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ABSTRACT 

 
Background: Extracting explainable flow metrics is a bottleneck to the clinical translation of 

advanced cardiac flow imaging modalities. We hypothesized that reduced-order models 

(ROMs) of intraventricular flow are a suitable strategy for deriving simple and interpretable 

clinical metrics suitable for further assessments. Combined with machine learning (ML) 

flow-based ROMs could provide new insight to help diagnose and risk-stratify patients.  

 

Methods: We analyzed 2D color-Doppler echocardiograms of 81 non-ischemic dilated 

cardiomyopathy (DCM) patients, 51 hypertrophic cardiomyopathy (HCM) patients, and 77 

normal volunteers (Control). We applied proper orthogonal decomposition (POD) to build 

patient-specific and cohort-specific ROMs of LV flow. Each ROM aggregates a low number 

of components representing a spatially dependent velocity map modulated along the cardiac 

cycle by a time-dependent coefficient. We tested three classifiers using deliberately simple 

ML analyses of these ROMs with varying supervision levels. In supervised models, 

hyperparameter gridsearch was used to derive the ROMs that maximize classification power. 

The classifiers were blinded to LV chamber geometry and function. We ran vector flow 

mapping on the color-Doppler sequences to help visualize flow patterns and interpret the ML 

results. 

 

Results: POD-based ROMs stably represented each cohort through 10-fold cross-validation. 

The principal POD mode captured >80% of the flow kinetic energy (KE) in all cohorts and 

represented the LV filling/emptying jets. Mode 2 represented the diastolic vortex and its KE 

contribution ranged from <1% (HCM) to 13% (DCM). Semi-unsupervised classification 

using patient-specific ROMs revealed that the KE ratio of these two principal modes, the 

vortex-to-jet (V2J) energy ratio, is a simple, interpretable metric that discriminates DCM, 

HCM, and Control patients. Receiver operating characteristic curves using V2J as classifier 

had areas under the curve of 0.81, 0.91, and 0.95 for distinguishing HCM vs. Control, DCM 

vs. Control, and DCM vs. HCM, respectively. 

 

Conclusions: Modal decomposition of cardiac flow can be used to create ROMs of normal 

and pathological flow patterns, uncovering simple interpretable flow metrics with power to 

discriminate disease states, and particularly suitable for further processing using ML.  
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1. INTRODUCTION 

Current functional hemodynamic imaging relies on the laws of fluid dynamics, or their 

simplifications, applied to intracardiac blood flow data (Bermejo et al., 2015; Mele et al., 

2019). Studies have shown the potential of flow-derived metrics to improve the 

characterization of systolic (Yotti et al., 2014) and diastolic function (Little et al., 1995), and 

to determine the risk of intracardiac thrombosis (Harfi et al., 2017). Left ventricular (LV) 

flow analyses are also useful to detect subclinical LV dysfunction (Eriksson et al., 2013), 

predict functional capacity in patients with cardiomyopathy (Stoll et al., 2019), and calculate 

cardiac hemodynamic forces, which may help to detect subclinical myocardial dysfunction 

(Vallelonga et al., 2021). However, translation of flow-related metrics based on imaging into 

clinical practice has been slower than the technological development of imaging technology. 

A challenge for establishing flow-derived biomarkers is the choice of a specific metric or a 

combination of metrics (e.g., vortex circulation, kinetic energy, etc.). This choice can be 

straightforward for conditions with a well understood pathophysiology clearly linked to 

hemodynamics. For instance, blood stasis is an essential factor in thrombogenesis (Watson et 

al., 2009), and quantifying LV stasis offers routes to translation (Martinez-Legazpi et al., 

2018; Rodríguez-González et al., 2023). However, when the link between flow and disease is 

less well understood, as its relationship with systolic function (Watanabe et al., 2008), the 

low metrics that can diagnose or risk-stratify subjects are more elusive. Of note, there are no 

systematic procedures for choosing among the many available metrics or deriving new ones.  

Modal decomposition, a family of techniques aimed to extract lower-dimensional 

representations of complex data, has proven effective for drawing out physically important 

flow features, known as modes, in complex flows (Brunton et al., 2020). The dominant 

modes can be used to develop reduced-order models (ROMs) that replicate the dynamic 

behavior of the flow, allowing for simplified simulation and analysis. Among the modal 

decomposition methods available, proper orthogonal decomposition (POD), also known as 

principal component analysis, is well established and reproduces most of the flow’s kinetic 

energy with a reduced number of modes (Taira et al., 2017). 

This study is based on two working hypotheses. First, we postulate that POD is an efficient 

method to reduce the dimensionality of intracardiac flows into simple interpretable metrics. 

In this context, interpretability is understood as knowledge of the specific vector flow 
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pattern(s) associated to each metric.  Second, we submit that these metrics can be readily 

combined with straightforward ML models for clinical exploitation as in simple binary 

classification problems (e.g., healthy vs. diseased).  

To test these hypotheses, we used POD on clinical 2D color-Doppler echocardiograms to 

derive ROMs of LV flow that accurately discriminated subjects from three cohorts: healthy 

individuals, patients with dilated cardiomyopathy, and patients with hypertrophic 

cardiomyopathy. Balancing ROM simplicity with classification accuracy provides a 

systematic approach to derive novel LV flow metrics whose interpretation is facilitated by 

enhancing Doppler data by vector flow mapping. The favorable classification accuracy, 

obtained with overtly uninvolved machine learning methods and using clinically accessible 

input data, suggests a novel strategy to realize the untapped potential of non-invasive cardiac 

flow imaging. Further research is needed to validate these findings and to investigate the 

utility of flow-based biomarkers in more complex clinical problems. 
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2. METHODS 

2.1 STUDY COHORTS 

We prospectively selected 209 subjects from an existing database of previous studies (Benito 

et al., 2019; Bermejo et al., 2014; Martinez-Legazpi et al., 2014), including 81 patients with 

non-ischemic dilated cardiomyopathy (DCM), 51 patients with hypertrophic cardiomyopathy 

(HCM), and 77 normal volunteers who served as control group (Control). Inclusion criteria 

for all participants were: 1) presence of sinus rhythm; 2) suitable apical ultrasonic window 

and 3) absence of significant aortic regurgitation (grade < 2-3). All HCM and DCM patients 

were included after robust diagnosis (based on clinical, imaging, familial, and genetic data), 

had angiographically proven absence of significant coronary artery disease, and were 

clinically stable at the time of imaging. The control group was selected by trying to match the 

DCM cohort by age and its inclusion criteria were: 1) absence of known or suspected 

cardiovascular disease, 2) normal electrocardiographic and echocardiographic Doppler 

examinations, and 3) no history of diabetes or hypertension. The Institutional Ethics 

Committee at Hospital Gregorio Marañón approved the study, and all participants provided 

written informed consent. 

2.2 IMAGE ACQUISITION  

Echocardiographic examinations were performed using a Vivid 7 scanner and broadband 

transducers (GE Healthcare). Conventional echocardiographic data were recorded and 

measured following current recommendations (Lang et al., 2015). Two-dimensional (2D) 

sequences were obtained from parasternal and apical views ensuring complete apical 

visualization without foreshortening and used to measure left-ventricle (LV) volumes and 

ejection fraction. Pulsed-wave Doppler spectrograms were obtained at the level of the mitral 

tips and the LV outflow tract. The temporal features of the cardiac cycle were measured from 

spectral Doppler recordings using EchoPac software (version 110.1.2, GE Healthcare) and 

stored to serve as temporal landmarks in postprocessing. In addition, color-Doppler images 

encompassing the whole LV chamber were obtained in the apical three-chamber view 

followed by 2D cine-loops for flow field quantification (~10 cycles, frame rate > 60 Hz). 

2.3 VECTOR FLOW MAPPING  

To enhance the interpretability of the reduced-order models and associated classifiers, we 

derived time-resolved 2D blood velocity fields from color-Doppler data inside the LV using 

vector flow mapping (VFM), an algorithm thoroughly described in previous studies (Avesani 
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et al., 2021; Garcia et al., 2010; Hvid et al., 2023; Minami et al., 2021). The VFM algorithm 

is fed by a color-Doppler acquisition and integrates the continuity equation imposing no-

penetration boundary conditions at the LV endocardium segmented from the 2D cine-loops. 

This provides the crossbeam flow velocity under the hypothesis of planar flow.  

2.4 UNIFIED SPATIO-TEMPORAL COORDINATE SYSTEM 

To compare LV flow across patients and ensure that classifiers were blinded to chamber 

geometry and function (e.g., LV volume and ejection fraction), we adopted a unified LV 

coordinate system that remapped all patients' flow data into a fixed rectangular domain, as in 

our previous works(Bermejo et al., 2014). This coordinate system's origin is the midpoint of 

the LV base, its y-axis runs from the origin to the apex, and its x-axis runs in the orthogonal 

direction (Figure 1). The spatial coordinates are normalized so y=1 at the apex and x=-/+ 1 at 

the lateral and septal walls of the LV, respectively. A constant number of mesh points was 

used in the x and y directions (Nx=25, Ny=40). We also rescaled each patient’s flow into a 

dimensionless time scale, �̃, beginning at aortic valve opening, ����, to minimize the effect of 

heart rate variability across patients, i.e., 

�̃ � �� � � � ����� ; � 	 ����� � ����� ; � 
 ���� � (1) 

where T is the cardiac period of each patient.  

 

2.5 REDUCED-ORDER MODELING OF LV FLOW 

We used the method of snapshots to obtain two common variants of POD: mean-centered 

(PODmc) and non-mean-centered (PODnmc) (Miranda, 2008). The input velocity data were 

defined respectively as ��� � � � �	 or ���� � �, where � is a matrix whose columns, 
� , 

represent temporal snapshots of the velocity field (� � 1, 
 , �), and �	  is the mean velocity. 

For color-Doppler fields, 
�  is a vector of length � � ���	 containing the Doppler velocity 

in all points of the unified rectangular domain. For 2D velocity fields from VFM, 
� � �
�
 , 


��, …, 
�� , 
	
 , 
	�, … , 
	�� is a vector of length 2� containing the 
��  and 
	�  

components at the same � points. The result of POD is  ���
 � 2 
 ��, (2) 
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where the columns of Ψ are a set of orthogonal eigenvectors representing flow patterns and 

�� is a diagonal matrix containing the kinetic energy (KE) associated with each eigenvector 

in PODnmc, or its fluctuations with respect to the mean in PODmc. 

 

Cohort-representative ROMs were built in two steps. First, we computed cohort-

representative flow maps in the unified LV coordinate system by averaging across patients 

within each group. We then performed POD modes on the resulting flow maps, obtaining a 

set of eigenmodes ������� , ranked by their KE content. These modes were used to form 

cohort-representative ROMs on which to project a test subject LV flow field, i.e., 


��������,���, �, �� � ∑ ��������������
��������, ���

��
 , where j denotes the test subject index,  

� � � is the number of modes kept in the ROM, and ������ is the time-varying contribution 

of mode l to subject's j KE. The accuracy of the ROMs was assessed using the model 

residual, defined as the normalized L2 norm of the difference between the original and the 

reconstructed flow fields: 

�����	
�,	 � ��� � ������	
�,	�
�����

�

. (3) 

Patient-specific ROMs using the POD of each individual patient's LV flow, i.e., 


���,���, �, �� � ∑ ��
�������

���, ���
��
 . The time-averaged values of the ��

����� coefficients are 

used for classification as described below. Figure 1 depicts the entire methodology. 

 

2.6 SUPERVISED CLASSIFICATION BASED ON COHORT-

REPRESENTATIVE REDUCED ORDER MODELS 

We built supervised classifiers using the cohort-representative ROMs of LV flow, and tested 

these classifiers on the DCM, HCM, and Control groups. For a given test patient, the 

classifiers utilized the residuals of alternative cohort-specific ROMs (i.e., ���� , ����, and 

����). Equivalently, residual differences with respect to the control case can be used (i.e., 

�������� � ���� � ���� and  �������� � ���� � ����). Intuitively, when a subject 

belongs to a certain cohort, the cohort's flow ROM reproduces the subject's flow with lower 

error than the alternative ROMs (e.g.,  ���� �  �!����� , ����� or �������� �

 �!�0, ��������� for DCM patients).  A more accurate, standardized approach was 

followed, applying linear discriminant analysis (LDA (Abid et al., 2018)) and building 

receiver operating characteristic (ROC) curves by varying the discrimination cutoff.  
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2.6.1 K-FOLD CROSS-VALIDATION  

To train and validate the classifiers, we split each cohort's input data into a training and 

testing dataset using repeated 10-fold cross validation. For each cross-validation run, a set of 

time-scaled, spatially remapped flow fields was obtained. These flow fields were averaged to 

obtain a cohort’s canonical flow field, and the canonical field's POD modes were calculated 

to build the cohort's reduced-order model (ROM) for that cross-validation run (Figure 1- 

Cohort Analysis). Classification was performed on the corresponding testing datasets using 

the trained each cohort-representative ROMs. Statistics gathered from repeating these runs 

were used to tune model hyperparameters and evaluate the classification performance. 

2.6.2 HYPERPARAMETER GRID SEARCH  

The classifier based on cohort-specific ROM residuals requires choosing the number of ROM 

modes, �, a methodological hyperparameter. To this end, we conducted hyperparameter grid 

search (Agrawal, 2020), using two metrics to quantify each ROM's classification 

performance. First, we determined the hyperparameter combinations (���� ,  ����, ����) 

producing significant residual differences between a test patient's cohort and the other two 

cohorts. P-values were calculated using a Wilcoxon signed-rank one-tail test. 

Hyperparameter combinations that did not yield significant residual differences (p-value > 

0.025) were considered non-discriminant and were therefore discarded. The second metric 

was the AUC obtained from LDA decision boundaries, which measures the boundary’s 

ability to distinguish between cohorts. Specifically, we considered the minimum AUC of the 

binary classification problems DCM vs. Control, HCM vs. Control, and DCM vs. HCM 

across all 10-fold CV repeats for each hyperparameter combination. As a bias mitigation 

strategy, nested cross validation was used when computing the AUC values.  To prevent 

excessive computational cost of unconstrained grid search, we constrained the number of 

hyperparameter combinations by ignoring ROMs with � # 30 and bounding ���� ,  ����, and 

����, to be in a ± 5 range of each other. To prioritize simpler models and prevent overfitting, 

we minimized a metric inspired in Akaike’s information criterion, %&' �  �%(' )

  0.01 + ����� )  ���� )  �����, which balances increasing AUC by 1% vs. increasing model 

order by one. Supplemental Figure 1 summarizes the results of grid search for PODnmc and 

PODmc ROMs of color-Doppler and vector flow maps, including each case's three top-

ranked hyperparameter combinations.    
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2.7 WEAKLY-SUPERVISED AND QUASI-UNSUPERVISED 

CLASIFICATION BASED ON PATIENT-SPECIFIC REDUCED ORDER 

MODELS 

In addition to the supervised method described above, we explored whether patient-specific 

ROMs of LV flow contain intrinsic properties (e.g., their level of sparsity), common across 

patients of a same cohort, that allowed for classification. A notable advantage of such 

classifiers is their potential for significantly reducing user supervision. Thus, we built 

weakly-supervised and quasi-unsupervised classifiers following standard analyses of the 

point clouds generated by the coefficients,  

�
� � ���

�

� ����� ��
∑ � ��

��

� ����� �����,�

 for  � 1, … … , #,  (4) 

which represent the fraction of the flow KE accounted by the POD mode , for each patient j.  

 

First, we built weakly-supervised classifiers using LDA to calculate decision boundaries 

between the point clouds created by -��  �, � 1, 
 , �)  for each cohort.  Since the KE content 

of POD eigenmodes decayed very steeply with mode number (see Supplemental Figure 2), 

we restricted our analysis to � � 2 for the sake of simplicity. Generalizing this procedure to 

� # 2 would be straightforward. ROC AUCs were computed for the binary classification 

problems DCM vs. Control, DCM vs. HCM, and HCM vs. Control.  

 

Finally, we tested a quasi-unsupervised classifier based on k-means clustering (Celebi and 

Aydin, 2016) of the point clouds created by -�� �, � 1, 
 , �)  for each cohort. The only 

supervision provided to this method was the number of clusters, k = 3. The results were quite 

insensitive to the distance metric utilized by k-means, and k-medoids and mixed Gaussians 

models produced similar results. 

2.8 STATISTICAL ANALYSES  

Descriptive variables are shown as mean and standard deviation, unless otherwise specified. 

Kruskal-Wallis rank sum test and Fisher's exact test were used to compare these variables 

among the HCM, DCM and Control groups. Also, one-way analyses of variance, followed by 

Tukey contrasts, were used to compare quantitative variables among the different cohorts. 

ROC curves were calculated on the aggregated binary problems of comparing HCM and 

DCM, Control and DCM, and Control and HCM.  The area under the ROC curve (AUC) was 
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computed to quantify the accuracy of binary classifiers, whereas the multi-class AUC 

measure, M (Hand and Till, 2001), was computed as a measure of multi-class classification 

performance. Statistical significance was established at the p< 0.05 level. Statistical analyses 

were performed using R version 3.6.1 and MATLAB (R2020). t-distributed stochastic 

neighbor embedding was performed on the multiplets formed by normalized eigenvalues 

coming from patient-specific POD, -��  �, � 1, 
 , � � 15), using MATLAB built-in 

functions with Euclidean distance. 
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3. RESULTS 

3.1 CLINICAL DATA AND CONVENTIONAL 

ECHOCARDIOGRAPHY 

Demographic, clinical, and echocardiographic data are shown in Tables 1 and 2. Compared 

to controls, DCM patients were older (62 ± 14  vs. 46 ± 18 years old, p< 0.001) and showed 

larger indexed LV chamber volumes (151 ± 71  vs. 91 ± 26 mL and 107 ± 67 vs. 34 ± 11 mL 

for EDV and ESV respectively, p< 0.001) and lower ejection fractions (32 ± 12  vs. 63 ± 5 %, 

p< 0.001). Compared to controls, HCM patients had smaller indexed LV chamber end 

diastolic volumes (42 ± 13 vs. 51 ± 12 mlL/m2, p= 0.02) and larger ejection fraction (67 ± 7 

vs. 63 ± 5 %, p= 0.03). Both cardiomyopathy groups had high E/e’ ratios compared with 

controls, with values of 11.3 ± 6.1, 10.5 ± 6.51, and 5.7 ± 2.1 for DCM, HCM and Control, 

respectively (p< 0.001 for both DCM vs. Control and HCM vs. Control).  

 

3.2 COHORT-REPRESENTATIVE LEFT VENTRICULAR FLOW 

MAPS  

After remeshing all patients flow data, cohort-representative flow maps were obtained by 

averaging across patients for each 10-fold CV training set. To facilitate interpretation, 

examples of these from 2D vector flow maps were meshed back into patient-specific 

anatomies and represented in Figure 2. Because of the averaging, some fine-scale features of 

the patient-specific flow dynamics were smoothed out. For instance, the small early-diastolic 

inferolateral counterclockwise section of the diastolic vortex ring was absent in the cohort-

averaged flow maps of controls. Despite this averaging effect, the cohort-averaged flow maps 

captured the distinct flow features reported in single normal, DCM, and HCM subjects by 

different modalities (Bermejo et al., 2014; Elbaz et al., 2014; Pedrizzetti et al., 2014). For 

example, the cohort-averaged flow displayed a stronger anteroseptal vortex core in DCM 

compared to control (Bermejo et al., 2014), and this pattern was mostly unobservable in the 

HCM cohort due to confinement by the abnormally narrow LV morphology (Martinez-

Legazpi et al., 2014). These results were robust across all realizations generated via 10-fold 

cross-validation.  

3.3 COHORT-REPRESENTATIVE REDUCED-ORDER MODELS OF 

LEFT VENTRICULAR FLOW. 
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We applied PODmc to the cohort-averaged color-Doppler maps. Figure 3 shows results of 

this analysis for a 10-fold CV example from each cohort, meshed back into patient-specific 

anatomies. To further aid interpretation, Figure 4 shows similar results for 2D vector flow 

maps. In both figures, the four highest ranked modes, ����, ��, � � 1, . .4, are represented, 

together with the temporal variation of their amplitude across the cardiac cycle, �����.  

Altogether, these modes accounted for more than 99.5% of the flow's fluctuating KE. 

 

The highest ranked mode in the three groups was a straight jet, the dominant flow pattern of 

the filling and ejection phases. Its amplitude reached its maximum positive (base-to-apex 

flow) value at peak systole, while two negative (apex-to-base flow) amplitude peaks were 

found at the E and A filling waves. The fraction of fluctuating KE contained in this mode was 

highly significant although it varied among groups (93-94% in the Control group, 83-85% in 

DCM, and 98-99% in HCM). The jet pattern formed by mode 1 reached deep into the LV in 

the Control and HCM groups. However, this pattern was shallower in DCM patients, leaving 

the apical region disconnected from inflow and outflow jets. 

 

The second mode consisted of a prograde swirling structure near the LV base that linked the 

inflow and outflow jets. In the healthy cohort, this mode had positive amplitude during E-

wave and A-wave deceleration, and early systole. However, its effect was more prominent 

during early systole than during late filling in DCM patients, whereas it remained weak 

throughout the cardiac cycle in HCM patients. The contribution of mode 2 to KE fluctuation 

was largest in the DCM group (13%), followed by the Control group (4%), while it was 

insignificant in the HCM group (< 1%). Compared to the healthy group, the vortex pattern 

created by mode 2 was larger and more apically located in DCM patients, whereas it was 

smaller and more basally located in HCM patients.  Modes 3 and 4 represented smaller 

swirling structures near the LV base and apex, respectively, and accounted for insignificant 

fractions of the fluctuating KE in all the groups. 

 

Each cohort's flow medoid, i.e., the patient whose ROM yields the minimal aggregate 

residual for all other patients in the same cohort, had nearly identical patient-specific PODmc 

modes as the cohort-representative flow. Furthermore, the non-mean-centered POD analysis 

produced similar results (Supplemental Figures 3 & 4), with the notable exception that the 

highest-ranked mode in DCM contained a swirling pattern instead of being a straight jet. 
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Overall, these data are robust and consistent with diastolic vortices being stronger than 

normal in DCM and weaker than normal in HCM.  

 

3.4 SUPERVISED LEFT VENTRICULAR FLOW CLASSIFICATION 

BASED ON COHORT-REPRESENTATIVE REDUCED-ORDER 

MODELS  

 
Grid search analysis consistently ranked ����� , ����, ����� � �1,1,1� as the optimal number 

of modes for PODmc and PODnmc using either color-Doppler or vector flow mapping data 

as inputs for classification. Even with only one mode, the PODmc ROMs provided skewed 

histograms of the residual differences, Eij, leading to favorable AUCs for binary classification 

between cohorts (Figure 5). The DCM vs. HCM classifier performed best, with 0.88 < AUC 

< 0.93 (bounds of 10-repeated 10-fold CV), followed by the Control vs. DCM classifier, 

which achieved 0.81 < AUC < 0.86. Lastly, the HCM vs. Control classifier had AUCs 

between 0.75 and 0.78. The PODnmc ROMs performed slightly better, especially for the 

HCM vs. Control classification problem (see Supplementary Figure 5). Overall, these data 

indicate that remarkably simple ROMs trained on a given cohort reconstructed patient-

specific LV flow maps from that cohort significantly better than alternative cohort ROMs, 

allowing for deriving simple LV flow metrics that identify disease conditions. The results 

were robust with respect to the type of modal decomposition (i.e., PODmc vs. PODnmc) and 

post-processing of color-Doppler images into vector flow maps was not required to achieve 

accurate classification. 

 

3.5 WEAKLY SUPERVISED LEFT VENTRICULAR FLOW 

CLASSIFICATION BASED ON PATIENT-SPECIFIC REDUCED-

ORDER MODELS  

 
We calculated patient-specific PODmc ROMs and the coefficients -��  representing the 

fraction of the flow KE fluctuations accounted by mode , for each patient. For simplicity, we 

restricted our analysis to the two highest-ranked modes, which was justified since these 

modes contained >97% of fluctuating KE in the cohort-representative ROMs, for all three 

cohorts and for both the color-Doppler and vector flow maps (Figures 3-4, Supplemental 

Figure 2).  Figure 6 shows a scatter plot of  -
�  and -�� for all the patients in the three 
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cohorts calculated from Doppler velocity. Similar results were achieved when using VFM 

velocity fields (Supplemental Figure 6). These data were distributed narrowly around a line 

of negative slope (-�� �  �0.63 -
� ) 61�, revealing a strong negative correlation (R2= 

0.85) that allowed for further reducing the model's dimensionality to one. Moreover, the data 

clouds corresponding to each cohort exhibited appreciable separation, offering potential for 

accurate classification.  Thus, we used the linear fit to the data points as the discriminant axis, 

and the distance along this axis from its B2j =0 intercept, ξ, as discrimination variable. To 

confirm this dimensionality reduction approach, we plotted t-distributed stochastic neighbor 

embedding (t-SNE) maps considering 15 dimensions, i.e.,  -�� �, � 1, 
 , � � 15), obtaining 

representations that were similar to the  -�� vs. -
� scatter plots of Figure 6 (see 

Supplemental Figure 7). 

 

To interpret the meaning of the metric ξ, we note that -� � 1 � ∆- � -
 by means of eq. 4, 

where ∆- � ∑ -����,� . This makes ξ interchangeable with the ratio �23 � -�/-
 

representing the flow KE contained in the diastolic vortex normalized with the flow KE in the 

inflow/outflow jets. We named this parameter the vortex-to-jet ratio and included it in Figure 

6.  The equivalence between V2J and ξ is established by finding the intersection between the 

empirical fit to -� 
5.  -
 and a series of rays of slope V2J emanating from the origin. 

Assuming ∆- �� 1, which is reasonable given the steep decay of mode energy with mode 

rank in our POD models (Supplemental Figure 2), this operation results in the equivalence 

6/√2 8  �23 ��23 ) 1�⁄  

 

The three patient groups had distinct ξ and V2J-histograms (Figure 6- Panels B and D).  In 

the HCM group, both metrics were narrowly distributed near zero, whereas they adopted 

intermediate values for the Control group. Finally, they reached significantly higher values 

for the DCM group. We built ROCs for the binary classification problems using ξ and V2J as 

cutoff variables (Figure 6 – Panels C and E) and computed the corresponding AUCs for 

binary classifications and the M metric for three-way classification. The results were highly 

favorable and rather insensitive to using Doppler or VFM data as inputs (Table 3). Of note, 

the V2J metric computed from color-Doppler maps yielded AUCs of 0.95, 0.90, and 0.82 

with 95% confidence intervals (CI) of 0.92-0.97, 0.82-0.94, 0.73-0.88 for discriminating 

DCM vs. HCM, DCM vs. Control, and HCM vs. Control, respectively. Similar classifiers 

were tested in patient-specific PODnmc ROMs, obtaining less favorable performance [e.g., 
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V2J -based AUCs from color-Doppler of  0.92 (95% CI: 0.85-0.95), 0.63 (0.53-0.71), and 0.89 

(0.83-0.93) for DCM vs. HCM, DCM vs. Control, and HCM vs. Control; see Table 3 for more 

details].  

3.6 QUASI UNSUPERVISED LEFT VENTRICULAR FLOW 

CLASSIFICATION BASED ON PATIENT-SPECIFIC REDUCED-

ORDER MODELS 

 
We applied naive clustering algorithms to the point clouds created by the coefficients -�� of 

the patient specific PODmc ROMs of LV flow, as described in the Materials & Methods 

Section. Of note, the only supervision provided to these algorithms was to specify the number 

of clusters, k=3, to match the number of study cohorts.  Efforts to estimate the optimal 

number of clusters using various approaches (e.g., the gap statistic, the silhouette method, 

etc.) provided results between k=2 and k=4, with most methods yielding k=2.  Figure 7-A 

displays scatter plots -
� and -��  labeled according to the clusters obtained by k-means 

clustering for � � 4, showing a fair level of correspondence between cluster labels and cohort 

labels (1- Control, 2-DCM, 3-HCM). Classification accuracy improved slightly with the 

number of ROM modes, converging for � : 4, which is sound as a four-mode ROM 

contained >99.5% of the KE in the three cohort-representative flows. Supplemental figure 8 

represents t-SNE maps embedding 15 dimensions (-�� , , � 1, 
 , 15�, showing a similar 

level of label concordance. Figure 7 shows pie charts of the distributions of cluster labels per 

cohort (Panel B) and cohort labels per cluster (Panel C). Consonant with the results from the 

other two classification methods presented above, discrimination between DCM and HCM 

patients was highly accurate, with only 2% of cluster 1 subjects having HCM and 3% of 

DCM patients being classified in cluster 3. Likewise, discrimination between HCM and 

Control was least accurate, with 11% of cluster 3 subjects being Control and 16 % of Control 

subjects being labeled as cluster 3.   
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4. DISCUSSION 

This study utilized proper orthogonal decomposition (POD) on echocardiographic clinical 

measurements of left ventricular (LV) flow to create reduced-order models (ROMs) defining 

the distinctive flow patterns in healthy subjects, patients with dilated cardiomyopathy 

(DCM), and patients with hypertrophic cardiomyopathy (HCM). We then leveraged these 

ROMs to derive simple, flow-based metrics that discriminate among study groups using 

machine learning (ML). To demonstrate the approach and its robustness, we used various 

well-established ML models to analyze LV flow ROMs in the three groups. We found that a 

new one-dimensional metric, loosely interpretable as the ratio between the kinetic energies of 

the transvalvular jets and the diastolic vortex, offers significant discrimination accuracy. The 

metric is obtained from POD of 2D color-Doppler echocardiograms, a straightforward 

calculation requiring no assumptions and little expert supervision.  

  

The main LV flow pattern, in addition to the mitral and aortic jets, is a vortex ring formed 

during diastole (Kilner et al., 2000). This structure has been proposed to facilitate LV filling, 

conserve inflow kinetic energy (KE), and transfer this energy to the ejection volume 

(Charonko et al., 2013; Martinez-Legazpi et al., 2014; Pedrizzetti and Domenichini, 2005).  

Vortex size and KE are altered in cardiomyopathies, augmenting in DCM and almost 

vanishing in HCM (Bermejo et al., 2014; Elbaz et al., 2014; Martinez-Legazpi et al., 2014). 

LV flow patterns define the pathlines of blood particles, partitioning the chamber into four 

regions with distinct transport dynamics (direct flow, retained inflow, delayed ejection, and 

residual volume) (Eriksson et al., 2013). These regions are altered in cardiomyopathies, most 

notably the residual volume containing blood with residence time higher than two cycles. 

While the impacts of LV flow patterns and pathlines in cardiac mechanical energy balance 

have been a subject of debate (Elbaz et al., 2017; Watanabe et al., 2008), there is consensus 

of their potential as imaging biomarkers of cardiac health. This potential has stimulated 

significant developments in flow imaging, such as 4D flow cardiac magnetic resonance 

(Dyverfeldt et al., 2015), or echocardiographic vector flow mapping (VFM) (Avesani et al., 

2021; Garcia et al., 2010) and blood speckle tracking (Daae et al., 2021). However,  

the significant intra- and inter-patient variability of LV flow dynamics (Bermejo et al., 2014; 

Sundin et al., 2020) make it difficult to define the normal pattern by narrowly constrained 

numerical metrics, or quantifying how these metrics are altered in different 
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cardiomyopathies.  Therefore, the wealth of information available from the advanced imaging 

of LV complex flow patterns is currently underutilized in clinical decision support systems.  

 

Modal decomposition techniques have been widely used to study aerospace and industrial 

flow problems (Taira et al., 2017). Recent studies have applied these techniques to derive 

ROMs of intraventricular flow in mice (Groun et al., 2022), analyze how dysfunctional heart 

valves alter hemodynamics in vitro (Darwish et al., 2021; Di Labbio and Kadem), or model 

the flow in aneurysms (Norouzi et al., 2021; Yu and Durgesh, 2022).  Flow classifiers based 

on ROMs have been proposed to identify distinct regimes in complex fluid problems like 

stratified turbulence (Ohh and Spedding, 2022). In parallel, the applications of ML to medical 

imaging analysis and patient phenotyping have grown exponentially in the past decade (Shad 

et al.; Zhou et al., 2021). The field of echocardiography has not lagged behind. Deep neural 

networks can be trained to automatically interpret clinical echocardiograms with human-like 

or super-human accuracy in tasks like heart chamber segmentation, functional assessment, or 

disease identification (Tromp et al., 2022; Zhang et al., 2018).  However, there is a paucity of 

studies using ML to exploit the multi-dimensional spatio-temporal LV flow datasets currently 

obtainable from state-of-the-art imaging modalities.  This work addresses this paucity by 

analyzing LV flow color-Doppler maps in an effort to balance data complexity with 

acquisition burden. Ultrasound imaging is non-invasive, non-magnetizing and non-ionizing, 

offers high resolution, and is highly portable, thus offering significant clinical advantages. 

Each color-Doppler sequence comprises a scalar field measured on a plane view over time. 

Nevertheless, all the ideas and algorithms presented in this work can be seamlessly ported to 

other flow imaging modalities, including multi-dimensional vector fields defined over 

volumetric regions of interest.  

 

We defined cohort-representative LV flow fields by mapping the measured velocity data into 

a unified spatio-temporal mesh and averaging across patients from the same cohort. Previous 

echocardiographic and MRI studies have quantified LV flow metrics in healthy and diseased 

cohorts (Bermejo et al., 2014; Elbaz et al., 2014; Elbaz et al., 2017; Martinez-Legazpi et al., 

2014). Most of these works report metrics averaged in space and time (e.g., flow KE 

averaged inside the LV and throughout the cardiac cycle) or choose specific regions and 

instants of time to pool data from different patients in the same cohort (e.g., residual volume 

at aortic valve opening) (Eriksson et al., 2013). Compared to these works, the spatio-temporal 

flow field alignment introduced in this study is novel and allows for visualizing, comparing 
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and analyzing LV flow patterns with higher detail, both on an individual subject-by-subject 

basis and by groups. We ensured that the process of averaging across cohort patients did not 

significantly alter the resulting LV flow fields by comparing each cohort-representative flow 

field with the cohort's medoid flow field, i.e., the flow from one individual in each cohort that 

is overall most similar to the flows from all members of the same cohort.    

 

We applied POD to the cohort-representative LV flow fields and built ROMs for healthy 

subjects and patients with DCM and HCM.  To enhance the interpretability of our results, we 

also performed VFM to the color-Doppler acquisitions and independently applied POD to the 

VFM data to build vectorial ROMs of LV flow. In both the color-Doppler and VFM data and 

in all three cohorts considered, the two highest-ranked modes accounted for >97% of the 

flow's KE, capturing the filling/emptying jets (mode 1) and the diastolic vortex (mode 2). The 

eigenmode velocity vector maps exhibited appreciable differences among groups. Most 

notably, the DCM patients had shallower inflow/outflow jets that did not permeate the apical 

region but had large diastolic vortices that occupied the whole LV chamber. In contrast, the 

diastolic vortex was weak and confined at the LV base in HCM patients.  While these results 

are broadly consistent with the existing literature, we note that LV flow ROMs provide a 

novel, data-driven approach to quantitatively synthesize each cohort's representative flow 

features.  

 

To test whether POD-based LV flow ROMs provide metrics that discriminate phenotypic 

differences, we used these ROMs to build three simple LV flow classifiers with different 

levels of supervision: supervised, weakly supervised, and quasi-unsupervised. The supervised 

classifier required training consisting of determining the cohort-representative LV flow fields 

and their POD-based ROMs. Then, each test patient was projected onto the three cohort-

representative ROMs, the model residuals were calculated, and the differences between 

residuals were used to classify patients. The rationale was that, if a patient belongs to cohort 

j, the cohort-j ROM should perform better than the two alternative ROMs at reproducing the 

patient's flow. This classifier performed favorably, with AUCs exceeding 0.75 and going up 

to 0.93. The weakly supervised classifier discriminated patients based on the ratio between 

the two highest-ranked patient-specific POD eigenvalues �23 � -�/-
, i.e., the flow KE 

contained in the diastolic vortex normalized with the flow KE in the inflow/outflow jets, or in 

short, the vortex to jet ratio (V2J). The only supervision in this second approach involves 

defining the V2J thresholds that separate the cohorts. The resulting AUCs, in the range 0.81 - 
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0.96 for PODmc, suggested that this weakly supervised classifier can outperform the 

supervised one for small and moderate training sample sizes. Semi-unsupervised 

classification leveraged classic clustering methods like mixed-Gaussian models or k-means 

clustering applied to the -�  �, � 1, 
 , � � multiplet obtained from patient-specific POD. It 

only involved specifying the number of ROM dimensions (r) and the number of clusters 

(three in our case, to account for the Control, DCM, and HCM cohorts). This approach 

achieved maximum accuracy for � : 4 and, similar to the other two methods, worked best in 

identifying DCM patients while it had most trouble distinguishing HCM patients from 

healthy controls. This differential performance could be caused by LV flow patterns sharing 

more features in the HCM and Control cohorts as compared to DCM, but we also note that 

our HCM cohort had the smallest sample size, whereas the DCM cohort had the largest. 

 

Our analyses suggest that a one-dimensional LV flow ROM, i.e., a single numerical index per 

patient, contains sufficient information to discriminate between Control, DCM and HCM 

subjects, even after blinding the algorithm to LV chamber shape and size. This result is 

interesting because quantities like KE, dissipation or vorticity also provide a single numerical 

index when averaged over the whole LV chamber.  Pathline analysis can be understood as a 

four-dimensional ROM since it describes LV flow using a four-component metric comprising 

direct flow, retained inflow, delayed ejection, and residual volume.  Seen under this light, the 

discriminating power of POD is noteworthy.  For reference, running LDA only on the global 

LV flow KE for our study cohort yields AUCs of 0.68, 0.69, and 0.52 for the binary 

classification problems DCM vs. HCM, DCM vs. Control, and HCM vs. Control, 

respectively. These accuracies are markedly inferior to the values of AUC = 0.96, 0.90, and 

0.82 obtained when running LDA on �23.  Moreover, the metric �23 is no less interpretable 

than total KE. It is important to note that POD-based metrics were chosen data-drivenly to 

maximize discriminating accuracy, while they rely on the sparsity (rapid decay of mode 

energy with mode rank) and orthogonality (independence of eigenmodes) of POD for 

interpretability. On the other hand, classic hemodynamic metrics like KE are not data-driven 

and are chosen based on interpretability alone, as they can be related to physical principles.   

 

Finally, it is worth underlining that we built ROMs and ran the classification pipelines to both 

"1D raw" color-Doppler maps the 2D vector map sequences obtained by VFM. Since VFM 

uses physical constraints to infer the cross-beam velocity component from the Doppler 
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velocity, the color-Doppler and VFM datasets contained similar information. Therefore, there 

were little differences in classification performance from these two modalities. While 

visualizing the ROMs by VFM can make it easier to understand each cohort's distinctive LV 

flow features, additional postprocessing of color-Doppler data is not necessary to obtain 

accurate classification based on LV flow, a desirable trait from the point of view of clinical 

translation.  

 

 

4.1 LIMITATIONS AND FUTURE WORK 

The dataset used in this study comprised 209 patient-specific, full-LV color-Doppler 

echocardiograms, each containing an average of 200x75 spatial pixels and 200 temporal 

frames.  Given the moderate size of this database, hyperparameter tuning did not employ 

independent subgroups but was carried out as part of the training. To palliate the overfitting 

risk of this approach, we incorporated information penalties promoting low-order ROMs, 

performed 10-fold cross-validation, and adopted low-order discriminant functions for 

classification.  

 

By design, we applied our methodology to three very distinct patient groups. Patients with 

HCM and DCM had fully manifested phenotypes and were easily distinguishable by standard 

clinical methods. While this selection provided a robust benchmark to derive LV flow metrics 

that can discriminate patients, the present paradigm could have broader applications and 

could be clinically useful in identifying more subtle phenotype variations. For example, 

characterization of flow patterns using this methodology could identify patients in the early 

stages of their disease before other structural changes become apparent. In addition, rigorous 

characterization of flow patterns using these techniques may serve as a useful biomarker to 

risk stratify patients within a disease group and serve as a useful surrogate endpoint for 

treatments.  

 

We pre-processed each echocardiographic frame so that the time-varying endocardial border 

delineating the LV chamber and the color-Doppler map inside the chamber were mapped into 

a unit rectangle. The resulting flow maps were uninformative of ventricle size, endocardial 

morphology, or myocardial kinetics, all factors associated with cardiac health (Vigneault et 

al., 2019). The purpose of this reductionist approach was to test the value of LV flow patterns 
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as a biomarkers of cardiac health without extrinsic biases. Certainly, the clinical deployment 

of ML tools based on LV flow patterns should be done in concert with existing methods for 

structural and kinetic analyses (Ferdian et al., 2020). 

 

We used deliberately simple, well-established dimensionality reduction and classification 

methods.  While the burgeoning literature in ML abounds with more sophisticate algorithms, 

our goal was to demonstrate that each subject's LV flow signature is robust enough for 

uninvolved methods to quantify it and exploit it for patient phenotyping. This approach has 

the additional advantages of not requiring large training datasets and being computationally 

inexpensive. A thorough review of advanced ML models for LV flow pattern analysis would 

be beyond this manuscript's scope but we can outline a few natural extensions of this study. 

Deep learning could be applied to LV flow fields for disease identification, similar to 

reported analyses of structural images (Tromp et al., 2022; Wehbe et al., 2023) . Contrastive 

POD (cPOD) could remove background LV flow features shared by healthy and diseased 

subjects, potentially improving cohort separability or identify subpopulations in DCM or 

HCM (Abid et al., 2018). Further work could also include exploiting multiple 

echocardiographic views, extending this methodology to other imaging modalities like, e.g., 

4D flow MRI, and applying it to other cardiac chambers and disease conditions. 
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5. CONCLUSION 

Reduced-order models of patient-specific echocardiographic measurements of left-ventricular 

flow provide an interpretable, low-dimensional representation of these flows that can be used 

to define novel metrics with clear clinical potential. The significance of these low-

dimensional metrics is assessed by testing their ability to classify subjects with different 

cardiac pathologies. Their derivation can be tailored to the available training data and expert 

supervision workforce. This work demonstrates these ideas by building LV flow cohort-

representative reduced-order models and classifiers for three patient groups: healthy 

individuals, patients with dilated cardiomyopathy, and patients with hypertrophic 

cardiomyopathy. The favorable classification accuracy, obtained with overtly uninvolved 

machine learning methods and using clinically accessible input data, suggests a novel 

strategy to realize the untapped potential of non-invasive cardiac flow imaging in the early 

detection and management of heart failure, as well as the development of personalized 

treatment strategies. Further research is needed to validate these findings and to investigate 

the clinical utility of flow-based biomarkers in conjunction with other metrics and in larger, 

more diverse patient populations. 
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TABLES 

 

TABLE 1:  Clinical data.   

 
Overall Control HCM DCM p-value 

N 209 77 51 81 

Sex (Female, %) 87 (42%) 37 (48%) 21 (41%) 29 (36%) 0.3 

Age (years) 53 ± 17 46 ± 18 49 ± 14 62 ± 14*,# <0.001 

Diastolic Blood Pressure (mmHg) 73 ± 11 75 ± 11 71 ± 10 73 ± 10 0.11 

Systolic Blood Pressure (mmHg) 126 ± 24 132 ± 16 133 ± 27 117 ± 26*,# <0.001 

Body Surface Area 1.80 ± 0.21 1.80 ± 0.19 1.87 ± 0.22 1.76 ± 0.20# 0.011 

Cardiovascular Risk Factors 
    

 

Smoking 22 (11%) 0 (0%) 2 (3.9%)$ 20 (25%)*,# <0.001 

Hypertension, n (%) 52 (25%) 0 (0%) 14 (27%)$ 38 (47%)*,# <0.001 

Diabetic, n (%) 31 (15%) 0 (0%) 9 (18%)$ 22 (27%)* <0.001 

Cholesterol, n (%) 44 (21%) 0 (0%) 9 (18%)$ 35 (43%)*,# <0.001 

Medication 
    

 

Beta-Blockers 103 (49%) 0 (0%) 30 (59%)$ 73 (90%)*,# <0.001 

IECA/ARAI 78 (37%) 0 (0%) 10 (20%)$ 68 (84%)*,# <0.001 

Diuretic 45 (22%) 0 (0%) 8 (16%)$ 37 (46%)*,# <0.001 

Statin 25 (12%) 0 (0%) 14 (27%)$ 11 (14%)*,# <0.001 

NYHA Class: 
    

<0.001 

1 142 (68%) 77 (100%) 35 (69%)$ 30 (37%)*,# 

2 34 (16%) 0 (0%) 12 (24%)$ 22 (27%)* 

3 30 (14%) 0 (0%) 3 (5.9%)$ 27 (33%)*,# 

4 3 (1%) 0 (0%) 1 (2.0%)$ 2 (2%)* 

Values are shown as mean and standard deviation or n (%). Tukey contrasts for ANOVA, $ :p<0.05 HCM  vs. 

Control, *:p<0.05  Control vs. NIDCM. # :p<0.05 HCM vs. NIDCM,  
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TABLE 2:  Echocardiographic Data.   

 

 

Overall Control HCM DCM p-value 

LV End Diastolic Volume (mL) 112 ± 58 91 ± 26 79 ± 29 151 ± 71*,# <0.001 

LV End Systolic Volume (mL) 61 ± 56 34 ± 11 27 ± 12 107 ± 67*,# <0.001 

LV Ejection Fraction (%) 52 ± 18 63 ± 5 67 ± 7$ 32 ± 12*,# <0.001 

LV End Diastolic Volume Index (mL/m2) 52 ± 23 51 ± 12 42 ± 14$ 90 ± 35*,# <0.001 

LV End Systolic Volume Index (mL/m2) 23 ± 20 19 ± 5 14 ± 6 64 ± 33*,# <0.001 

Cardiac Output (L/min) 5.29 ± 3.59 4.70 ± 2.22 5.15 ± 2.54 6.05 ± 5.04 0.5 

E–wave peak velocity (cm/s) 0.70 ± 0.20 0.72 ± 0.16 0.73 ± 0.23 0.65 ± 0.21 0.02 

A–wave peak velocity (cm/s) 0.63 ± 0.23 0.58 ± 0.18 0.64 ± 0.29 0.68 ± 0.21* 0.004 

E-wave Deceleration Time (ms) 188 ± 61 186 ± 45 206 ± 69 178 ± 68# 0.026 

e' velocity (cm/s) 0.07 ± 0.04 0.11 ± 0.03 0.05 ± 0.02$ 0.05 ± 0.02* <0.001 

Values are shown as mean and standard deviation. Tukey contrasts for ANOVA, $:p< 0.05 HCM vs. Control, *: 

p< 0.05 Control vs. NIDCM. #: p< 0.05 HCM vs. NIDCM. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 5, 2023. ; https://doi.org/10.1101/2023.10.03.23296524doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.03.23296524
http://creativecommons.org/licenses/by-nc-nd/4.0/


Explainable Metrics of Intracardiac Flow 
Borja et al 

 

26 

TABLE 3. Accuracy of weakly supervised classifiers based on patient-specific POD of LV 

flow fields. 

METRIC DCM vs HCM 

AUC (95% CI) 

DCM vs Control 

AUC (95% CI) 

HCM vs Control 

AUC (95% CI) 

3-way  

M (95% CI) 

PODmc 

� 
Doppler 0.96 (0.93-0.98) 0.91 (0.84-0.94) 0.83 (0.74-0.90) 0.91 (0.87-0.94) 

VFM 0.96 (0.94-0.98) 0.91 (0.86-0.95) 0.84 (0.74-0.89) 0.91 (0.87-0.94) 

V2J 
Doppler 0.95 (0.92-0.97) 0.90 (0.82-0.94) 0.82 (0.72-0.88) 0.89 (0.86-0.93) 

VFM 0.96 (0.92-0.97) 0.90 (0.85-0.94) 0.82 (0.73-0.88) 0.90 (0.86-0.93) 

PODnmc 

� 
Doppler 0.92 (0.85-0.95) 0.65 (0.55-0.73) 0.89 (0.81-0.93) 0.82 (0.77-0.85) 

VFM 0.93 (0.86-0.96) 0.64 (0.54-0.72) 0.90 (0.83-0.94) 0.82 (0.78-0.86) 

V2J 
Doppler 0.92 (0.85-0.95) 0.63 (0.53-0.71) 0.89 (0.83-0.93) 0.81 (0.77-0.85) 

VFM 0.93 (0.86-0.96) 0.62 (0.52-0.71) 0.90 (0.84-0.94) 0.82 (0.77-0.85) 
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FIGURE LEGENDS 

Figure 1: Overview of the methods used for image acquisition and postprocessing.  

Figure 2: Cohort-representative intraventricular velocity fields from vector flow mapping 

(VFM). Black lines are instantaneous streamlines and arrows indicate flow direction. Flow 

speed is indicated by colormaps according to the colorbar on the right-hand side of each row. 

Patient-specific VFM velocity fields were temporally aligned, mapped onto the rectangular 

unified spatio-temporal reference system, averaged across the cohort, and then remapped into 

a patient-specific anatomy randomly chosen from the corresponding cohort.  The top, middle, 

and bottom rows represent the Control, DCM, and HCM cohorts, respectively. Columns 

represent key events along the cardiac cycle: Peak E-wave, A-wave Onset, Peak A-wave, 

Mitral valve closure (MVC) and Aortic Valve Opening (AVO).  

Figure 3: Mean-centered POD of cohort-representative intraventricular color-Doppler flow 

maps. Color-Doppler fields were mapped onto the rectangular unified spatio-temporal 

reference system to calculate the POD. Then, the POD results were remapped onto a patient-

specific anatomy randomly chosen from the corresponding cohort to facilitate visualization. 

The top, middle, and bottom rows indicate the Control, DCM and HCM cohorts, respectively. 

Columns 1st to 4th represent the four highest-ranked POD eigenmode spatial maps 

(��
��������, ��, � 	 1�4), whereas the 5th column depicts these modes' time-dependent KEs 

(
������ ����, , � 	 1�4). Red/blue lines represent each cohort's median event times: Aortic 

Valve Open (AVO), Aortic valve closure (AVC), E-wave onset (MVO), peak E-wave (Ep), 

A-wave onset (Aon) peak A-wave (Ap) and mitral valve closing (MVC). Shaded red and blue 

areas are the bootstrap median 95% confidence interval for each cohort.  

Figure 4: Mean-centered POD of cohort-representative intraventricular vector flow mapping 

(VFM) velocity fields. VFM fields were mapped onto the rectangular unified spatio-temporal 

reference system to calculate the POD. Then, the POD results were remapped onto a patient-

specific anatomy randomly chosen from the corresponding cohort to facilitate visualization. 

The top, middle, and bottom rows indicate the Control, DCM and HCM cohorts, respectively. 

Columns 1st to 4th represent the four highest-ranked POD eigenmode spatial maps 

(��
��������, ��, � 	 1�4), whereas the 5th column depicts these modes' time-dependent KEs 

(
������ ����, , � 	 1�4). Red/blue lines represent each cohort's median event times: Aortic 

Valve Open (AVO), Aortic valve closure (AVC), E-wave onset (MVO), peak E-wave (Ep), 
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A-wave onset (Aon) peak A-wave (Ap) and mitral valve closing (MVC). Shaded red and blue 

areas are the bootstrap median 95% confidence interval for each cohort.  

Figure 5: Performance supervised classification based on the residuals of cohort-

representative reduced-order models of LV using mean-centered POD. Panel A: Model 

performance using color-Doppler maps as input data.  Panel B: Model performance using 

VFM velocity maps as input data. From left to right, each column shows ROC curves (based 

on approximated distributions and repeated k-fold CV calculations) and residual histograms 

for the binary comparisons between HCM (green) & DCM (red), Control (blue) & DCM, and 

Control & DCM. 

Figure 6:  Performance of weakly-supervised classifier based on patient-specific mean-

centered POD using color-Doppler velocity fields as input data. Panel A: Scatter plot and 

linear regression of  ���  and �	�; each study subject is a data point colored according to their 

cohort. The dashed lines represent the direction of variation of V2J and �. Panels B & D: 

Histograms of distance along the discriminant axis � and V2J respectively for each cohort. 

Panels C & E: Model performance using � and V2J respectively. ROC curves are shown for 

the binary classifications: 1) Brown line: HCM (green)  vs. DCM (red), 2) Purple line: 

Control (blue)  vs. DCM and 3) Dark green: Control vs. DMC. 

Figure 7:  Performance of quasi unsupervised classifier based on patient-specific mean-

centered POD using color-Doppler velocity fields as input data. Panel A: Scatter plots ��� 

and �	�  labeled according to the clusters obtained by k-means clustering; each study subject 

is a data point colored according to their cohort. Panel B: Pie charts of the distributions of 

cluster labels per cohort. Panel C: Pie charts of the distribution of cohort labels per cluster. 
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