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Abstract

Explainable Artificial Intelligence (XAI) is becoming a disruptive trend in healthcare,
allowing for transparency and interpretability of autonomous decision-making. In this
study, we present an innovative application of a rule-based classification model to
identify the main causes of chronic cough-related quality of life (QoL) impairment in a
cohort of asthmatic patients. The proposed approach first involves the design of a
suitable symptoms questionnaire and the subsequent analyses via XAI. Specifically,
feature ranking, derived from statistically validated decision rules, helped in
automatically identifying the main factors influencing an impaired QoL: pharynx/larynx
and upper airways when asthma is under control, and asthma itself and digestive trait
when asthma is not controlled. Moreover, the obtained if-then rules identified specific
thresholds on the symptoms associated to the impaired QoL. These results, by finding
priorities among symptoms, may prove helpful in supporting physicians in the choice of
the most adequate diagnostic/therapeutic plan.

Introduction 1

Nowadays Artificial Intelligence (AI) is revolutionizing medicine by leveraging powerful 2

technologies and advanced learning algorithms. This has the potential to support 3

several clinical processes, from prognostics to diagnostics, from treatment management 4

to drug discovery, and also can aid hospital administrative tasks. However, AI real 5

application in healthcare needs to be approached very carefully, since failures may cause 6

harm to human lives. For this reason, AI research is increasing its interests in 7

trustworthy AI [1], a broad paradigm establishing how to properly design, develop and 8

deploy real-world AI applications. Between its principles, transparency requires 9

providing the user with an understanding of the autonomous decisions generated by the 10

model: this topic is subject of eXplainable AI (XAI) research [2, 3]. XAI comprehends a 11

wide range of methodologies, which can be broadly categorized as post-hoc explanations 12

of black box models and transparent-by-design techniques [4]. In the latter category, 13

rule-based models are characterized by understandable decision rules expressed in the 14

if-then format. These kinds of models are particularly suitable in medicine, since their 15

intrinsic interpretability allows clinicians to enter models’ logic and increase trust in 16

them. In light of this, our work focuses on the usage of such techniques to characterize 17

the quality of life of asthmatic patients with chronic cough. 18
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Asthma is a frequent cause of cough in adults [5]. In addition to coughing, asthmatic 19

patients may also wheeze or feel short of breath. However, some people have a condition 20

known as cough variant asthma, in which cough is the only symptom of asthma. For 21

these reasons, tools for the assessment of asthma, such as Asthma Control Test 22

(ACT) [19], consider cough among the asthma features. While in patients with 23

uncontrolled asthma the disease itself can be the cause of cough, the persistence of 24

cough despite good asthma control can be related to concomitant disorders (i.e., 25

postnasal drip, pharynx/larynx disorders, and acid reflux from the stomach [6]) or 26

inability of asthma drugs to fully remove the symptoms. 27

In light of these considerations, it is very useful to design a method that allows to 28

define the priority of choice among different diagnostic techniques, starting from 29

patients’ self-reported presence and entity of symptoms and their impact on the quality 30

of life. Methods based on XAI, thanks to their transparent and interpretable methods, 31

can offer a great opportunity in this direction. 32

Contribution 33

In this study, we propose the usage of a rule-based XAI model to support clinicians in 34

the diagnostic procedure for determining the origins of chronic cough in asthmatic 35

patients. More precisely, our main contributions are the following: 36

• We introduce a new block-based questionnaire, devoted to collect (respiratory) 37

symptoms perceived by asthmatic patients with chronic cough. 38

• We train a rule-based model, the Logic Learning Machine (LLM), for predicting 39

chronic cough-related quality of life based only on self-reported responses to the 40

questionnaire of symptoms, by distinguishing patients with high or low asthma 41

control level. 42

• By validating and analyzing the model, we discover which symptoms and 43

corresponding values are mainly involved in a quality of life exacerbation. 44

The remaining part of the paper is organized as follows. In Section Related Work we 45

report some recent examples of machine learning for chronic cough. Section 46

Methodology describes the workflow, the dataset structure and the adopted 47

methodologies. Section Results shows and discusses the obtained results. Finally, 48

Section Conclusion concludes the paper and reports future research on the topic. 49

Related Work 50

Different machine learning (ML) and AI-based studies on chronic cough and asthma 51

have been carried out in recent years, by leveraging the newest medical technologies [17]. 52

An AI-based cough count, CoughyTM [14], system was recently developed that 53

quantifies cough sounds collected through a smartphone application. Study results 54

showed that suggest that CoughyTM could be a novel solution for objectively 55

monitoring cough in a clinical setting. A vocal biomarker-based machine learning 56

approaches have shown promising results in the detection of various health conditions, 57

including respiratory diseases, such as asthma [15]. Also, a deep learning model for 58

identifying chronic cough patients with even higher sensitivity and specificity when 59

structured and unstructured electronic health records EHR data are utilized has been 60

proposed [16]. 61

In [12], well established ML models like gradient boost and random forest were 62

adopted in a retrospective study to predict the risk of persistent chronic cough (PCC) 63

in patients with chronic cough (CC). The work proposed in [7] used a statistical 64
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approach (Latent Class Analysis) on the Swedish Twin study On Prediction and 65

Prevention of Asthma (STOPPA) and the Child and Adolescent Twin Study in Sweden 66

(CATSS) questionnaires responses to identify asthma and wheeze phenotypes in 67

children. In [9], four adult chronic cough phenotypes were identified through a cluster 68

analysis method applied to questionnaire data such as the COugh Assessment Test 69

(COAT) [10] and the Korean version of the Leicester Cough Questionnaire [11]. 70

However, all these literature examples do not provide their outcomes in an 71

explainable way. 72

Methodology 73

Workflow 74

The overall methodology followed in the proposed analyses is depicted in Fig. 1. The

Fig 1. Workflow of the analyses carried out in the proposed XAI-based
approach.

75

dataset was first split in a 70% training and 30% test sets, then an explainable Artificial 76

Intelligence (XAI) model was considered for data classification. The adopted classifier is 77

called Logic Learning Machine and provides its predictions through a set of rules. In 78

order to verify the statistical significance of the resulting ruleset, this was validated 79

through a statistical test. Rules that did not pass the test were then filtered out from 80

the model, thus obtaining a final, validated, set of rules. Also, feature ranking was 81

investigated to identify which of the inputs have the higher impact on the model 82

outcome. Finally, the overall performance of the validated ruleset was measured on the 83

test set, by considering some common metrics for machine learning models evaluation. 84

Next Sections provide the description of the dataset and some fundamentals about 85

the adopted XAI, the rule validation test and the definition of the evaluation metrics. 86

Dataset Description 87

The study involved a cohort of asthmatic patients, who have been asked to answer to 88

three different kinds of questionnaires (data were accessed on 2023/03/08; the authors 89

had no access to information that could allow to identify individual participants during 90

or after data collection). 91

The first one collects patients’ feedback about a variety of symptoms. Specifically, it 92

contains 19 items relating to four domains related to the more frequent causes of 93

chronic cough, as shown in the diagram of Fig. 2.

Fig 2. Symptoms questionnaire. Schematic representation of the four blocks
(AsthmaRelated, PharynxLarynx, RhinoSinusitis, GastroEsoReflux ) of the symptoms
questionnaire and their related items.

94

For each item, the patients answered to the question “How intense/annoying has the 95

symptom been in the last month?”, by self-reporting a level between None and Very 96

Much expressing the perceived entity of the corresponding symptom. These levels were 97

then proportionally converted to a score in the 0-100 scale. The average of the responses 98

within each block was computed, thus individuating a set of four features that will be 99

used as input to the ML model, each referred to a different body organ. 100

The second questionnaire involved in this study is the Chronic Cough Impact 101

Questionnaire (CCIQ) [18]. It is useful to measure the impact of cough on health-related 102
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quality of life, namely impact on daily life (CCIQ IDL), on sleep/concentration (CCIQ 103

SC), on mood (CCIQ M) and relationship (CCIQ R). A score for each group is derived 104

and contributes to compute a global score, called CCIQ GLS : based on this, we defined 105

two classes of patients. Those scoring CCIQ GLS≥20 were labelled as impaired Quality 106

of Life (QoL), while those with CCIQ GLS<20 were associated to a near normal QoL. 107

The last questionnaire considered is the Asthma Control Test (ACT) [19]. It is a 108

5-item questionnaire aimed at assessing at which extent the asthmatic patient has 109

control of the pathology. We used the score obtained from this test to further 110

distinguish patients between two populations: subjects with ACT ≥ 20 were identified 111

as the controlled asthma group, whereas those scoring ACT < 20 formed the not 112

controlled asthma group. 113

The analyses carried out in this work thus considered three different cases: i) all 114

patients were included; ii) only controlled asthma patients were included; iii) only not 115

controlled asthma patients were included. 116

The Adopted eXplainable AI classifier 117

For each patients group, we trained a XAI classifier that, fed with the 4 input features 118

(referred to as AsthmaRelated, PharynxLarynx, RhinoSinusitis and GastroEsoReflux ) 119

representing the average scores on each block of the symptoms questionnaire (Fig. 2), 120

provided a prediction of the patient’s cough-related QoL, which can be either impaired 121

or near normal. 122

The analyses on the first group (i.e., all patients) did not explicitly use the knowledge 123

acquired from the ACT questionnaire. Indeed, the classification model that is designed 124

for this group represents a tool to individuate which areas and values of symptoms drive 125

an impaired QoL in a generic asthmatic population, but without any previous 126

knowledge on the asthma control level. Conversely, the analyses performed on the 127

controlled asthma and not controlled asthma groups also exploited the information from 128

the ACT, thus the results of the XAI predictive models provide indications that are 129

specifically tailored to the different asthma control level. 130

Logic Learning Machine 131

In this Section, we provide some basic description of the adopted classifier, the Logic 132

Learning Machine (LLM). It is a rule-based explainable AI model, designed and 133

developed by Rulex [26] as the efficient implementation of Switching Neural 134

Networks [20]. 135

Given the input data, the LLM provides a classification model described by a set of 136

rules R = {rk}k=1,...,Nr
, where each rk is expressed with the form: if <premise> then 137

<consequence>. The <premise> constitutes the antecedent of the rule and is a logical 138

conjunction (AND) of conditions on the input features. The <consequence> reports the 139

outcome of the classification, i.e. the predicted class label. 140

The performance of any rule rk ∈ R can be evaluated by covering C(rk) and error 141

E(rk) metrics, defined as: 142

C(rk) =
TP (rk)

TP (rk) + FN(rk)
(1)

143

E(rk) =
FP (rk)

TN(rk) + FP (rk)
(2)

where TP (rk) and FP (rk) are the number of samples that, respectively, correctly and 144

wrongly verify rule rk; TN(rk) and FN(rk) are the number of samples that, 145

respectively, correctly and wrongly do not verify the rule. The covering is also 146
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proportional to the relevance of the rule, therefore the larger it is, the higher is the 147

probability that the rule is valid on new unseen samples. On the contrary, the error 148

E(rk) measures how much wrongly covered is the rule and its maximum value is usually 149

fixed as a model hyperparameter (by default, it is of 5%). 150

Both covering and error are useful to define feature ranking. It allows to gain insights on 151

which input attributes contribute the most to predict a given class; to this aim, values 152

of relevance for each feature are computed and typically represented in bar plots in 153

descending order. 154

Given a feature Xj and a rule rk (predicting class label ŷ) containing in its premise a 155

condition cj on variable Xj , covering and error are first combined to compute the 156

relevance of cj as R(cj) = (E(r′k)− E(rk))C(rk), where r′k is the rule obtained by 157

removing condition cj from rk. The relevance Rŷ
j for feature Xj is then derived by the 158

following equation 3: 159

Rŷ
j = 1−

∏
k

(1−R (cj)) , (3)

where the product is computed on the rules rk that include a condition cj on the 160

feature of interest. 161

Rules Statistical Validation 162

In order to assess the statistical significance of the set of rules generated by the LLM, 163

we decided to use the Pearson’s χ2 independence test [23]. To this purpose, we 164

considered two binary events involving the available data samples, namely their 165

membership to an output class and their satisfaction of the rules in R. Therefore, a 2×2 166

contingency table was built for each rule rk ∈ R, as shown in Table 1, reporting the 167

counts of how many samples of the two classes are covered or not by the rule. 168

Let the input dataset be T = {(xi, yi)}i=1,...,N , with binary output labels yi = 0 169

(i.e., near normal QoL class in our case) or yi = 1 (i.e., impaired QoL class). Also, let us 170

define with xi ⊢ rk and xi ⊬ rk the satisfaction and unsatisfaction of rule rk by the data 171

point xi, respectively. Then, the following quantities can be defined: 172

a = |{(xi, yi) ∈ T |yi = 1 ∧ xi ⊢ rk}|

b = |{(xi, yi) ∈ T |yi = 1 ∧ xi ⊬ rk}|

c = |{(xi, yi) ∈ T |yi = 0 ∧ xi ⊢ rk}|

d = |{(xi, yi) ∈ T |yi = 0 ∧ xi ⊬ rk}|

Table 1. 2×2 contingency matrix for rule rk.

⊢ rk ⊬ rk

y = 1 a b

y = 0 c d

χ2 statistic was then computed starting from the matrix. The test was carried out 173

with a null hypothesis of independence between class label and rule membership, with a 174

significance level of 0.05 for the p-value. Rules with a p-value < 0.05 were then proved 175

as statistically significant [24] and those that did not pass the test were removed from 176

the ruleset R, giving rise to a set of validated rules Rval ⊆ R. 177
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Model Performance Evaluation 178

To evaluate the overall performance of the validated ruleset, the confusion matrix 179

reporting the True Positives (TP, i.e., patients correctly predicted as impaired QoL ), 180

False Positives (FP, i.e., near normal QoL patients wrongly predicted as impaired QoL), 181

True Negatives (TN, i.e., patients correctly predicted as near normal QoL) and False 182

Negatives (FN, i.e., impaired QoL patients wrongly predicted as near normal QoL) 183

obtained by applying such rules to a test set was first built. It is the basis to define the 184

following measurements, particularly useful when evaluating the outcomes of a clinical 185

ML model [25]: 186

ACC = TP+TN
TP+FP+TN+FN F1 =

2TP

2TP + FP + FN

PPV = TP
TP+FP NPV =

TN

TN + FN

TPR = TP
TP+FN TNR =

TN

TN + FP

While accuracy (ACC) and F1-score (F1) provide an evaluation of the model taking into 187

account its performance on both the classes, the other ones assess the performance on 188

single classes. In detail, Positive Predictive Value (or precision, PPV) and True Positive 189

Rate (or sensitivity or recall, TPR) reflect the number of TPs over the total amount of 190

positive predictions and the total amount of positive samples, respectively. Viceversa, 191

Negative Predictive Value (NPV) and True Negative Rate (or specificity, TNR) 192

represent the number of TNs over the total amount of negative predictions and the total 193

quantity of negative samples, respectively. 194

Results 195

This study involved a population of 283 asthmatic patients (i.e., the all group), with 196

age 33.5±7.77 and characterized by a Forced Expiratory Volume in the first second 197

(FEV1) of 96.5% ± 19.09 and an ACT score of 19.09±4.98. 146 patients belong to the 198

controlled asthma group (i.e., the 52% of the whole population), while the remaining 137 199

patients form the not controlled asthma group. 200

Data statistics at a first glance 201

Figure 3 provides a first glance on how the four blocks of symptoms are distributed 202

between the two classes (impaired QoL and near normal QoL) both in the controlled 203

and not controlled asthma patients. Each colored bar individuates a different group of 204

patients and its length (the interquartile range, or IQR) varies between the 25th and 205

75th percentiles, while the vertical dashed lines (i.e., the whiskers) range from the 206

minimum to the maximum values and, finally, the horizontal dot-dashed black line 207

points out the median value of the corresponding symptoms group. The red ‘+’ markers 208

represent outlier points. It is possible to observe that PharynxLarynx can better

Fig 3. Box plots. Graphs showing the class distributions in the controlled versus not
controlled patients groups, for each of the considered features.

209

distinguish the two classes in the controlled asthma group, since the median value of 210

one class falls outside the bar of the other. A similar reasoning holds for the not 211

controlled asthma group, where AsthmaRelated, PharynxLarynx and GastroEsoReflux 212

stand out. However, this kind of evaluation is based on visual analytics and simple 213
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statistics, and the results do not provide any guarantee of validity on new, unseen, 214

patients. This is why we decided to rely on machine learning-based approaches. 215

Explainable AI-based analysis 216

For each of the considered cases, the LLM algorithm was trained on a 70% training set 217

and generated a set of rules. In particular, for the all group, 19 rules were generated (8 218

predicting impaired QoL class and 11 the near normal QoL); from the controlled asthma 219

case, we got 13 rules (4 for the impaired QoL and 9 for the near normal QoL class); 220

lastly, 9 rules derived from the not controlled asthma group (5 referring to the impaired 221

QoL and 4 to the near normal QoL class). 222

The Pearson’s χ2 validation test was then carried out to statistically proof the 223

obtained rulesets, as per the procedure detailed in Section . After the test, 2 rules out 224

of 8 for the impaired QoL class and 4 out of 11 for the near normal QoL class were 225

validated in the all case; 2 of the 4 rules predicting the impaired QoL class in the 226

controlled asthma group resulted significant, while 3 out of 9 rules for the other class 227

was validated in the same group; similarly, in the not controlled asthma patients, 2 rules 228

out of 5 for the impaired QoL class passed the test, while 3 out of 4 rules related to the 229

near normal QoL did. 230

Model performance metrics 231

After validating the rules, we thus have been able to define a final set of rules for each 232

case, by leaving out from the original rulesets all those which tested not significant. The 233

predictive performance of the validated rulesets was assessed on the test set, by 234

computing the metrics described in Sec. ; their values are depicted and compared in Fig. 235

4 for the three groups.

Fig 4. Validated rules performance. Percentage values of the accuracy (ACC),
F1-score (F1), Positive Predictive Value (PPV), Negative Predictive Value (NPV), True
Positive Rate (TPR) and True Negative Rate (TNR) of the LLM in the three patients’
groups.

236

The accuracy reached at least 70% in all cases, thus showing good performance of 237

the validated rulesets. While also F1 score value was high for the all and not controlled 238

asthma groups (75% and 83%, respectively), it was lower (57%) for the controlled 239

asthma group, denoting both poorer precision and recall. Indeed, PPV and TPR 240

metrics, related to the positive class (i.e., impaired QoL), were found 66% and 50%, 241

respectively, whereas NPV and TNR (reflecting the model’s performance on the 242

negative class, i.e., the near normal QoL) were sensitively larger (74% and 85%, 243

respectively). In contrast, the not controlled asthma reached a high F1 due to larger 244

values of precision and recall, with a PPV of 77% and TPR of 89%; on the other hand, 245

NPV and TNR resulted in lower values. A similar reasoning holds for the all group, 246

even if the model performance on the two classes was more balanced, with less 247

difference among the metrics for the positive and the negative class. 248

Most relevant symptoms questionnaire items 249

Further insights on the LLM results were obtained by visualizing the feature ranking. 250

Bar plots, obtained for the three cases under analysis, are shown in Fig. 5, representing 251

the impaired QoL class feature ranking, that highlights which of the features influenced 252

more the LLM decision towards that class. Concerning the all group, from Fig. 5A 253

AsthmaRelated and PharynxLarynx were individuated as the main factors leading to an 254

October 2, 2023 7/12

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 5, 2023. ; https://doi.org/10.1101/2023.10.04.23296540doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.04.23296540
http://creativecommons.org/licenses/by/4.0/


Fig 5. Feature Ranking. LLM feature ranking for the impaired QoL class in
the three cases. (A): all group; (B): controlled asthma group; (C): Not
controlled asthma group.

impaired cough-related quality of life. In contrast, the main attributes for the controlled 255

asthma group (Fig.5B) were PharynxLarynx and RhinoSinusitis. Finally, dominant 256

features for the not controlled asthma resulted AsthmaRelated and GastroEsoReflux 257

(Fig. 5C). 258

The presence of AsthmaRelated as a relevant factor for the not controlled asthma 259

group is in line with our expectation, since the deterioration of these patients’ QoL 260

reasonably depends on the asthma itself and the clinical investigation should be 261

primarily addressed to it. Secondarily, the digestive tract should be considered. 262

Conversely, the feature ranking for the controlled asthma patients provides the 263

indication that further clinical assessments should focus first on the throat and, then, on 264

the nose. By using the symptoms questionnaire, in absence of any information about 265

the patient’s asthma control level, results suggest to first consider the asthma and then 266

the nose. 267

Symptoms questionnaire scores driving impaired QoL 268

While previous Section provided which are the main factors involved in the impaired 269

QoL, in this Section our focus is posed on the information we can derive by inspecting 270

the validated rules predicting the impaired QoL class, which are reported in Table 2. 271

Their aim is to define useful criteria to support clinicians in the diagnostic process, by

Table 2. Criteria for impaired QoL prediction through symptoms questionnaire, as emerged from LLM rules validated
through the χ2 independence test, for each considered patient group. Pink-colored cells highlight the rules that were
proved the most performing even on previously unseen patients.

Case Significant Rules Covering (%) Error (%)

All

1. if AsthmaRelated > 8.16 and PharynxLarynx > 15.12
and RhinoSinusitis ≤ 70.43 and GastroEsoReflux > 8.62 then impaired QoL

57 4.1

2. if AsthmaRelated > 28.16 and 7.93 < RhinoSinusitis ≤ 70.43
and GastroEsoReflux > 4.62 then impaired QoL

56 4.1

Controlled Asthma

1. if AsthmaRelated > 10.83 and PharynxLarynx > 23.46 and
RhinoSinusitis ≤ 69.81 then impaired QoL

47 3.7

2. if PharynxLarynx ≤ 13.25 and 11.57 < RhinoSinusitis ≤ 26.78
and GastroEsoReflux > 0.62 then impaired QoL

21 3.7

Not controlled Asthma
1. if AsthmaRelated > 50.83 and RhinoSinusitis ≤ 70.43 then impaired QoL 52 0.0
2. if GastroEsoReflux > 28.375 then impaired QoL 41 0.0

272

individuating, in the three cases, which values assumed by the symptoms questionnaire 273

scores are more probably associated to an impaired QoL status. However, by looking at 274

the threshold values of a same indicator in the two rules for a given group, it can be 275

noticed that they can be pretty different or even conflicting. For example, the 8.16 and 276

the 28.16 in the AsthmaRelated score for the all group have a difference of 20 277

percentage points, which cannot be disregarded; also, the condition on PharynxLarynx 278

in the controlled asthma group is discordant in the two related rules, the first stating 279

that values larger than 23.46 lead to QoL deterioration, while the second states the 280

same for values lower than 13.25. Regarding the not controlled asthma case, the two 281

rules seem to individuate two clusters of patients, one depending on increasing (> 50.83) 282

AsthmaRelated score and decreasing (≤ 70.43) RhinoSinusitis score, and the other 283

depending on GastroEsoReflux score only. Therefore, rule generation alone is able to 284

individuate several clusters of patients, each described by a pretty different set of 285
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conditions on the questionnaire scores. Nevertheless, our final goal is to provide, 286

through the ML system, more general information to be used in clinical practice, 287

especially valid in the case of new, never seen before, patients. 288

Further evaluations of the models are then carried out for a better knowledge 289

extraction suitable to our objective. Covering and error percentages reported in the 290

Table have been derived during model training on the training data portion. Hence, 291

their values, even when considerably high (as in the cases of > 50% covering), do not 292

guarantee the same performance on test (previously unseen) data. Thus, percentages of 293

impaired QoL test points satisfying either one, both or even none of the two rules were 294

computed to understand how the original covering changes on new data; the obtained 295

values are outlined in Table 3. When points satisfy both rules, the most important one

Table 3. Satisfaction percentages of validated rules for the impaired QoL class on
unseen data. For each group, Rule 1 refers to rule number 1 of Table 2, and, similarly,
Rule 2 here refers to rule number 2.

Rule 1 Rule 2 Both rules No rules
All 20.41 % 14.28% 44.90% 20.41%
Controlled asthma 41.67% 8.33% 0% 50%
Not controlled asthma 37.04% 37.04% 14.81% 11.11%

296

can still be individuated as the highest-covering one (from Tab. 2). Thus, the 44.90% 297

rate of satisfaction of both rules in the all group contributes to the rate of rule 1 (of the 298

same group), which then reaches a total value of 65.31% of satisfaction. Thus, this rule 299

should be taken as a reference for individuating the factors with higher impact on the 300

impaired QoL. The same reasoning holds for the not controlled asthma group, where 301

rule 1 reaches the about the 52%. Regarding the controlled asthma case, rule 1 proves 302

as the most frequently validated by the unseen patients. Moreover, it is worth noting 303

that the sum of the percentages shown in Table for Rule 1, Rule 2 and Both rules 304

columns corresponds to the TPR computed in Fig. 4. Hence, in this analysis we can see 305

the specific contribution of the two rules in determining its value. 306

In summary, for each of the three groups, a rule has emerged as the one with the 307

best predictive ability for an impaired QoL status and it can be considered as a helpful 308

decision-making support for clinicians, especially at the beginning of the clinical 309

evaluation process. Indeed, by using the information from the feature ranking (Fig. 5), 310

we discovered the main blocks of symptoms associated to an impaired QoL status due 311

to chronic cough and the individuated decision rules define which ranges of values 312

should be considered alarming on those variables. 313

Conclusion 314

In this work, we proposed the evaluation of the quality of life of asthmatic patients, 315

with lower or higher degree of asthma control, experiencing chronic cough. To this end, 316

we first developed a questionnaire to collect patients’ symptoms in relation to the most 317

frequent causes of chronic cough (i.e., upper airways, pharynx/larynx, digestive tract, 318

lower airways). The LLM-based analysis of patients’ responses to the questionnaire 319

items, through feature ranking, helped in automatically identifying priorities among 320

these causes: pharynx/larynx and upper airways when asthma is sufficiently controlled, 321

and asthma itself and digestive trait when asthma is not controlled. Moreover, the 322

adopted rule-based model, with proper statistical validation, identified which specific 323

values of the symptoms are associated to an impairment of cough-related quality of life. 324

The obtained results could support the physician in choosing the right 325

diagnostic/therapeutic plan. However, sensitivity and specificity of the developed model 326
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need to be verified in further prospective studies. Furthermore, future research in this 327

direction may investigate the adoption of other rule-based models than the LLM, as well 328

as the usage of black-box algorithms with subsequent rule extraction. 329
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