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Abstract 

Dyslexia is a learning difficulty with neurodevelopmental origins, manifesting as reduced 

accuracy and speed in reading and spelling despite adequate education. Dyslexia is 

substantially heritable and frequently co-occurs with other neurodevelopmental conditions, 

particularly attention deficit-hyperactivity disorder (ADHD). The purpose of this paper was to 

elucidate how genetic factors predisposing to dyslexia correlate with risk for other 

neurodevelopmental and psychiatric traits. A large-scale genome-wide association study 

(GWAS) of dyslexia diagnosis self-report (51,800 cases and ~1.1 million controls), together 

with GWAS of ADHD, autism, Tourette syndrome, anxiety, depression, schizophrenia, 

bipolar, obsessive compulsive disorder, anorexia, were analysed using Genomic Structural 

Equation Modelling (GenomicSEM) to construct a genomic structural model. The final model 

consisted of five correlated latent genomic factors described as F1) internalising disorders, 

F2) psychotic disorders, F3) compulsive disorders, F4) neurodevelopmental conditions, and 

F5) attention and learning difficulties, which includes ADHD and dyslexia. This latent factor 

was moderately correlated with internalising disorders (.40) and, to a lesser extent, with 

neurodevelopmental conditions (.25) and psychotic disorders (.17), and negatively with 

compulsive disorders (-.16). Unlike ADHD, most of the genomic variance in dyslexia was 

unique, suggesting a more peripheral relation to psychiatric traits. We further investigated 

genetic variants underlying both dyslexia and ADHD. This implicated 49 loci (40 of which 

were not reported in GWAS of the individual traits) mapping to 174 genes (121 not found in 
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GWAS of individual traits). Our study has discovered novel pleiotropic variants and confirms 

via GenomicSEM the heightened genetic relation between dyslexia and ADHD versus other 

psychiatric traits. In future, analyses including additional co-occurring traits such as 

dyscalculia and dyspraxia, for which there are currently no large-scale GWAS, will allow a 

more clear definition of the attention and learning difficulties genomic factor, yielding further 

insights into factor structure and pleiotropic effects. 
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Introduction 

Dyslexia is classed as a specific learning disorder in the DSM-V 1 and is defined by 

persistent difficulty with accurate and/or fluent word reading and poor spelling ability 2. While 

there are no universal diagnostic criteria, dyslexia is typically identified when reading and 

writing abilities fall below expectations, considering the individual’s age, exposure to 

effective education and other cognitive abilities 3. Dyslexia is typically identified in childhood, 

but persists throughout adulthood 3. It has been viewed as a neurodevelopmental disorder, 

linked to structural, connective and functional abnormalities in brain regions involved in 

visual and auditory processing 4. Here, we refer to it as a specific learning difficulty in line 

with the 2009 Rose Report on dyslexia and reading difficulties 2. 

Dyslexia is present in 5-10% of children worldwide 5, 6, and is the most common specific 

learning difficulty. It frequently co-occurs with other neurodevelopmental differences—in 

particular, 25-40% of individuals with dyslexia are diagnosed with attention deficit-

hyperactivity disorder (ADHD) and vice versa 7, 8. Associations between autism (AUT) and 

dyslexia are complex. Certain traits, such as atypical sensory processing and spatial 

attention alterations, are shared between autism and dyslexia 9. Yet, some studies show that 

autism is linked to better reading skills 10-12, and others suggest dyslexia is no more 

prevalent among autistic individuals than in the general population 13. 

Twin studies of dyslexia estimate its heritability at 60-70% 14, 15, which suggests a substantial 

genetic component. However, the genetic background of dyslexia is complex and 

multifactorial: individual genes contributing to dyslexia have only a small effect each, and 

likely act together in an additive manner 16. Discovery of such genes requires very large 

sample sizes, thus previous genome-wide association studies (GWAS) have struggled to 

identify genomic loci predisposing to dyslexia due to low statistical power 17. Through 

collaboration with the personal genetics company 23andMe, Inc, Doust and colleagues 

published the largest dyslexia GWAS to date, comprising over 1.1 million individuals in total 

(~50,000 dyslexia cases) and discovering 42 significantly associated genomic loci 18. This 

dataset enables further study of the genetic background of dyslexia. 

Genetic factors underlying neurodevelopmental and psychiatric traits often overlap between 

disorders: of 208 genes associated with at least one psychiatric disorder, it was reported that 

approximately half of them are also associated with another disorder 19. Recent 

developments in structural equation modelling methods to study multiple phenotypes with 

overlapping genomic influences permit quantitative analysis of genetic correlations between 

individual psychiatric traits/disorders 20. Such studies aim to construct a structural model 

where traits are clustered based on their genetic similarity (using the correlational structure 
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between genome-wide single-nucleotide polymorphism (SNP) associations for each trait that 

give rise to genetic correlations). Each cluster is described by a single latent factor, which 

represents the shared genetic (SNP) liability within the cluster. In 2019, structural modelling 

of 8 psychiatric disorders proposed a three-factor model describing three clusters of 

genetically correlated disorders 21, while a 2022 follow-up analysis of 11 psychiatric 

disorders proposed a four-cluster model 22. Broadly, these clusters are: 1) Early-onset 

neurodevelopmental disorders: ADHD, autism, Tourette syndrome, major depressive 

disorder; 2) Disorders with compulsive behaviours: obsessive-compulsive disorder, anorexia 

nervosa, Tourette syndrome; 3) Mood and psychotic disorders: bipolar disorder, 

schizophrenia, (major depressive disorder in three-factor model), and; 4) Internalising 

disorders (four-factor model): anxiety disorder, major depressive disorder. 

To understand whether and where dyslexia is located among these broad genetic clusters, 

here we expand and adapt current genomic structural models to include dyslexia. Based on 

prior literature, we expected that dyslexia would fall under an early-onset 

neurodevelopmental disorder factor. However, we made no prediction of how correlated 

dyslexia would be with this neurodevelopmental factor given that the nature of the latent 

factor itself depends on the range of variables included in the analysis. For instance, an 

earlier GenomicSEM analysis of 8 traits, identified a neurodevelopmental factor as loading 

on Tourette Syndrome, major depressive disorder, ADHD and autism 21. However, a later 

study 22 adding problematic alcohol use, post-traumatic stress disorder (PTSD), and anxiety 

found that the neurodevelopmental factor also loaded on problematic alcohol use and PTSD, 

while the loading onto major depressive disorder on this factor reduced from .60 (in the 

model with 8 traits) to just .20. In another study 23, addition of alcohol dependence, nicotine 

dependence and cannabis use disorder to the original 8 traits resulted in a 

neurodevelopmental factor that loaded more strongly on major depression than any of the 

developmental disorders, and that had strong loadings on alcohol and nicotine dependence, 

thus changing the nature of the factor.  

In the present study, we focussed on 10 developmental/psychiatric traits and 

expected to observe a four latent factor model—compulsive, psychotic, neurodevelopmental, 

and internalising—with dyslexia clustering especially with ADHD for which it is known to be 

moderately genetically correlated (r = .53) 18. Because our aim was to more clearly delineate 

neurodevelopmental genomic factors influencing phenotypes expressed in childhood 

irrespective of environment we excluded substance use dependence and PTSD due to these 

trait’s dependence on environmental exposures Additionally, because neurodevelopmental 

traits are linked to social outcomes, they may themselves create environments that then 

influence the expression of other traits that do not have origins in neurodevelopment (e.g., a 
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child with dyslexia may disengage with school, develop low self-esteem or feel alienated 24, 

putting them at greater risk of substance use 25) but through a causal pathway would 

correlate with a neurodevelopmental factor.  We followed up our analysis with targeted 

investigations of genomic loci associated with both dyslexia and ADHD, to provide the 

strongest evidence thus far of pleiotropic effects. 

 

Methods 

Samples 

To construct the genomic structural model, we sourced publicly available GWAS summary 

statistics for 10 neurodevelopmental/psychiatric traits (Table 1). GWAS summary statistics 

for all traits, except dyslexia, were obtained from multi-cohort case-control meta-analyses. 

The dyslexia summary statistics came from a single analysis of 23andMe, Inc, participants in 

which      genomic inflation was controlled. The combined sample amounted to 453,408 

cases and 2,374,026 controls, and included some sample overlap, for example, iPSYCH 

was part of the ADHD, ASD, and BPD GWAS. Consistent with previous genomicSEM 

investigations, data were restricted to participants with European ancestry as these currently 

have adequate sample sizes. 

Insert Table 1 about here 

 

Data standardisation and quality control 

To ensure all data were uniform and reliable, all GWAS summary data were aligned to the 

1000 Genomes European reference genome build 37 26 and filtered to imputation quality 

score >0.9, minor allele frequency >0.05 using the sumstats and munge functions in the 

GenomicSEM R package 27. Any SNPs not commonly shared between all 10 studies were 

excluded. After quality control, 3,959,995 SNPs remained for further analysis. 

Statistical analysis 

GenomicSEM 

SNP-based heritability and pairwise genetic correlations (rg) between disorders were 

obtained using the linkage disequilibrium score regression (LDSC) 28 function in the 

GenomicSEM package and based on 830,359 high quality HapMap SNPs. To reveal 

clusters of traits with shared genetic liability, we synthesised LDSC outputs into a genomic 
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structural model. Our initial model was guided by a previously published three latent factor 

structural model of 8 psychiatric disorders 21, all of which were also included in the present 

study. Given that anxiety and dyslexia were new to this model, we further investigated the 

factor structure underlying these genetic relationships using an exploratory factor analysis 

(EFA) of the genetic covariance matrix with promax rotation. Goodness of fit of the 

confirmatory and exploratory models was evaluated by the standard fit statistics using 

recommended criteria: lower Akaike’s Information Criterion (AIC), Comparative Fit Index 

(CFI) in the range of .97 and 1 (good; .95-.97, acceptable), and Standardised Root Mean 

Squared Residual (SRMR) < .05 (good; .05-.1, acceptable) 29.  

Identification of common dyslexia and ADHD variants 

Given the frequent co-occurrence of ADHD and dyslexia and their strong genetic correlation, 

we sought to discover pleiotropic genetic loci that are significantly associated with both traits. 

We filtered dyslexia and ADHD datasets to 3,956,700 shared SNPs and calculated an 

overall effect size (r) and degree of sharedness (Θ) for each SNP using a polar coordinate 

transformation method PolarMorphism 30. By taking Θ into account, we were able to correct 

for inflation in effect size due to correlation and sample overlap 30. SNPs where FDR-

adjusted p-values (q-value) for r and Θ were <0.05 were deemed significant and brought 

forward for gene mapping. Functional annotation and gene mapping was performed using 

FUMA 31. We clumped linkage-independent genomic regions (r2 threshold = 0.4, maximum 

LD distance = 500 kb, maximum p-value for lead SNPs = 5 × 10-8, maximum p-value cut-off 

= 5 × 10-2). The MHC region was considered as one locus. The 1000 Genomes European 

population was used as reference (GRCh37 release). 

Results 

Genetic Clustering 

Heritability Z-scores were >4, LDSC intercepts approximately 1, and the ratio close to 0 

indicating that linkage disequilibrium scores reflected polygenic heritability. The strongest 

genetic correlations were observed between anxiety (ANX) and major depressive disorder 

(MDD) (rg = 0.86 ± 0.05), then bipolar disorder (BIP) and schizophrenia (SCZ) (rg = 0.69 ± 

0.03), with moderate correlations ranging between 0.40 and 0.45 for pairings of ANX with 

ADHD and BIP, for MDD with ADHD, BIP and SCZ, for anorexia nervosa (AN) and 

obsessive-compulsive disorder (OCD), and ADHD and dyslexia (DYX) (see Figure 1A and 

B). A regression of effective sample size on estimated genetic correlation for each pair of 

disorders indicated that there were no effects of sample size on genomic correlation (R2
adj = 

–0.02, p = 0.90, Figure 1C). 
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Insert Figure 1 about here 

 

Due to their strong correlation, we modelled ANX to load on the same two latent factors as 

MDD. Similarly, we modelled DYX to load on the same factor as ADHD. However, the fit of 

this model was poor (χ2(29) = 329.40, AIC = 381.40, CFI = 0.933, SRMR = 0.077). An EFA 

identified a structure of four correlated factors, which together explain 61.3% of underlying 

variance. The model identified by EFA clusters ANX and MDD under a common factor of 

internalising disorders. This is in line with the newer report of an 11-disorder structural model 
22. We thus constructed a confirmatory model using the EFA output (Figure 2A) and 

observed a dramatic improvement in model fit (χ2(29) = 172.60, AIC = 224.60, CFI = 0.968, 

SRMR = 0.062). Having observed a strong genetic correlation between DYX and ADHD but 

not between DYX and AUT, we modified the confirmatory model by modelling DYX and 

ADHD to load on a fifth factor (F5) of learning difficulties (Figure 2B). This model had the 

best fit of all the estimated models χ2(24) = 96.57, AIC = 158.57, CFI = 0.984, SRMR = 

0.048). 

 

Insert Figure 2 about here 

 

Identification of shared variants contributing to dyslexia and ADHD 

From the overlapping SNPs available for DYX and ADHD, 1,566 SNPs met the significance 

criteria for overall effect size and degree of sharedness. These 1,566 pre-defined significant 

SNPs were clumped into 51 lead SNPs belonging to 49 genomic risk loci (Figure 3A). 

Overall and standardised genomic inflation factors were close to 1 (λ = 0.879, λ1000 = 0.999), 

indicating that bulk inflation and excess false positive rates were minimal (Figure 3B). 

MAGMA tissue expression analysis indicated that these SNPs are associated with genes 

showing enriched expression in brain tissues (Figure 3C). Six out of 49 pleiotropic loci were 

previously reported as associated with dyslexia 18, and one of these 6 (lead SNP rs1005678 

on chromosome 3) was also found in the ADHD GWAS 32. A further 3 of the pleiotropic loci 

were reported for ADHD alone 32 (Figure 3D). Forty-nine pleiotropic loci were mapped to 174 

protein coding genes (Supplementary Table 3). Gene Ontology analysis 33-35 indicated an 

enrichment in genes involved in protein modification and metabolism, and in development 

(Table 2). Thirty-six out of the 174 pleiotropic protein-coding genes have been previously 

associated with dyslexia (i.e., from 173 genes mapped to the 42 significant loci from the 
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dyslexia GWAS) 18, and 21 with ADHD 32. Of those, four genes, TCTA (T-cell leukemia 

translocation altered), AMT (aminomethyltransferase), TRAIP (TRAF interacting protein) and 

SORCS3 (sortilin-related receptor 3) had been associated with both traits in prior literature 

(Figure 3E). 

 

Insert Table 2 about here 

 

Insert Figure 3 about here 

 

Discussion 

By extending existing multivariate genomic models of neurodevelopmental and psychiatric 

traits to include dyslexia, our work has yielded three key findings: (1) that a five latent factor 

model, composed of internalising (F1), psychotic (F2), compulsive (F3), neurodevelopmental 

(F4), and attention and learning latent traits (F5), effectively describes the genetic 

relationships between these diagnoses; (2) that ADHD aligns more with dyslexia and to a 

learning difficulties latent factor than a neurodevelopmental one, and; (3) we identify a set of 

pleiotropic genetic loci associated with the presence of both dyslexia and ADHD. 

Genetic correlations between the psychiatric disorders were concordant with those of 

previous analyses 21, 22. Most pairs of disorders displayed a statistically significant genetic 

correlation, varying in magnitude, as observed previously. This supports the concept of a 

complex, interlinked network of shared genetic liabilities across psychiatric disorders. The 

moderate genetic correlation (0.40) between dyslexia and ADHD matches estimates derived 

from a meta-analysis of twin studies for reading ability indicators and ADHD symptoms 36. 

This result was expected, given the frequent co-occurrence of ADHD and dyslexia 7, 37, 

correlation between general reading ability and ADHD 36, 37, and significant ADHD polygenic 

score prediction of dyslexia and reading achievement 17, 32.  

Based on the frequent co-occurrence of dyslexia and ADHD, and, albeit less often, with 

autism, we initially hypothesised a structural model that includes dyslexia alongside other 

neurodevelopmental disorders. However, genetic correlation between dyslexia and autism 

was found to be statistically non-significant (p = .082), and accordingly, an improvement in 

model fit was observed when dyslexia and autism were modelled as loading on distinct 

latent factors. By contrast with dyslexia, ADHD loaded on both the neurodevelopmental and 

the attention and learning difficulties factors (F4 and F5), with its correlation being lower on 
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the former than on the latter (.43 vs .75). This suggests that the genetic architecture 

influencing ADHD shows greater overlap with dyslexia than with autism. We propose four 

non-mutually exclusive explanations: (a) ADHD is a complex, biologically heterogeneous 

disorder that shares genetic influences with both neurodevelopmental and learning 

difficulties to varying degrees; (b) vertical (or spurious) pleiotropy is present and may reflect 

causal influences of ADHD on dyslexia or vice-versa; (c) current diagnostic criteria for 

dyslexia, ADHD and autism are insufficient to categorically define genetically distinct 

populations, and suggest different degrees of overlap between the continuous traits 

underlying the diagnoses, and; (d) co-occurrence of dyslexia is higher than autism within the 

GWAS sample ascertained for ADHD 32. Although the PolarMorphism method used corrects 

for vertical pleiotropy and potential sample overlap 30. 

 

The shared and unique genetic architecture identified in this study is broadly in line with 

previous genomic structural models 20-22 and highlights the complexity of behavioural and 

psychiatric genetics. We observed strong positive correlations between the five latent factors 

in our structural model, which supports the concept of general genetic risk factors that 

contribute to all 10 neurodevelopmental and psychiatric traits in this panel. However, we also 

observe a range of residual variances, which represent specific genetic factors that confer 

distinguishable phenotypes to each developmental trait/psychiatric disorder. Dyslexia and 

autism have larger residual estimates than ADHD (0.78, 0.56 and 0.10, respectively). This 

suggests that (a) shared genetic factors explain a larger part of total genetic influence for 

ADHD than for either dyslexia or autism; (b) both dyslexia and autism have a substantial 

proportion of risk factors not shared with ADHD that pertain more specifically to biological 

mechanisms related to these traits’ core features (i.e., respective reading subskills and 

social communication). Additionally, a recent bivariate causal mixture model analysis of 

bipolar disorder, depression, schizophrenia, and ADHD showed that ADHD is the least 

polygenic of these traits (5600 causal variants) 38. If polygenicity is low but pleiotropy high 

then one would expect lower residual variance for ADHD. Thus, the finding of substantial 

residual variance in dyslexia and autism could indicate higher polygenicity for these traits 

compared to ADHD. Intelligence, a trait genetically correlated with dyslexia, ADHD, and 

autism, for instance, showed high polygenicity (~11,500 variants) using this mixed effect 

modelling 38. Such an approach should be applied to dyslexia and autism in future. 

We observed that the neurodevelopmental latent factor was more strongly correlated than 

the attention and learning factor with the other latent factors (often showing correlations that 

were twice as high). This aligns with findings from a study that dissected the shared and 
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unique genetic background of ADHD and autism spectrum disorder 39. That study found that 

the shared genomic portion was strongly associated with psychiatric traits (e.g., depressive 

symptoms) whereas the distinct part was strongly associated with cognitive traits (e.g., 

educational attainment, childhood IQ). This distinct part is likely captured in the attention and 

learning difficulties factor. Further extension of the genomic structural model including other 

relevant traits should help to clarify the nature of the attention and learning factor and the 

large residual variance in dyslexia. Specifically, additional specific learning difficulties, such 

as dyscalculia, and other developmental disorders that co-occur with dyslexia, namely 

developmental language disorder and dyspraxia 40 should be prioritised for inclusion. At 

present, no large GWAS have been reported for these traits, precluding their use for 

GenomicSEM. Multivariate genetic modelling in 12-years old twins 41 showed that genetic 

influences on reading, mathematics, and language difficulties each overlapped largely with 

the genetic influences on general cognitive ability/low ability, so an analysis that further 

incorporates general cognitive ability may show that it correlates strongly with the attention 

and learning difficulties factor.  

Our targeted approach to identify pleiotropic loci associated with both dyslexia and ADHD 

uncovered 49 shared genomic loci. Importantly, 43 of these loci were not among genome-

wide significant associations of the prior source GWAS of each separate trait, and thus 

represent newly identified pleiotropic loci. The 49 putative pleiotropic loci were mapped to 

174 protein-coding genes, with gene ontology analysis suggesting enrichment of genes 

involved in development. This is consistent with the neurodevelopmental origins of both 

dyslexia and ADHD, both manifesting from changes in structure, connectivity and function of 

the brain 42, 43. We also detected enrichment of genes involved in protein modification and 

metabolism. While it is known that post-translational modification has a major role in 

neurodevelopment in general 44, any specific links to dyslexia and ADHD require further 

investigation. 

Of the 49 significant SNPs, 13 showed no associations in the GWAS Catalog with primary 

phenotypes (developmental, cognitive, attainment) related to dyslexia or ADHD. One might 

place lower confidence in these findings given that variants shared between dyslexia and 

ADHD would likely have generalised effects that can be detected in related traits such as 

educational attainment or cognitive function which have well-powered GWAS. Six SNPs 

were associated with dyslexia in the prior GWAS, with one of these also significant in the 

previous ADHD GWAS. GWAS Catalog look-up showed a further two of these SNPs 

associated with ADHD or a combined phenotype including ADHD, and two others with the 

related traits of educational attainment and cognitive function (including processing speed). 

There were no reported associations with relevant traits for rs73175930 in AUTS2. However, 
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ADHD is a core feature of individuals with AUTS2 syndrome arising from pathogenic variants 

in this gene 45. For the three SNPs previously identified in the ADHD GWAS but not the 

dyslexia GWAS, all were reported to associate with educational attainment and/or cognitive 

function. For all other significant SNPs, there was a mixture of reported associations with 

primary traits, secondary traits (risk taking, externalising behaviours, psychiatric, 

neuroticism), and other traits (many medical health outcomes that may be downstream 

outcomes related to lower SES of those with dyslexia and ADHD). These variants may 

therefore be associated with a whole range of behaviours due to their primary effect on 

attention and learning processes which we suggest define the covariation between dyslexia 

and ADHD. This hypothesis might be further tested in extended genomicSEM models that 

include a host of variables that we identify here (e.g., risk-taking, externalising behaviours, 

educational attainment) as being previously associated with our significant SNPs for 

combined dyslexia and ADHD. Downstream outcomes can be confirmed by Mendelian 

Randomization methods in cases where confounding by socio-economic status is 

unproblematic. 

Four genes—SORCS3, TCTA, TRAIP and AMT—shown to be pleiotropic had previously 

been associated with dyslexia and ADHD in individual GWAS studies and are very strong 

pleiotropic candidate genes 18, 32. The SORCS3 protein is abundant in the central nervous 

system 4646. It has a primary role in sorting intracellular proteins between organelles and the 

plasma membrane, and a secondary role in cell signalling. Mouse studies of the murine 

orthologue of SORCS3 have implicated it in long-term synaptic depression via aberrant 

glutamate signalling 47. SORCS3-deficient mice have decreased synaptic plasticity and 

deficits in spatial learning and memory. This is consistent with the proposed theories of 

reduced visual and spatial learning abilities in children with dyslexia and ADHD 48, 49. 

SORCS3 has previously been suggested as a pleiotropic gene associated with ADHD, 

autism, schizophrenia, bipolar, and MDD 50. In addition, SORCS3 mutations have been 

linked with intellectual delay 51, multiple sclerosis 52 and Alzheimer’s disease 53. TCTA has a 

role in regulating processes related to dissolution and absorption of bone 54, so is not an 

obvious candidate gene for involvement in brain-related phenotypes. However, in GWAS, 

variants at this locus have been associated with relevant traits of very high intelligence, 

cognitive function, and household income 55-57, and less relevant traits like cardio-vascular 

disease, Crohn’s Disease, inflammatory bowel disease (from NHGRI-EBI GWAS Catalog 58). 

TRAIP, part of the RING finger protein gene group is linked to the ubiquitination pathway 

protecting genome integrity following replication stress 59. Variants in this gene have been 

associated with more than 40 phenotypes, but notably the most strongly associated SNPs (P 

≤ 7 x 10-18) in this gene have been from a meta-analysis combining ADHD, ASD and 
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intelligence 60, for multiple studies of intelligence/cognitive function including the cognitive 

component of education attainment 61-64, and externalising behaviour 65. Thus, the gene may 

potentially be involved in general learning processes that can be affected in both ADHD and 

dyslexia. The AMT gene encodes a critical component of the glycine cleavage system 

contributing to normal development and function of neurons 66. It is strongly associated (P = 

5 x 10-82) with educational attainment 63, an outcome that is negatively correlated with both 

ADHD and dyslexia, and could be prioritised as a candidate gene involved in learning given 

its lack of strong association with other phenotypes. For the remaining 170 pleiotropic 

mapped genes (32 previously found for dyslexia and 17 for ADHD), and particularly the 121 

that were not identified in previous dyslexia and ADHD screens, future research is needed to 

understand the extent of their overlap with both general and specific cognitive abilities. 

There are a number of limitations to this study: (1) the GWAS included here had variable 

sample sizes. Lack of power in small GWAS datasets (i.e., AN, TS) results in decreased 

effect sizes, and thus could contribute to reduced strengths of genetic correlations observed. 

(2) We have been unable to control for causal relationships and diagnostic overlap in 

building our structural models, which may potentially inflate genetic correlations. 

In sum, our analysis of genetic relationships of 10 developmental traits (which includes 

dyslexia for the first time) and psychiatric disorders has shown the emergence of an 

attention and learning difficulties factor that is only modestly correlated with a separate 

neurodevelopmental factor. In this model, ADHD aligns more closely with dyslexia than 

autism, suggesting that ADHD may be better termed as a learning difficulty than a 

psychiatric disorder, and highlighting the importance of it being managed within education 

and later employment. To explain the large residual variance in dyslexia, extension of the 

genomicSEM model to include other co-occurring developmental traits and a range of other 

cognitive abilities will be informative, once reliable GWAS of these are available. Finally, we 

discovered 49 potentially pleiotropic genomic risk loci, 43 of which are novel, influencing the 

development of both dyslexia and ADHD, and further confirm SORCS3 and TRAIP as 

putative pleiotropic genes that likely have broad associations with neuropsychiatric traits 

potentially through learning pathways. Future GWAS investigations of individuals with co-

occurring dyslexia and ADHD will help to validate our pleiotropy analyses and determine 

whether the identified variant effects are larger when both traits are present. 
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Table 1. Sources and description of GWAS summary statistics used for GenomicSEM 
modelling. 
Disorder Abbreviation N(cohorts) N(cases) N(controls) 
Attention deficit/ 
hyperactivity disorder 32 

ADHD 13 38,691 186,843 

Anorexia nervosa 67 AN 33 16,992 55,525 
Anxiety disorder 68 ANX 2 53,978 221,844 
Autism spectrum disorder 69 AUT 6 18,381 27,969 
Bipolar disorder 70 BIP 57 41,917 371,549 
Dyslexia 18 DYX 1 51,800 1,087,070 
Major depressive disorder 71 MDD 3 170,756 329,443 
Obsessive-compulsive disorder 72 OCD 2 2,688 7,037 
Schizophrenia 73 SCZ 90 53,386 77,258 
Tourette syndrome 74 TS 4 4,819 9,488 
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Table 2. Results of Gene Ontology enrichment analysis for 174 genes mapped to putative 
pleiotropic loci influencing dyslexia and ADHD.  

Gene Ontology term Adjusted p-value 
Molecular functions 
 protein binding 2.77 × 10–4 
 hyalurononglucosaminidase activity 2.10 × 10–2 
 peptide-O-fucosyltransferase activity 4.99 × 10–2 
Biological processes 
 glycosaminoglycan catabolic process 1.95 × 10–3 
 macromolecule modification 4.69 × 10–3 
 protein modification process 4.82 × 10–3 
 aminoglycan catabolic process 5.55 × 10–3 
 developmental process 8.02 × 10–3 
 anatomical structure development 2.36 × 10–2 
 multicellular organism development 2.42 × 10–2 
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Figure 1. Genetic relationships between ten neurodevelopmental and psychiatric disorders. A 

– pairwise genetic correlations detected using LDSC. Colour intensity scales with correlation 

coefficient (rg), radius of circles scales with significance of p-values. Asterisks denote statistically 

significant (p ≤ 0.001) correlations after Bonferroni correction. B – path diagram of genetic 

correlations. Each edge connecting two phenotype nodes represents genetic correlation between 

those traits. Width and colour intensity of edges scale with correlation coefficient (rg). Only pairs where 

rg > 0.3 and correlation is statistically significant (p ≤ 0.05) after Bonferroni correction are displayed. C 

– regression of effective sample size on estimated genetic correlation for each pair of traits. Pairs 

where rg > 0.3, or rg < 0.1, or effective sample size >100,000 are labelled. 
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Figure 2. Structural models of 10 neurodevelopmental and psychiatric disorders. Each genetic 

factor (F1 – F5) represents shared genetic liability. Single-headed arrows represent standardised 

loading parameters, which indicate covariance of the latent factor with a given parameter. Standard 

errors are given in parentheses. Double-headed arrows connecting factors represent pairwise 

correlation. Double-headed arrows connecting a component to itself represent residual variance, i.e., 

variability that is unexplained by factor loading. Factor residuals are fixed for scaling. A – confirmatory 
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model based on exploratory factor analysis. B – modified confirmatory model that separates DYX and 

ADHD into a separate cluster of learning difficulties, based on observed genetic correlations. 
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Figure 3. Investigating pleiotropic genomic loci influencing dyslexia and ADHD. A – Manhattan 

plot of pleiotropy effect size p-values across SNPs shared between dyslexia and ADHD GWAS 

datasets. Dotted line represents Bonferroni-significant p-value (3.081 × 10–6). B – Quantile-quantile 

plot displaying the observed vs expected statistics under the null hypothesis. C – MAGMA tissue 

expression analysis of all SNPs using GTEx v8 dataset with 30 general tissue types. Dotted line 
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represents Bonferroni-significant p-value. D – Venn diagram of significantly associated genomic loci 

identified in single phenotype GWAS studies and in the pleiotropy analysis. E – Venn diagram of 

genes mapped to significantly associated SNPs in single phenotype GWAS studies and in the 

pleiotropy analysis. 
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