with T1-high asthma, but patients with a dual 

T1-H/T2-H endotype had the most severe disease. Thus, upregulation of T1 and T2 network expression in 

the airway has additive effects on asthma severity and fully controlling asthma in these patients may require 

drugs that inhibit both T1 and T2 cytokine pathways. Notably, T2-high patients at baseline were nearly 7-

fold more likely to be T2-high at subsequent timepoints, revealing a patient-level propensity for airway T2 

inflammation. This propensity is likely “wired” into a patient’s airway through the presence of a T2 

inflammatory cell milieu (e.g. Th2 lymphocytes, eosinophils, mast cells) with enhanced expression of T2 

pathway genes, which may be genetically determined (11, 12). However, only 38% of patients with T2-

high asthma at baseline were persistently T2-high over time. Therefore, for patients who variably express 

the T2-high endotype, it may be that genetic factors establish the cellular/molecular T2 “wiring,” but 

additional environmental factors (e.g. aeroallergen exposures) are necessary to periodically activate this 

pathway. Likewise, we hypothesize that those with persistently T2-high disease experience constant 

exposure to environmental aeroallergens that maintains their airway T2 inflammation. Alternatively, the 

airway of these patients may have acquired “inflammatory memory,” through epigenetic programming, 

leading to a persistent basal inflammation tone or a reduced threshold for activation of airway cytokine 

production, as has been observed in other disease/tissue contexts (23, 24). 

 

We provide strong evidence for the existence of a clinically consequential T1-high asthma endotype. Here, 

rather than define T1 inflammation based on a single gene or predefined gene set, we used co-expression 

network analysis to agnostically uncover the gene structure of airway T1 inflammation. These T1 network 
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genes strongly suggest that IFN-γ-producing Th1 and CD8+ T cells are central to airway T1 inflammation, 

as other studies have suggested (17). The T1 network also contains IFN-inducible Th1 chemokines (CCL5 

and CXCL9-11) that recruit Th1 cells to the airway (25-27). The patients classified as T1-high were older, 

prone to exacerbation, and had neutrophilic and lymphocytic inflammation in their airways. Importantly, 

corticosteroid treatment did not suppress T1 network genes or improve lung function in T1-high patients. 

Also, the usual beneficial effects of steroids on lung function in T2-high patients was blunted by 

concomitant T1 inflammation (i.e., in T1-H/T2-H patients). Thus, heterogeneity in the efficacy of 

corticosteroid treatment in T2-high forms of asthma may be explained by concomitant T1 inflammation. 

Notably, subsets of T2-high asthma patients are non-responsive to therapeutic proteins targeting the type 2 

inflammation cascade (28, 29), and it may be that concomitant T1 inflammation also blunts the efficacy of 

these biologic treatments. Together, our data provide rationale for consideration of drugs that block the T1 

inflammation cascade as a strategy to improve disease control in patients with T1-high asthma and in those 

with a dual endotype (T1-high/T2 asthma).   

 

Our data suggest that T1 inflammation is a patient disease characteristic, as those classified as T1-high at 

baseline were nearly 5-fold more likely to be T1-high at follow-up visits. However, similar to T2-high 

patients, we find this propensity towards T1 inflammation varies within these patients over time. 

Metagenomic analysis of the sputum RNA-seq dataset found that the expression of T1 inflammation was 

related to carriage of viral RNA for common respiratory viruses, including human rhinoviruses and 

coronaviruses, because patients with high viral RNA levels were 11-fold more likely to have a T1-high 

asthma endotype. Importantly, the sputum cell samples analyzed here were collected when patients were 

free from symptomatic upper or lower respiratory tract infections. This result suggests that a subset of 

asthmatics “silently” carry respiratory viruses in their lower airways, leading to the activation of T1 

inflammation. Supporting this, we have previously observed “silent” nasal carriage of common respiratory 

viruses in children and that carriage was associated with high airway expression of an interferon-stimulated 

gene signature (30, 31). Moreover, the concept of asymptomatic viral carriage has gained ground during 
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the SARS-CoV-2 pandemic, as increased surveillance for respiratory viruses has revealed the high 

prevalence of asymptomatic nasal carriage of viruses (32, 33). However, our data here represent the first 

demonstration of widespread asymptomatic viral carriage in the lower airways and raise the possibility that 

viral carriage drives persistence of airway inflammation. Our study cannot determine if the virus detection 

represents true asymptomatic viral carriage or a failure to clear illness-associated virus. And despite the 

high risk of T1 inflammation conferred by viral carriage, we also found that 80% of T1-high patients did 

not carry a virus, indicating that other unknown factors, potentially bacterial dysbiosis, may underlie T1 

gene expression.   

 

In summary, our data reveal independent and interactive effects of T1 and T2 cytokine expression on asthma 

severity and treatment responses. The longitudinal behavior of these inflammatory patterns indicates that 

T1-high and T2-high endotypes are patient characteristics modulated by environmental exposures, 

including respiratory viruses. Patients with T1-high asthma have high unmet treatment needs that may be 

addressed by targeting the T1/IFN-g inflammation cascade or the respiratory viruses that trigger this 

cascade in a subset of T1-high patients.  

 

MATERIALS AND METHODS 

Experimental design 

To investigate molecular mechanisms of asthma, we leveraged sputum cell biospecimens from deeply 

phenotyped participants in the Severe Asthma Research Program (SARP)-3 (34). These sputum samples 

had been collected at baseline characterization visits, before and 1-3 weeks (13 ± 6 days) after a 

triamcinolone acetonide injection, and at post-baseline follow-up visits at years 1 and 3 (Fig. 1). RNA 

extracted from these sputum cells was used to generate polyA-selected, whole transcriptome RNA-seq data. 

These RNA-seq data were used to identify co-expression networks and to detect viral transcripts. The 

SARP-3 database provided detailed information about the sputum donors’ demographics, lung function, 
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and asthma control as well as information related to treatment response to a single dose of intramuscular 

triamcinolone acetonide (40mg). 

 

Participants 

Adult patients with asthma were recruited to SARP-3 between Nov 1, 2012, and Oct 1, 2014 by seven 

clinical research centers in the USA, and 60% had severe disease as defined by the European Respiratory 

Society/American Thoracic Society (ERS/ATS) criteria (35). For this study, we used data collected from 

347 SARP-3 asthma participants sampled across different time points (Fig. 1). Selection of samples for 

RNA-seq was performed to allow robust investigation of baseline endotypes, prioritizing patients with 

either or both of corticosteroid follow-up and regular longitudinal follow-up samples. Specifically, we 

included samples from 260 participants at the pre-steroid baseline visit, samples from 174 participants 

collected 1-3 weeks following triamcinolone acetonide injection (post-steroid visit) (158 of these 

participants had matched baseline sampling), samples collected from 122 participants 1 year after baseline 

(113 with matched baseline sampling), and samples collected from 186 participants 3 years after baseline 

(111 with matched baseline sampling). Three participants with additional interim sampling were collected 

2 years after baseline (all three with matched baseline sampling). We also assayed samples from 37 healthy 

controls with no history of pulmonary/atopic disease or allergic rhinitis. Detailed clinical characterization 

carried out at baseline visits included administration of questionnaires to capture asthma history, 

medications, and asthma control, as well as measurement of lung function, evaluation of responses to beta 

adrenergic agonists and corticosteroids, and collection of computed tomography lung scans and samples of 

venous blood and induced sputum. Select characterization tests were repeated at regular intervals for three 

years or longer. Prior SARP-3 publications have previously provided detailed descriptions of the network’s 

methods and procedures (5, 6, 34, 36).  

 

Systemic corticosteroid response test (SCRT) and maximum bronchodilator reversibility testing 

(MBRT) 
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The systemic corticosteroid response test (SCRT) in SARP-3 involved an intramuscular injection of 

triamcinolone acetonide (TA) (40mg) at the baseline characterization visit followed by a visit 1-3 weeks 

later to assess TA response (36). Maximum bronchodilator reversibility testing (MBRT) in SARP-3 

involved measures of spirometry after up to 720 ug of inhaled albuterol and was performed at baseline visits 

and at each annual in-person visit thereafter (34). 

 

Sputum induction and analysis of induced sputum 

Induced sputum was processed within one hour and a portion of sputum (homogenized in a 10% solution 

of Sputolysin [EMD Millipore, Temecula, Calif]) was used to determine total and differential cell counts 

(5). Homogenized sputum was then centrifuged to generate a cell pellet which was suspended in 1 mL of 

Qiagen RNAprotect Saliva Reagent. RNA extraction from sputum cells was done by the SARP-3 sputum 

cell RNA core (UCSF center) using RNeasy Qiagen kits (Qiagen) following an initial DNA elimination 

step with a Qiagen gDNA elimination column. 

 

RNA-sequencing of sputum samples 

RNA normalization, library preparation, and pooling were performed using the Beckman Coulter Biomek 

FXP automation system (Beckman Coulter, Fullerton, CA).  Total RNA from 886 SARP sputum samples 

was used to construct whole transcriptome libraries using the KAPA Stranded mRNA-seq library kit (Roche 

Sequencing and Life Science, Kapa Biosystems, Wilmington, MA) from 20ng of total input RNA, 

according to manufacturer’s protocols. Barcoded libraries were pooled and sequenced using 125bp paired-

end reads on the Illumina HiSeq 2500 system (Illumina, San Diego, CA). Sequence processing and QC, 

described in the fig. S1 and Supplementary Materials and Methods, resulted in sequence data from 782 

samples collected from 384 participants. 

 

Virus detection using metagenomics 
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Virus infections were identified and quantified using an in-house meta-transcriptomic NGS pipeline (30). 

This pipeline implements a classic metagenomic approach comprising assembly, binning, classification, 

and quantification, adding interleaved depletion of human genomic content between each step. A sample 

was considered positive for a virus if the recovered genome scaffold comprised at least 200 fully determined 

base pairs and was covered by at least 4 reads. 

Only samples from healthy controls and asthma samples from baseline and the two main follow-up visits 

were used for the viral detection analysis (N=605).  

 

Defining T1 and T2 endotypes based on sputum co-expression networks 

All 782 samples were assigned to  “high” and “low” T1 and T2 endotype groups based on hierarchical 

clustering of genes within the T1 gene network (e.g., STAT1, IFNG, CD8A, CD8B; 65 genes total) and the 

T2 gene network  (e.g., IL4, IL13, IL1RL1, CCL26; 48 genes total), identified using weighted gene co-

expression network analysis (WGCNA) (37). See Supplementary Materials for full details of this 

analysis.  

 

Statistical analysis 

To test for differences in variables among endotype groups at baseline in Table 1 we used ANOVA 

(normally distributed continuous outcomes), Kruskal-Wallis tests (non-normal continuous outcomes), and 

chi-squared tests (categorical outcomes). To test for differences in immune cell counts among endotype 

groups at baseline (Fig. 2D, fig. S3), we used ANOVA, accounting for age, gender, and ethnicity, where 

ethnicity was binned into “white” and “non-white” due to statistical constraints stemming from small 

sample sizes of non-white sub-categories. When modeling multiple sample points from a single participant, 

we used mixed models to account for repeated measures using the lmerTest R package. To estimate the 

odds of endotype persistence (fig. S4) or of carrying virus in endotype-high versus endotype-low samples 

(Fig. 5D, fig. S5), we used generalized estimating equations (GEE) logistic regression, allowing us to 
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account for repeat measures within a participant. When only baseline samples were used, odds ratios and 

p-values from contingency tables were obtained from two-sided Fisher’s exact tests. 
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Figures 

 

Fig. 1. Sampling design for this study. 

Adults with and without severe asthma yield blood, sputum, and deep phenotyping samples at baseline and 

follow-up visits, such that inflammatory endotype expression and its associations with disease traits and 

steroid response can be investigated.  
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Fig. 2. The frequency, intersection, and clinical characteristics of patients with airway T1-high and 

T2-high asthma endotypes. 

(A) A heat map of 36 T1 network genes as they are expressed among 782 SARP samples hierarchically 

clustered into T1-low (T1-L) and T1-high (T1-H) groups. A key cytokine of T1 inflammation, IFNG, is 

highlighted. (B) Similar to panel A, but based on 35 T2 network genes. Key cytokines of T2 inflammation, 

IL-4, IL-5, and IL-13, are highlighted. (C) An Upset plot visualizing the intersection between baseline T1 

and T2 status among 260 participants, where the number samples in each of the four dual endotype groups 
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is on the y-axis and percent of samples in each group is given over each bar. T2-high endotype status 

conferred 1.9-fold increased risk of also being T1-high. (D) Box plots depicting elevated immune cell 

counts (log10) in the sputum of individuals sampled at baseline (N = 259) who also exhibit T1 and/or T2 

inflammatory endotypes (from left to right within a plot, N=115, 30, 77, and 37). Asterisks indicate when 

log10 immune cell counts significantly differ from the dual T1 and T2-low group (p < 0.05) based on an 

ANOVA that accounts for gender, age, and ethnicity (p-values, from left to right: 1.09x10-10, 5.98x10-07, 

2.78x10-05, 5.83x10-04, 2.13x10-07, 0.0122, 0.0250). Data beyond the end of whiskers are not shown. 
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Fig. 3. Coincident T1 inflammation in T2-high patients blunts the FEV1 response to triamcinolone 

acetonide. 

(A) Box plots show patient changes (Δ) in T1 network gene expression from the baseline visit, where steroid 

was administered, to the post-steroid treatment timepoint, among T1-high and T1-low groups (N=119 for 
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T1-low; N=39 for T1-high). (B) Box plots show patient changes (Δ) in T2 network gene expression from 

baseline to the post-steroid treatment timepoint, among T2-high and T2-low groups (N=88 for T2-low; 

N=70 for T2-high). The asterisk indicates a significant (p-value=1.16x10-16) reduction in T2 network 

expression based on a mixed model that contrasts T2 expression before and after steroid treatment in T2-

high individuals, with participant as a random effect. (C) Box plots depicting changes in T2 network 

expression in response to steroid (Δ) among the four, dual T1/T2 endotype groups (from left to right, N=72, 

16, 47, and 23). Asterisks indicate significant reduction in T2 network expression based on a mixed model 

that contrasts T2 expression before and after steroid treatment within a given endotype group (p-values, 

from left to right: 2.35x10-14, 1.69e-07). (D) Plot of the relationship between Δ T2 network expression with 

steroid against baseline (pre-steroid) T2 network expression for T2-high individuals, stratified by their T1 

status, where red = T1-L/T2-H (N=47) and purple = T1-H/T2-H (N=23). Loess curves are overlain on the 

data points. Spearman correlation coefficients and p-values for the two endotype groups are given. (E) Box 

plots depicting patient % FEV1 responses to steroid (Δ) among the dual T1/T2 endotype groups (from left 

to right, N=116, 30, 77, and 37). Asterisks directly above box plots indicate significant elevation in % FEV1 

based on a mixed model that contrasts % FEV1 before and after steroid treatment within a given endotype 

group (asterisk p-values, left to right: 0.0448, 4.42x10-07). † symbols between box plots indicate when FEV1 

response to steroid is significantly different between groups based on the same mixed model († p-values, 

left to right: 6.48x10-03, 0.0324). (F) Plot of the relationship between Δ FEV1 with steroid against Δ T2 

network expression with steroid for T2-high individuals, stratified by their T1 status, where red = T1-L/T2-

H (N=47) and purple = T1-H/T2-H (N=23). Loess curves are overlain on the data points. Spearman 

correlation coefficients and p-values for the two endotype groups are given. For all box plots, data beyond 

the end of whiskers are not shown. 
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Fig. 4. Airway endotype is a patient characteristic with variable expression over time. 

(A) An alluvial diagram depicting patient persistence/variability of T2 status across three time points (N = 

72). (B) An alluvial diagram depicting patient persistence/variability of T1 status in the same individuals 

as in panel A across three time points (N = 72). 
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Fig. 5. Lower airway respiratory virus carriage is associated with expression of the T1 endotype. 

(A) Pie charts describing the proportion of samples carrying virus as identified using our metagenomics 

pipeline (left; N=605) or the proportion of different virus types observed among samples carrying virus 

(right; N=146). (B) Density distribution for the log10 number of virus reads detected among virus-positive 

samples (N=146). The dashed line at 1,000 reads marks our threshold to discriminate between “low” and 

“high” virus detection. (C) Box plots visualizing increased T1 network expression among high virus 

samples (N=39) compared to samples with no (N=459) or low (N=107) virus. Overlaid points are colored 

by number of log10 virus reads in a sample. Asterisks indicate when group differences are significant based 

on a mixed model predicting T1 network expression as a function of virus status, with participant as a 

random effect (asterisk p-values, left to right: 1.35x10-34, 1.30x10-31). (D) Bar plot depicting the proportion 

log10 virus reads
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of samples that carry no, low, or high virus within T1-low (N=458) and T1-high (N=147) samples 

(proportions are listed on each bar). Odds ratios (OR) and p-values, describing the excess chance of carrying 

low virus (compared to no virus; top) or of carrying high virus (compared to no/low virus; bottom) when 

T1-high compared to T1-low, were calculated using GEE logistic regression. (E) Box plots showing lower 

% FEV1 among T1-high individuals with high virus loads (N=29) compared to individuals who are T1-low 

(N=423) or who are T1-high while carrying low/no virus (N=116). Asterisks indicate significant differences 

in FEV1 between groups based on a mixed model with a random effect for participant (p-values, from left 

to right, are 0.0087 and 0.0301).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 6, 2023. ; https://doi.org/10.1101/2023.10.05.23296609doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.05.23296609
http://creativecommons.org/licenses/by/4.0/


 32 

Tables 

Table 1. Summary of variation in demographic, asthma, and lung function traits across baseline 

T1/T2 endotype groups within Severe Asthma Research Program (SARP) participants. 

 

  

 
T1-low/T2-low T1-high/T2-low T1-low/T2-high T1-high/T2-high p 

Demographic      

N 116 30 77 37  

Age (years), mean ± sd 43.1 ± 13.0 50.0 ± 13.2 47.4 ± 14.2 54.6 ± 14.7 <0.001 

Male, n (%) 37 (31.9) 10 (33.3) 18 (23.4) 13 (35.1) 0.488 

BMI, mean ± sd 33.4 ± 8.7 34.0 ± 12.3 32.0 ± 8.3 31.6 ± 7.7 0.494 

Asthma Characteristics      

Age of onset (years), mean ± sd 14.31 (12.42) 18.50 (16.41) 15.50 (15.37) 23.32 (17.08) 0.009 

High dose ICS, n (%) 71 (61.2) 15 (50.0) 53 (68.8) 28 (75.7) 0.115 

Daily oral steroids, n (%) 9 (7.8) 3 (10.0) 10 (13.0) 8 (21.6) 0.136 

Annualized exacerbation rate, median 

[quartiles] 

0.0 [0.0, 0.8] 0.3 [0.0, 2.0] 0.7 [0.0, 1.0] 0.7 [0.3, 1.0] 0.019 

Lung Function      

Pre-BD FEV1 (% pred), mean ± sd 78.2 ± 17.5 76.7 ± 18.5 69.2 ± 18.2 68.1 ± 17.1 0.001 

Pre-BD FVC (% pred), mean ± sd 88.4 ± 15.3 86.7 ± 19.1 84.1 ± 17.7 81.3 ± 13.1 0.079 

Pre-BD FEV1/FVC, mean ± sd 71.8 ± 9.6 71.3 ± 10.2 66.4 ± 8.8 66.2 ± 9.4 <0.001 

FEV1 BD Response (absolute 

change), mean ± sd 

10.1 ± 7.6 11.0 ± 6.1 13.9 ± 9.1 12.1 ± 6.9 0.011 
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