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Abstract 

Background: Whole genome sequencing (WGS) holds great potential for the management 

and control of tuberculosis. Accurate analysis of samples with low mycobacterial burden, 

which are characterized by low (<20x) coverage and high (>40%) levels of contamination, is 

challenging. We created the MAGMA (Maximum Accessible Genome for Mtb Analysis) 

bioinformatics pipeline for analysis of clinical Mtb samples.  

Methods and results: High accuracy variant calling is achieved by using a long seedlength 

during read mapping to filter out contaminants, variant quality score recalibration with 

machine learning to identify genuine genomic variants, and joint variant calling for low Mtb 

coverage genomes. MAGMA automatically generates a standardized and comprehensive 

output of drug resistance information and resistance classification based on the WHO 

catalogue of Mtb mutations. MAGMA automatically generates phylogenetic trees with drug 

resistance annotations and trees that visualize the presence of clusters. Drug resistance and 

phylogeny outputs from sequencing data of 79 primary liquid cultures were compared 

between the MAGMA and MTBseq pipelines. The MTBseq pipeline reported only a proportion 

of the variants in candidate drug resistance genes that were reported by MAGMA. Notable 

differences were in structural variants, variants in highly conserved rrs and rrl genes, and 

variants in candidate resistance genes for bedaquiline, clofazmine, and delamanid. Phylogeny 

results were similar between pipelines but only MAGMA visualized clusters.  

Conclusion: The MAGMA pipeline could facilitate the integration of WGS into clinical care as 

it generates clinically relevant data on drug resistance and phylogeny in an automated, 

standardized, and reproducible manner. 

Key points 

- Accurate analysis of clinical samples is challenging when samples have high levels of 

contamination and low Mycobacterium tuberculosis genome coverage  

- When analyzing primary liquid (MGIT) cultures, the MAGMA pipeline generates clinically 

relevant drug resistance information (including major, minor and structural variants) and 

phylogeny in an automated, standardized and reproducible way. 
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- MAGMA-generated phylogenetic trees are annotated with drug resistance information and 

updated with every run so that they can be used to make clinical or public health decisions 

- MAGMA reports drug resistance variants for all tier 1 and tier 2 candidate drug resistance 

conferring genes, with interpretation of their relevance to drug resistance (associated with 

drug resistance, not associated with drug resistance or unknown significance) based on the 

WHO catalogue of mutations in Mycobacterium tuberculosis.   

Keywords 

Mycobacterium tuberculosis, whole genome sequencing, phylogeny, drug resistance 

detection, heteroresistance, contamination, clinical 

Background 

Genomic data from Mycobacterium tuberculosis (Mtb) can provide clinically relevant insights 

such as the diagnosis of drug resistance and the identification of transmission clusters [1]. 

Whole genome and targeted sequencing of Mtb have higher discriminatory power than the 

conventional spoligotyping and MIRU-VNTR genetic typing methods [2]. Next generation 

sequencing is also superior to the current combination of line probe assays and phenotypic 

drug sensitivity tests used in routine diagnostic laboratories, as sequencing can 

comprehensively define the drug resistance profile in a single assay.  

Sequencing Mtb from sputum or primary liquid culture isolates could greatly contribute to 

tuberculosis management as results can be used to inform clinical or public health decisions 

[3]. Analysis DNA extracted directly from sputum samples is also important as it avoids culture 

bias and thus better reflects in-patient Mtb population diversity. Although sequencing directly 

from sputum is already possible, whole genome sequencing (WGS) of Mtb is currently mainly 

performed on DNA extracted after one or more culturing steps to analyze purified Mtb 
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genomic data. WGS analysis directly from sputum is much more challenging due to the high 

levels of non-Mtb contaminants and low genomic coverage of Mtb [4]. Simulation studies 

showed that commonly used Mtb-specific pipelines (MTBseq and UVP) can experience 

difficulties when contaminant levels exceed 40% or when depth of coverage is below 25x  [5, 

6]. Recent approaches have aimed to circumvent this by enriching Mtb DNA in vitro or in silico. 

In vitro methods include enzymatic removal of non-Mtb contaminants [7], Mtb-specific DNA-

capture probes [8, 9] or multiplex-amplification of drug resistance-conferring regions [10, 11]. 

Mtb enrichment in silico can be achieved by classifying reads and rejecting any reads not 

classified as Mtb [12]. These enrichment methods are not yet used in clinical practice as they 

are expensive, time-consuming, require additional computing infrastructure, and can produce 

bias for the probed regions or for regions of the genome where reads are more readily 

mapped. 

In recent years, improvement in the analysis of complex sequencing data, particularly with 

respect to variant calling and filtering [13, 14], have been extensively implemented for the 

analysis of human genomes but have seen limited applications for the analysis of bacterial 

genomes. We developed MAGMA (Maximum Accessible Genome for Mtb Analysis) pipeline, 

a novel bioinformatics pipeline by implementing the ‘compleX Bacterial Sample’ XBS variant 

calling core [6]. The XBS variant calling core is a bioinformatics workflow, in the form of a set 

of scripts, that can be implemented at the core of a pipeline to obtain accurate bacterial 

genomic variants from complex biological samples. The XBS variant calling core relies on two 

principles (1) joint variant calling, where variants are called for a cohort rather than a single 

sample, enabling confident variant calling in low coverage genomes and (2) Variant Quality 

Score Recalibration, where machine learning is used to identify genuine genomic variants. 

The latter filters out false positive genomic variants introduced by contaminants and uses the 
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model for genuine genomic variants to identify true positive genomic variants in complex 

genomic regions [6]. This process makes it possible to analyse additional SNPs from regions 

that are normally discarded, thereby significantly extending the accessible genome for Mtb 

given the prevalence of complex regions in the Mtb genome [15].  

In the method section of this manuscript we describe the overall architecture of the MAGMA 

pipeline, including the key design choices made to address critical issues. In the results section 

we present the drug resistance and phylogeny outputs for 79 primary liquid cultures and 

compare the drug resistance and phylogeny outputs generated by MAGMA to those 

generated by MTBseq, a commonly used open-source Mtb pipeline. 

Results 

To show the functionalities of the MAGMA pipeline, we present the analysis of sequencing 

data obtained from primary cultures from 79 consecutive participants in the SMARTT trial 

(Sequencing Mycobacteria and Algorithm-determined Resistant Tuberculosis trial, 

Clinicaltrials.gov Identifier NCT05017324) [3]. For this trial, primary liquid cultures were 

processed in real time in batches of 4-6 samples on an Illumina MiniSeq for individualized 

WGS-guided treatment decision-making. 

Computational Runtime and resource usage 

The analysis of 79 samples using AWS batch took 4h to complete and required a total of 204.9 

CPU hours. The size of the input dataset directory was 47.5 GB, the results directory was 0.29 

GB and the work directory was 418.9 GB, corresponding to a total data footprint of the 

analysis of 466.7 GB.  

To determine the computational runtime and resource usage when MAGMA is used for 

clinical decision-making in a low-resource setting, we also documented the analysis of batch 

of 4 samples, together with a reference set of 334 previously processed reference samples, 

run on a 2011 Linux laptop with 8 GB of RAM and 8 CPU cores and an Intel® CoreTM i7-2630QM 

CPU (2 GHz). The analysis required 4h 52m to complete with a cap of 6GB RAM use. A total of 
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28.9 CPU hours was required for the analysis. The size of the input dataset directory was 2 

GB, and the final directory size including the results and intermediate directories was 7.8 GB. 

Quality Check and Mapping outputs 

The base quality of the 79 samples was high, with an average Phred quality score of 35.6 

(range 33.8 to 36.5) (Figure 1A, supplementary table 1). Most samples had a poly-modal 

guanine-cytosine (GC) content distributions, with the most prominent peaks matching the 

65.6% GC content of the H37Rv reference genome. Four samples (MM-054, LP-239, XP-244, 

LP-027, LP-321) displayed a higher than expected GC content (Figure 1B) [16]. 

 

Figure 1: MultiQC visualization of per-base pair quality (A) and percentage Guanine-Cytosine (%GC) content 

curves (B) of raw sequencing fastQ files obtained from DNA extracts from 79 primary liquid cultures. 

Mapping percentage (average 58.0, range 0.03%- 87.5%) and depth of coverage (average 

107x range 0x- 308x) varied by sample. Eight samples were automatically excluded by the 

MAGMA pipeline. Three because the major strain did not exist at a frequency exceeding 0.80 

(LP-022, LP-250, MM-054), possibly indicating the presence of mixed infection and five 
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samples (FD-047, LP-027, LP-239, LP-321, XP-244) because of insufficient depth (>10x 

required) and/or breadth of coverage (>90% required). The remaining 71 samples passed 

quality control and were included in subsequent analyses. 

Variant Calling 

In the best performing VQSR filtering run used for downstream analysis, none of the resulting 

9202 filtered variants had a negative VQSLOD score when applying the 99.9% sensitivity 

threshold. A 100% sensitivity threshold reported an additional 100 variants of which 83 

variants with a negative VQSLOD score, corresponding to the presence of 0.89% of likely false 

positives variants in the unfiltered dataset (Figure 2). 

 

Figure 2: Density distribution of the variant quality score log-odds (VQSLOD) for the identified SNP variants. 

Variants with scores below zero are most likely false positives according to the Variant Quality Score 

Recalibration (VQSR) models, a 100% sensitivity would include these variants. MAGMA uses the 99.9% sensitivity 

cut-off for filtering, indicated by the dashed line, thereby excluding variants with negative VQSLOD scores. 
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Drug resistance output 

The MAGMA pipeline outputs comprehensive drug resistance information for 23 anti-TB 

drugs for each sample in a per-sample excel table (supplementary table 2). The resistance 

classification for each drug is based on classification in the WHO catalogue. In addition, the 

excel file lists the classification of the type of variant (e.g. upstream gene variant), the method 

by which it was detected (XBS, LoFreq, or delly), the frequency at which the variant was 

detected, whether the variant is listed in the WHO catalogue, the source annotation within 

the WHO catalogue as well as a direct html link to the WHO catalogue. For variants classified 

as ‘of unknown significance’ in the WHO catalogue, the excel file lists in how many 

phenotypically resistant and sensitive samples the variant was observed and shows the 

fraction. In the “Source” column notes variants located within a Tier 1 or Tier 2 gene not listed 

in the WHO catalogue. 

Phylogenetic output 

The MAGMA pipeline outputs two phylogenetic trees. Both phylogenetic inferences exclude 

regions associated with drug resistance, minor variants, structural variants, insertions and 

deletions. The default tree includes complex Mtb genomic regions (IncComplex), the other 

tree (ExComplex) excludes them (supplementary figures 1A and 1B). MAGMA also produces 

text files which contain lineage information and drug resistance profiles for each sample. The 

phylogenetic tree (treefile) and the associated text files can be uploaded to iTol 

(https://itol.embl.de) to generate annotated phylogenetic trees (Figure 3). For each of the 

phylogenetic trees (IncComplex and ExComplex), two figtree files are generated to visualize 

the presence of clusters, one using a 5 SNP and another using a 12 SNP cut-off. When 

imported into the FigTree desktop application, these figtree files are automatically annotated 

so that the tip label of samples belonging to a cluster have the same color (Figure 4).  
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Figure 3: iTOL visualizations of the MAGMA ExComplex phylogeny annotated with drug resistance and lineage, 

for 71 primary liquid culture samples that passed MAGMA quality control 

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 5, 2023. ; https://doi.org/10.1101/2023.10.04.23296533doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.04.23296533
http://creativecommons.org/licenses/by-nd/4.0/


 
Figure 4: FigTree visualization of the phylogeny annotated with 5SNP cluster information (each color represents 

a different cluster) and indicating the newly added samples to the phylogenetic tree 
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Comparison of drug resistance output: MAGMA and MTBseq 

To demonstrate the differences between the MAGMA and MTBSeq pipeline, we compared in 

detail the output generated for the primary liquid culture collected at the start of treatment 

in one patient (TM280, lineage 2.2.1, median coverage 163, breath of coverage 98.6) 

(Supplementary tables 2 for MAGMA and 3 for MTBseq) The drug resistance information 

generated by the MAGMA and MTBseq pipelines for patient TM280 was compared for all 

variants identified in tier1 and 2 genes for the 15 drugs included in the 2021 WHO catalogue 

of mutations in Mtb [42] (Table 1). 

Of the 32 unique variants reported by MAGMA, nine were not listed in the WHO catalogue 

and 16 were not reported by MTBseq. Of the 16 unique variants reported by MTBseq, five 

were not listed in the WHO catalogue and two were not reported by MAGMA. The variant 

embC_g-1419a (aftA_171) was detected by MAGMA but not reported because aftA is not a 

tier 1 or 2 gene and it lies more than 200 bp upstream of the embC gene. Susceptible variants 

are only reported when they fall no more than 200 bp up- and downstream of the furthest 

resistance conferring variant of any tier 1 or 2 gene. The rpsA Arg212Arg variant was not 

reported because the rpsA gene is not a tier 1 or 2 gene.  In total, 14 variants were reported 

by both pipelines, sometimes using different annotations, for example inhA_c.-154G>A in 

MAGMA and fabG1_Leu203Leu (ctg/ctA) in MTBseq. When variants were detected by both 

pipelines, they were not always reported for the same drugs. For example mshA_p.Ala187Val 

was only listed for isoniazid (INH) by MTBseq but listed for both and ethionamide (ETO) by 

MAGMA. The mshA gene is included as a tier 2 gene for both ethionamide and isoniazid in 

the WHO catalogue.  With respect to the resistance annotation for reported variants, MAGMA 

classified five variants as resistant conferring, corresponding to the WHO classification, 

whereas only two variants were reported as resistance conferring by MTBseq. This resulted 

in a different resistance profile output by the two pipelines: resistance to INH, RIF, EMB, ETO, 

and SM by MAGMA versus resistance to EMB and RIF by MTBseq.  For the 15 drugs, 38 

variants were classified as not associated with resistance by the WHO catalogue and 

susceptible by MAGMA. Nine variants were classified as a PhyloSNP by MTBseq, suggesting a 

susceptible phenotype.  In addition, 14 variants were classified as of unknown significance by 

MAGMA and 8 variants were classified as located in an interesting region by MTBseq.  
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Table 2 compares the number of drugs classified as resistant in the 79 patients, limited to the 

15 drugs listed in the WHO catalogue. In total, 170 identical resistance calls were made for 

both pipelines and 37 calls differed between the two pipelines. Differences between MTBseq 

and MAGMA calls were due to variants not being reported by MTBseq, variants reported as 

located in an interesting region by MTBseq while listed as “associated with resistance” in the 

WHO catalogue, or variants listed as resistance conferring by MTBseq while listed as “of 

unknown significance” in the WHO catalogue. MAGMA also detected a 20 kb deletion 

including the full katG gene that was not detected by MTBseq. The coverage of this region in 

MTBseq was lower than in neighboring regions, indicating that the katG gene indeed does not 

exist in this sample. MTBseq maps reads on the deleted region, some of which contain variant 

katG_p.Leu141Phe,  which MTBseq then reported as resistance-conferring. 

Comparison of phylogenetic output: MAGMA and MTBseq 

MAGMA excluded eight samples because of low quality, resulting in a phylogenetic tree for 

71 samples (supplementary figure 2B). Using default settings, MTBseq generated a tree for all 

78 samples (supplementary figure 2A). When applying coverage-based filters, as 

recommended in the MTBseq repository (https://github.com/ngs-fzb/MTBseq_source), the 

same eight low-quality samples were manually excluded, resulting a similar phylogenetic tree 

compared to the ExComplex MAGMA tree (supplementary figure 3). Heatmaps show that the 

default MTBseq tree has poor structure without clear lineation between major Mtb lineages, 

while the MAGMA and filtered MTBseq tree have the correct tree structure (supplementary 

figure 4). MAGMA identified a total of 8514 non-DR variant positions (7184 for the 

phylogenetic comparison without complex regions), MTBseq 7296 non-DR variants when 

excluding the eight low-quality samples. 
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Discussion 

WGS is increasingly used in high income countries for the management of TB but is not yet 

implemented in high TB burden settings, in part because the required computing 

infrastructure and bioinformatics expertise is lacking. To help overcome this challenge, we 

developed MAGMA, an automated comprehensive bioinformatics pipeline specifically 

created for the analysis of WGS data obtained from clinical samples.  

Analysis of 79 primary clinical liquid cultures demonstrated that both the MAGMA and 

MTBSeq pipelines can analyze data with variable Mtb DNA to total DNA mycobacterial load 

and large amounts of contaminating sequences. MAGMA was more comprehensive in 

defining drug resistance as it detects major variants, minor and structural variants in all tier 1 

and tier 2 candidate drug resistance genes for all 23 TB drugs. In contrast, MTBseq only 

identifies major variants defined as present at a >75% frequency. Furthermore, as predicted 

by a simulation study [6], MAGMA has higher accuracy than MTBseq and identifies more 

variants in clinical samples due to different approaches to variants filtering. MTBseq employs 

hard filters where each variant needs to be covered by ≥4 forward and reverse reads, ≥ 4 calls 

with ≥20 Phred score, and ≥ 75% frequency, where contaminants may result in false positive 

forward and reverse read counts or negatively impact the frequency threshold. In contrast, 

MAGMA removes contaminants through strict mapping and machine-learning based variant 

filtering (VQSR) and increases the variant calling accuracy for samples with low depth of 

genome coverage by using joint variant calling.  The difference in accuracy was especially 

notable for structural variants, which are hard to detect by WGS, for variants in in highly 

conserved regions such as the rrs and rrl genes, and variants in candidate resistance genes for 

Bedaquiline, clofazamine and delenamide. MAGMA summarizes the drug resistance 

information in a comprehensive, standardized output and interprets the variants based on 

the WHO catalogue as the reference. This results in a clinically relevant drug resistance profile 

that can be used to guide treatment. In contrast, MTBseq uses a custom classification, 

resulting in drug resistant classifications that differ from the WHO catalogue.   

MAGMA also automatically generates multiple phylogenetic tree including trees including 

and excluding complex repetitive regions of the Mtb genome, with samples tip-labelled to 

highlight the new samples added to the database, and a color-coded cluster tree at both 5 
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and 12 SNP cut-off. The phylogenetic and cluster information can assist public health 

programs with implementing precision public health by guiding targeted source tracing. After 

manual filtering by the user, MTBseq also generates a phylogenetic tree excluding complex 

repetitive regions.  

Several innovations allowed the MAGMA pipeline to overcome most of the open issues for 

Mtb WGS identified by Meehan et al. [1] and extends the standards of current Mtb pipelines, 

of which MTBseq is the most commonly used (Table 3). First, by using a long seed length 

during mapping and VQSR variant filtering, computationally intensive metagenomic analyses 

is avoided and contaminants are filtered out effectively. Second, use of TBProfiler version 5.0 

with the 2021 WHO catalogue of mutations in Mtb set as the reference for calling drug 

resistance variants results in the use of a transparent, comprehensive standardized approach 

to defining the genomic drug resistance profile of clinical samples. In addition, the MAGMA 

pipeline lists variants in candidate drug resistance genes (tier 1 and 2) that were not yet 

included in the 2021 catalogue, reports variants in candidate resistance genes for drugs not 

listed in the WHO catalogue (such as rifabutin and meropenem), reports minor variants 

identified by LoFreq to detect the presence of hetero-resistance, and identifies variants in 

complex genomic regions which could contain novel drug resistance-conferring mutations. 

Furthermore, the functional annotation of all variants with a prediction of their impact on the 

protein produced by SnpEff is reported by MAGMA. Third, because the use of any threshold 

selection for phylogeny can be problematic, MAGMA identifies transmission clusters at both 

5 and 12 SNPs, thresholds that can be changed as our knowledge on the most appropriate 

threshold improves. The MAGMA pipeline identifies all (sub-)lineages that are present at 

higher levels than the LoFreq significance threshold. Based on the presence of all (sub-) 

lineages for all samples. Based on this lineage information, samples where there is no majority 

strain (i.e., minimal presence of 80%), are excluded. Within host microevolution can also be 

inferred by analysis of samples of the same patient, where microevolution can be inferred by 

changes in the presence or frequency of minor variant. Fourth, the MAGMA pipeline also 

pushes the current standards as its XBS core can accurately analyze sequence data from 

primary cultures. Simulation data suggests that MAGMA can also analyze DNA extracted 

directly from sputum, but this needs to be further confirmed in clinical studies[6]. 
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Table 3: MAGMA approach to overcome open issues in whole genome sequencing of 

Mycobacterium tuberculosis [1]  

Domain  Issue Approach implemented by MAGMA  

Input data 
validation and 
quality control 

Most pipelines do not 
routinely filter out reads 
that do not come from Mtb 
strains  

• Mapping with a long seed length excludes many contaminants 
early in the workflow and speeds up analysis time without the 
need for computationally intensive metagenomic analyses. 

• VQSR variant calling filters out the remaining contaminants and 
artefact alleles 

Sequence read 
mapping and 
reference 
genomes 

Alternative approaches to 
the use of H37Rv should be 
explored 

• H37Rv was chosen as the reference for MAGMA, given that all 
current resistance markers are identified based on H37Rv, and 
most tools have only been tested for H37Rv and the use of H37Rv 
is not expected to impact transmission cluster detection given the 
small difference between any two strains (nucleotide similarity of 
≥99.8%) 

Interpretation 
of drug 
resistance 
results and 
predictions 

A single comprehensive list 
endorsed by the WHO or 
other regulatory body 
should be used 

• Use of TBProfiler version 5.0 with the 2021 WHO catalogue of 
mutations in Mtb is used as the default setting for calling of drug 
resistance variants the default.  

In addition 
• Variants in all genes identified by WHO as candidate drug 

resistance genes (tier 1 and 2) are listed. 
• Minor variants are identified by LoFreq to detect the presence of 

hetero-resistance.  
• Variants in complex genomic regions could identify novel DR-

conferring mutations. 

Variant calling 
for other 
purposes 

• Any threshold selection 
can be problematic. 

• Phylogeny and 
transmission events do 
not necessarily coincide. 

• Detection of mixed 
infection and within-
host diversity is 
challenging 

• MAGMA default settings present result for 2 different SNP 
cutoff’s: 5 and 12 SNPs 

• MAGMA currently focusses on phylogeny. Future plans are to 
integrate TransPhylo [17] to generate transmission trees. 

• MAGMA uses the output of LoFreq annotated by TBProfiler to 
identify mixed infection, based on the lineages defined by Coll et 
al. [18]. 

• Within host microevolution can be inferred by the presence of 
low level (<20%) mixed infection and by analysis of changes in 
minor variants between serial samples collected from a single 
patient.  

Beyond the 
current 
standards 

• Ability to analyze 
sequence data obtained 
from DNA extracted 
directly from sputum.  

• Ability to process data 
generated by non-
Illumina platforms (e.g., 
ONT MinION).  

• Simulation data suggests that MAGMA may be able to accurately 
analyze sequence data obtained directly from sputum samples 
because Joint variant calling ensures that variants can be called in 
samples with low coverage and long seed length mapping and 
VQSR ensure that contaminant and artefact sequences are 
excluded. 

• MAGMA is developed for analysis of sequence date generated by 
the Illumina platform. Future plans are to adapt the pipeline for 
analysis of date generated by other platforms.  

 

Another important strength of MAGMA, similar to MTBSeq, is its free online availability and 

that the analyses can be carried out on a variety of platforms including laptops high 

performance computing systems, and cloud computing environments. The pipeline is highly 

automated which allows end-users without a strong background in bioinformatics to use 
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MAGMA to perform WGS analyses of clinical samples. Nevertheless, the interpretation of the 

resistance profiles and transmission clusters may still be challenging for clinicians, 

microbiologists in reference laboratories, and public health practitioners. Reducing the 

proportion of variants classified a ‘of unknown significance’ with regards to drug resistance 

and WHO endorsement and/or ISO-accreditation of the MAGMA workflow for Mtb resistance 

calling, as for abritAMR [19], could aid the implementation and acceptance in clinical use. 

Integration of TransPhylo [17] to generate transmission trees could facilitate the 

interpretation of the relevance of the phylogenetic information by public health practitioners. 

We are therefore working on the development of a web-platform that streamlines the 

interpretation of the MAGMA outputs for end-users to further improve the user-friendliness 

of the pipeline. 

The MAGMA pipeline also has many technical strengths. First, the use of GATK VSQR joint 

variant calling, unique in MAGMA as compared to other Mtb pipelines, results in a very high 

sensitivity for variant calling (98.8% in a Sanger sequencing confirmed dataset) and a very 

high accuracy (F1 scores consistently above 0.95 with >20x Mtb coverage, even with 

contamination levels above 80% [6]). In the 79 clinical samples, none of the variants were 

likely false positive as all had a positive VQSLOD scores meaning that they had a better fit with 

the “true positive” than the “true negative” model. The high sensitivity does require that 

minor variants are interpreted with caution. In particular, minor variants called by LoFreq 

(which does not stringently filter using the VSQR joint filtering) could be contaminant 

sequences of genomic regions that share high similarity with Mtb, such as the rrs and rrl 

genes. Interpretation of the clinical relevance of minor variants and variants that have not 

been statistically associated with resistance or susceptibility will remain challenging and 

requires expert opinion [20]. Second, the machine-learning based variant filtering (VQSR) is 

extended across the part of the complex genomic regions, which increases the total genetic 

resolution by 9% for subsequent analyses [6]. MTBseq and other pipelines remove such 

variants for phylogenetic inferences and may suggest to also exclude those variants that lie in 

close proximity of each other (e.g. those in a 12bp window). 

The strengths of the MAGMA pipeline should be viewed in the light of some limitations. First, 

sequencing reads produced by Oxford Nanopore Technology or PacBio platforms cannot yet 

be processed but this is planned for the near future. Second, VQSR INDEL filtering is not yet 
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implemented because a “truth set” for INDELs is not yet available. While this could lead to 

false positive INDEL calls, we believe this design choice is correct for the context of clinical 

care as it aims to avoid missing potentially drug resistance-conferring INDELs. When INDEL 

“truth datasets” become available, the INDEL VSQR can be easily implemented in the MAGMA 

pipeline. Third, MAGMA uses the H37Rv reference genome. Consequently, genes that are 

absent in the reference genome but present in different lineages of Mtb are not analyzed, an 

effect that will be mainly present in distantly related lineages [21]. We believe this has very 

limited clinical impact as resistance variants are described in relation to the H37Rv reference 

genome and any two Mtb strains have a nucleotide similarity of ≥99.8% [1]. Changing the 

reference genome in MAGMA would be a complex process as all tools requiring the reference 

genome would need to be retested.  

Conclusion 

MAGMA is novel bioinformatics pipeline that can be deployed on a wide range of computing 

systems for the analysis of clinical Mtb samples. MAGMA provides users with a wide range of 

automated, standardized, reproducible data and visual outputs that can be used for public 

health and to guide the treatment of drug resistant tuberculosis. 
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Methods 

Computational requirements and flexibility 

The MAGMA pipeline is implemented in the Nextflow workflow management tool [22] and 

can be used on multiple platforms including a personal Linux computer, a shared institutional 

server, a cluster system such as the open source SLURM [23], a portable batch system (PBS) 

[24], or a cloud batch computing platform such as Amazon Web Services (AWS), Google or 

Azure Batch, provided that the analysis platform meets the baseline hardware requirements. 

Ideally, MAGMA is operated on a high-performance computing system with >32 GB RAM to 

limit the required runtime. Portability and reproducibility are achieved by relying on user-

friendly package managers such as conda or container systems such as Docker [25-27]. 

MAGMA is open source and available on GitHub (https://github.com/TORCH-

Consortium/MAGMA). 

Key design choices for WGS analysis by MAGMA 

Four criteria are incorporated as default parameters to filter out samples that could 

negatively impact downstream analysis: 10x median coverage, coverage breadth below 90%, 

presence of mixed infections and NTM frequency exceeding 20% (Table 4). These parameters 

are specified in the configuration file and can be modified if required for specific research 

analyses. 

Table 4: Selection Criteria to filter samples for the cohort workflow 

MAGMA Selection Criteria Threshold Reasoning 

Median Coverage Depth >10x Sufficient coverage must be present to confidently call variants 

Coverage Breadth >90% Missing data can lead to phylogenetic bias 

Major strain frequency >80% Multiple infection leads to the construction of hybrid Mtb strains 

NTM frequency <20% NTM sequences are highly similar to Mtb and can lead to incorrect 
genotyping at high contamination levels 
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To allow analysis of samples with low mycobacterial burden but maintain accurate 

identification of genuine variants, a 10x coverage threshold was selected. This threshold 

ensures that almost the entire (99.995%) genome has at least one read mapped and the vast 

majority (97%) of genome positions have at least 5 reads associated with the reference 

genome position. These assumptions are based on the Poisson distribution across the 

genome of reads generated by sequencing platforms [28]. If the average depth of coverage is 

10x, the Poisson distribution predicts that 97% of genome positions will have at least 5x 

coverage and 99.995% of the genome will have a coverage of at least 1x.  

Because missing data in samples with low coverage breadth can lead to biased phylogenetic 

analyses, the MAGMA pipeline discards samples with a coverage breadth <90% [29]. Even 

though most samples achieve a coverage of the reference genome of 98% or greater, the 

threshold was relaxed to 90% to enable analysis of Mtb genomes with large structural 

deletions, which occur occasionally and can be resistance conferring [30]. 

While patients with tuberculosis may have mixed Mtb infections [31], MAGMA excludes the 

analysis of mixed infections when none of the strains dominate (i.e., when none of the strains 

have a frequency of more than 80%) because mixed infection without a dominant strain 

creates a hybrid strain. Hybrid strains cause long branch attraction in the phylogeny which 

impacts the XBS variant calling core of the MAGMA pipeline and complicates the 

interpretation of phylogenetic trees [32]. The threshold of a majority strain at frequency ≥80% 

was chosen to avoid calling false positive variants in the minority strain, which can then only 

be present at maximum 20%. Under a Poisson distribution, variants in the minority Mtb strain 

occurring at 20% frequency only have a 0.8% chance of being detected as a major allele (i.e., 

with a frequency >50%).  To check the 80% threshold, we use the lineage annotation of 

TBProfiler [33] at the most detailed (i.e., smallest sub-) lineage level. 

Patients with tuberculosis can also have mixed infection with Mtb and non-tuberculous 

mycobacteria (NTM). Reads generated from NTM genomes map to the H37Rv Mtb reference 

genome due to their high levels of similarity [6]. This complicates variant calling and 

phylogenetic tree construction due to the false positive detection of variants that are present 

in NTMs but not in the Mtb strain. Similar to the criterium of mixed Mtb infection, the 

MAGMA pipeline discards samples from downstream workflows when the frequency of NTMs 

is >20%. 
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Pipeline architecture and overview of the key workflows 

The MAGMA pipeline consists of multiple per-sample analysis steps followed by a cohort 

analysis (Figure 5). Raw sequencing files are first quality-controlled and mapped to the H37Rv 

Mtb reference genome. Variant calling is then performed for major, minor, and structural 

variants for all samples. Samples that pass the quality control are grouped in the cohort 

analysis after which they are genotyped, and SNP variants are recalibrated and filtered. 

Filtered SNPs and unfiltered INDELs are then used to determine the resistance profile of 

individual samples, the presence of potential transmission clusters and to construct a 

phylogenetic tree of the sample dataset. 

Input files 

MAGMA uses the raw FASTQ paired-end sequence output from an Illumina sequencing 

platform. The MAGMA pipeline is not yet validated for handling sequencing data from other 

platforms such as PacBio and Oxford Nanopore Technologies. MAGMA also requires a sample 

sheet with information on library, flowcell, and index sequence for each sample, information 

which is critical for the Genome Analysis Toolkit (GATK) to distinguish between genuine 

variants and errors introduced by sequencing.  

Quality control and mapping workflow 

A visual overview of the quality control (QC) and mapping workflow is provided in 

supplementary figure 5. The MAGMA pipeline starts the individual sample workflow by 

checking the FASTQ files. FastQC is used to generate QC metrics for the sequence libraries 

[34] and reports are collated by MultiQC [35]. These can be used to investigate the presence 

of excessive non-Mtb sequences (as indicated by the GC%) or suboptimal sequencing quality 

as (indicated by low base quality). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 5, 2023. ; https://doi.org/10.1101/2023.10.04.23296533doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.04.23296533
http://creativecommons.org/licenses/by-nd/4.0/


 

Figure 5: Diagram representing the different analyses which occur in the pipeline. The pipeline in split into two 

stages: per-sample analysis and cohort analysis 
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Next, the Burrows-Wheeler Aligner (BWA) software package is used to map the sequence 

reads to the H37Rv reference genome (NC_000962.3) using the Maximal Exact Match (MEM) 

algorithm. This BWA-MEM approach was selected for its fast and reliable mapping [36]. The 

local alignment implemented in BWA-MEM and subsequent soft-clipping trims sequencing 

read ends for adapters and low-quality bases. The MAGMA pipeline uses the default BWA-

MEM parameters except for increasing the seed length from 20 to 100bp. This longer seed 

length was implemented because it speeds up the alignment and greatly minimizes the level 

of contamination, including close related contaminants such as NTMs. The resulting BAM files 

are then deduplicated using GATK, which recognizes the presence of multiple libraries of the 

same sample using the information in the sample sheet. SAMtools stats and flag stats collect 

metrics on the quality of the library, sequence reads and the assembly [37], which are 

collected in the summary statistics files. GATK’s CollectWgsMetrics is used to collect metrics 

on depth and breadth of genomic coverage [13], which are output to a summary stats QC file. 

The QC steps ensure that only samples with a breadth of coverage (1x) ≥90% and a median 

coverage ≥10x proceed to the Cohort Workflow. 

Next, LoFreq [38] is used to detect the presence of NTMs by inferring the frequency of variants 

at position 1472307 in the H37Rv reference genome [39]. For the assessment of the frequency 

of NTM reads, only well-mapped reads (i.e., mapping quality (MQ) = 60) with high-quality 

bases (i.e., base quality (BQ) >20) are considered. The output of the LoFreq analysis is also 

used as input for TBProfiler to exclude samples with mixed infection where there is no 

dominant strain. 

Sample level variant calling workflow 

Supplementary figure 6 gives a visual overview of the variant calling workflow which starts 

with an optional GATK Base Quality Score Recalibration (BQSR) step to recalibrate the base 

qualities scores of likely systematic sequencing errors. Thereafter, the workflow branches into 

three sub-workflows: major variant calling, minor variant calling and structural variant calling. 

For major variant calling, MAGMA uses the GATK HaplotypeCaller tool to identify “active” 

regions in the genome where close potential variants exist. GATK considers the ploidy of one 

for Mtb and realigns the reads in the “active” regions. The pipeline then calls likely haplotypes 

in the form of single nucleotide polymorphisms (SNPs) or insertions and deletions (INDELs). 
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The resulting variants are exported to an intermediate ‘gVCF’ file for downstream joint variant 

calling and filtering. 

Minor variant calling relies on LoFreq [38, 40]. In MAGMA, LoFreq calls only minor variants 

with a perfect mapping quality (MQ=60) to reduce the false positive rate. The LoFreq indel 

quality command is first run to assign quality scores to INDELs. SNPs and INDELs are then 

called simultaneously and reported in a ‘LoFreq VCF’ file. There is no default minimum 

threshold to ensure maximum sensitivity for the detection of minor variants. Because minor 

variants may only be of clinical relevance above a certain allele frequency, an option is 

provided to filter the VCF based on a specified threshold. The LoFreq VCF file is later used for 

resistance analysis but not passed through the XBS variant calling core. 

MAGMA uses Delly [41] to identify large structural variants (SVs). Delly was designed for the 

analysis of diploid genomes and this incorrect ploidy is used advantageously in MAGMA to 

reduce the false positivity rate. In cases where Delly interprets a SV as heterozygous (i.e., 

where the SV and reference allele exist at the same position) they are assumed to be the 

result of contaminant sequences and are discarded from the analysis. SVs interpreted by Delly 

to be homozygous alleles are assumed to be potential SV variants and are exported to a ‘Delly 

VCF’ file. A report is created that lists SVs occurring in the WHO Tier 1 and 2 candidate drug 

resistance genes [42]. This information can be used to manually assess the relation of the 

presence of an SVs and drug resistance. The Delly VCF file is also not passed through the XBS 

variant calling core. 

Cohort level variant calling workflow 

A visual representation of the cohort workflow is shown in supplementary figure 7. Unique to 

MAGMA is that variant calling is done for the entire dataset rather than on a sample-by-

sample basis. Performing a cohort analysis allows GATK to confidently identify variants even 

if they occur at very low depth of genomic coverage (between 5x and 20x coverage) in some 

of the samples included in the analysis. The cohort workflow uses the multi-sample gVCF file, 

which combines the gVCF files of all samples that pass QC. A sample metrics summary file 

allows the user to investigate why certain samples were excluded from the cohort analyses. 

The next step within the cohort workflow is genotyping. In Mtb, the majority allele is assigned 

as the genotype and used for phylogenetic and transmission cluster analyses.  Genotyped 
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variants are annotated using SnpEff [43], which predicts mutational effects using the pre-built 

‘Mycobacterium_tuberculosis_h37rv’ reference. To better reflect the clinically relevant 

promoter region size in Mtb, the default up- and downstream interval size of 5000bp in SnpEff 

was reduced to 100 bp [44]. SnpEff allows a single variant to have multiple annotations, with 

each annotation added in the form of an ANN field [45] to the INFO column in the multi-

sample VCF file. When two variants occur in the same codon, SnpEff annotates these variants 

as two distinct SNPs, because both variants may not occur together in all samples represented 

in the cohort VCF file. SnpEff therefore annotates SNPs in the same codon separately instead 

of as Multiple Nucleotide Polymorphisms (MNPs) which could impact the predicted effect of 

the variant. In MAGMA, each sample is therefore processed and annotated separately during 

resistance calling to avoid potential mis-annotation of MNPs for drug resistance calling. 

Next, genotyped SNPs are filtered using GATK Variant Quality Score Recalibration (VQSR). This 

is done in an allele-specific fashion to distinguish alleles originating from contaminating 

sequences from alleles that occur in the Mtb genome. VQSR uses a truth set of high 

confidence genetic variants. For Mtb, the truth set was created as a combination of lineage 

markers [18] and high confidence drug resistance markers [46] and variants in rRNA genes are 

excluded because they have unusual variation in terms of statistical annotations [6]. VQSR 

starts by identifying “truth set” variants and examines their statistical annotations. Two 

models are built: a ‘true model’ and a ‘false model’ for the worst performing variants. All 

variants in the data set are assigned a variant quality score log-odds ratio (VQSLOD) based on 

their likelihood of falling in the true model rather than the false model. The VQSLOD cut-off 

score is determined by selecting a threshold that ensures 0.999 sensitivity for the truth set. 

This high sensitivity guarantees that nearly all true variants are identified at the cost of a very 

low number of false positive variants. While some pipelines exclude statistical annotations 

that do not show sufficient variation to distinguish true variants from false variants [13], 

MAGMA uses all statistical annotations and excludes the least informative annotation in 

successive rounds. The best-performing filtering run is then selected based on the 0.999 

VQSLOD scores threshold. 

Finally, GATK VQSR is used to filter INDELs by means of the same progressively minimal model 

building protocol implemented for SNP filtering. While the AS_MQ parameter is generally 

excluded for INDEL calling, MAGMA includes the AS_MQ parameter because it is essential for 
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distinguishing true variants from contaminants, even though this means that MAGMA may 

miss large INDELs with low mapping quality. 

Because VQSR performance improves if a high number of “truth set” variants are present in 

the multi-sample VCF file, the MAGMA pipeline is optimally run with a data set of at least 30 

samples that are not clonally related and contain a diversity of lineage and/or DR markers. 

The MAGMA pipeline provides the possibility to include a dataset of 334 samples from the 

South African EXIT-RIF study [47]. Users can also opt to upload a dataset from their own region 

if it contains at least 30 non- clonally related samples. 

Drug resistance analysis 

The MAGMA pipeline outputs two separate sets of resistance calls for variants in candidate 

drug resistance genes. One uses GATK-filtered SNPs and unfiltered INDELs to identify major 

(i.e., present at ≥50%) variants. The other set reports minor variants identified by LoFreq to 

identify the presence of heteroresistance. For each set, MAGMA implements TBProfiler v5.0 

to determine the drug-resistance profile of a sample [20, 33]. TBProfiler v5.0 reports all 

variants associated with (interim) resistance as listed in the WHO catalogue as well as all 

variants in the tier 1 & 2 genes candidate resistance genes for which the association with 

resistance is unknown and variants not listed in the WHO catalogue [42]. All outputs are 

combined in a per sample excel sheet.  

Phylogenetic and cluster analysis 

For the phylogenetic and cluster analyses, filtered SNPs are concatenated into a multi-FASTA 

file. For phylogenetic analyses, sites of the Mtb genome represented by <95% of samples, 

common drug resistance variants [46], and variants in rRNA genes are excluded from the 

multi-FASTA file. Variants present in <95% of samples are excluded because including these 

sites can introduce phylogenetic bias. Variants in drug-resistance conferring genes are 

excluded due to their positive selection, which can result in phylogenetic biases [48]. rRNA 

gene variants are excluded as they occasionally represent false positive variants [6]. The 

multi-FASTA file is then used to calculate SNP distances between all sample pairs [49], once 

excluding and once including the complex regions of the Mtb genome [50]. The two most 

frequently used SNP cut-offs (5bp and 12bp) are used as the cut-off for cluster identification 

with ClusterPicker [51]. 
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IQtree [52] is used to identify the most likely substitution model and to compute the 

Maximum Likelihood tree. To save computing time, bootstrapping is not performed in the 

default setting, but users can opt for an ultra-fast or regular bootstrap option [53]. The 

resulting tree can be visualized with iTOL, which can annotate phylogenetic trees with drug-

resistance and lineage markers using the annotation files as created by TBProfiler [33, 54]. 

Phylogeny is inferred twice, once including and once excluding complex regions. MAGMA also 

performs cluster analysis based on the calculated SNP distances. Clusters identified by 

ClusterPicker are visualized using FigTree [55]. 

Comparison of MAGMA and MTBseq pipelines 

To compare the performance MAGMA and MTBseq pipelines and the interpretation of the 

results generated, we analyzed positive MGIT samples collected from 79 consecutive 

participants in the SMARTT clinical trial. The FASTQ files were run through MAGMA v.1.0.1 

(https://github.com/TORCH-Consortium/MAGMA/) and MTBSeq v1.1. 

(https://github.com/ngs-fzb/MTBseq_source) using default parameters.  For drug resistance 

analyses, variants annotated by one or both pipeline and their relevance regarding drug 

resistance to antituberculosis drugs as generated by the two pipelines were compared.  The 

comparison was done in detail for one patient (TB280), summarized for all 79 samples, and 

differences in resistance calling were investigated. Because MAGMA and MTBseq sometimes 

output different annotations for identical variants, the script verified the genome position of 

the reported nucleotide change.  

For phylogenetic analyses, the same Maximum Likelihood phylogenetic inference was 

performed for both pipelines. Given that MTBseq by default produces a FASTA file without 

complex regions for phylogenetic analyses, the comparison of phylogenetic results excluded 

information on complex regions for both pipelines. A second phylogenetic output was 

generated for MTBseq by excluding samples with a depth of coverage below 30x or a breadth 

of coverage below 95%, as suggested in the MTBseq frequently asked questions document. 

To compare the phylogenetic outputs, heatmaps were generated using the python packages 

seaborn (v.0.12.2) and matplotlib (v.3.8.0) from the pairwise SNP distances calculated for the 

phylogenies’ multi-FASTA files and co-phylogenetic face-to-face trees were plotted using the 

R packages ape (v.5.7-1) and phytools (v.1.9-16). 
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Table 1: Drug resistance information as reported by MAGMA and MTBseq, including the variant and resistance annotation in the WHO catalogue 
of mutations in Mycobacterium tuberculosis  

 

  WHO catalogue (reference) MAGMA MTBseq 

Drug Variant Resistance 
annotation Variant call Resistance 

Annotation Variant Call Resistance 
Annotation 

EMB 

embB_M306V R embB_p.Met306Val R embB Met306Val (atg/Gtg) R 

Not listed   embA_c.-590C>T U embC Arg927Arg 
(cgc/cgT) Interesting Region 

embC_g-1419a 
(aftA_171) S Detected not reported - aftA Leu171Leu (ctg/ctA) Interesting Region 

Not listed   embA_c.228C>T U embA Cys76Cys (tgc/tgT) PhyloSNP 

INH 

inhA_g-
154a(fabG1_L203L) R inhA_c.-154G>A R fabG1 Leu203Leu (ctg/ctA) Interesting Region 

Rv1258c_581_ins_1_t_t
g S Rv1258c_c.580_581ins

C S not reported*   

katG_R463L S katG_p.Arg463Leu S katG Arg463Leu (cgg/cTg) PhyloSNP 

mshA_A187V S mshA_p.Ala187Val S not reported*   

RIF 

rpoB_S450L R rpoB_p.Ser450Leu R rpoB Ser450Leu (tcg/tTg) R 

Not listed   rpoC_c.-339T>C U rpoB Ala1075Ala (gct/gcC) PhyloSNP 

Not listed   rpoC_p.Gly519Ser U not reported*   

SM 

rrs_a514c R rrs_n.514A>C R not reported*   

Not listed   gid_c.615A>G U gid Ala205Ala (gca/gcG) PhyloSNP 

Rv1258c_581_ins_1_t_t
g S Rv1258c_c.580_581ins

C S In MTBSeq bam file, not 
reported   
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gid_E92D S gid_p.Glu92Asp S gid Glu92Asp (gaa/gaC) PhyloSNP 

rpsL_t-165c   rpsL_c.-165T>C S not reported*   

rrs_c-187t S rrs_n.-187C>T S not reported*   

whiB6_-74_del_1_gct_gt S whiB6_c.-75delG S not reported*   

ETO 
inhA_g-154a 

(fabG1_L203L) R interim inhA_c.-154G>A Very high probability not reported*   

mshA_A187V unknown significance mshA_p.Ala187Val U mshA Ala187Val (gca/gTa) PhyloSNP 

AMI 

Not listed   fprA_c.-11_-10insA U not reported*   

aftB_D397G S aftB_p.Asp397Gly S not reported*   

ccsA_I245M S ccsA_p.Ile245Met S not reported*   

rrs_c-187t S rrs_n.-187C>T S not reported*   

rrs_a514c S rrs_n.514A>C S not reported*   

whiB6_-74_del_1_gct_gt S whiB6_c.-75delG S not reported*   

BDQ 

Not listed   mmpS5_c.-710C>G U not reported*   

Rv1979c_a-129g S Rv1979c_c.-129A>G S not reported*   

mmpL5_D767N S mmpL5_p.Asp767Asn S not reported*   

mmpL5_I948V S mmpL5_p.Ile948Val S not reported*   

mmpL5_T794I S mmpL5_p.Thr794Ile S not reported*   

CAP 

Not listed   fprA_c.-11_-10insA U not reported*   

Not listed   tlyA_c.33A>G U tlyA Leu11Leu (cta/ctG) Interesting Region 

aftB_D397G S aftB_p.Asp397Gly S not reported*   

ccsA_I245M S ccsA_p.Ile245Met S not reported*   

rrs_c-187t S rrs_n.-187C>T S not reported*   

rrs_a514c S rrs_n.514A>C S not reported*   
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whiB6_-74_del_1_gct_gt S whiB6_c.-75delG S not reported*   

CFZ 

Not listed   mmpS5_c.-710C>G U not reported*   

Rv1979c_a-129g S Rv1979c_c.-129A>G S not reported*   

mmpL5_D767N S mmpL5_p.Asp767Asn S not reported*   

mmpL5_I948V S mmpL5_p.Ile948Val S not reported*   

mmpL5_T794I S mmpL5_p.Thr794Ile S not reported*   

DL
M Not listed   fgd1_c.960T>C U not reported*   

LZD 
Not listed   rrs_n.514A>C U not reported*   

rrs_c-187t S rrs_n.-187C>T S not reported*   

KAN 
rrs_c-187t S rrs_n.-187C>T S not reported*   

rrs_a514c S rrs_n.514A>C S not reported*   

LFX 

gyrA_E21Q S gyrA_p.Glu21Gln S gyrA Glu21Gln (gag/Cag) Interesting Region 

gyrA_G668D S gyrA_p.Gly668Asp S gyrA Gly668Asp (ggc/gAc) Interesting Region 

gyrA_S95T S gyrA_p.Ser95Thr S gyrA Ser95Thr (agc/aCc) PhyloSNP 

MFX 

gyrA_E21Q S gyrA_p.Glu21Gln S gyrA Glu21Gln (gag/Cag) Interesting Region 

gyrA_G668D S gyrA_p.Gly668Asp S gyrA Gly668Asp (ggc/gAc) Interesting Region 

gyrA_S95T S gyrA_p.Ser95Thr S gyrA Ser95Thr (agc/aCc) PhyloSNP 

PZA 

PPE35_L896S S PPE35_p.Leu896Ser S not reported*   

Rv1258c_581_ins_1_t_t
g S Rv1258c_c.580_581ins

C S not reported*   

Not listed   Detected, not reported - rpsA Arg212Arg (cga/cgC) PhyloSNP  
Rv3236c_T102A S Rv3236c_p.Thr102Ala S not reported*   

 
U= of unknown significance, S= suscpetible, R= resistant, *variant present in MTBseq BAM file but not reported 
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Table 2: Comparison of resistance reported by MAGMA and MTBSeq pipelines 

 Number of drug  
resistant samples 

Discordances in drug resistance repor5ng 

 MAGMA MTBSeq N Variant WHO catalogue MAGMA MTBSeq 

RIF 68 59 

1 rpoB_His455Leu R R Variant not reported* 

1 rpoB_His455Leu R R 
U 

 (InteresUng_Region) 

6 rpoB_Ser450Leu R R Variant not reported* 

1 rpoB_Leu430Pro R R Variant not reported* 

INH 35 27 

9 inhA_-154G>A R R 
U  

(InteresUng_Region) 

1 full katG deleUon not listed U 
R**  

katG_Leu141Phe 

PZA 10 15 

3 pncA_His57Pro U U R 

1 pncA_His57Gln U U R 

1 pncA_Leu35Arg not associated with 
R-interim 

very low prob-
ability of R R 

EMB 22 24 
1 embA_-11C>A U U R 

1 embA_-16C>G U U R 

ETO 12 15 3 ethA_Tyr276His U U R 

AMI 5 4 1 rrs_1401A>G R R Variant not reported* 

CAP 5 4 1 rrs_1401A>G R R Variant not reported* 
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KAN 5 4 1 rrs_1401A>G R R Variant not reported* 

STM 16 11 

3 rrs_514A>C R R Variant not reported* 

1 rrs_517C>T R R Variant not reported* 

1 rpsL_Lys43Arg R R Variant not reported* 

BDQ 0 0 0     

CFZ 0 0 0     

  DLM 0 0 0     

LZD 0 0 0     

LFX 9 9 0     

MFX 9 9 0     
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