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Abstract 

Increased left ventricular mass has been associated with adverse cardiovascular outcomes including 

incident cardiomyopathy and atrial fibrillation. Such associations have been studied in relation to total left 

ventricular hypertrophy, while the regional distribution of myocardial hypertrophy is extremely variable 

and the clinical significant and genetic associations of such variability requires further study. Here, we use 

deep learning derived phenotypes of disproportionate patterns of hypertrophy, such as apical hypertrophy 

and septal hypertrophy, to study genome-wide and clinical associations in addition to and independent from 

total left ventricular mass within 35,268 UK Biobank participants. Adjusting for total left ventricular mass, 

apical hypertrophy is associated with elevated risk for cardiomyopathy and atrial fibrillation, and the risk 

for cardiomyopathy was increased for subjects with increased apical or septal mass even in the absence of 

global hypertrophy. We identified seventeen genome-wide associations for left ventricular mass, three 

unique associations with increased apical mass, and three additional unique associations with increased 

septal mass. Further studies are needed in multi-ethnic cohorts.  
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Introduction  

Left ventricular (LV) mass is associated with genetic variants of hypertrophic and dilated 

cardiomyopathy, and cardiovascular outcomes such as stroke, arrhythmias, and sudden cardiac death1,2. 

Increased total LV mass can reflect disease progression, such as a result of longstanding hypertension or 

valvular disease, while disproportionate or early onset hypertrophy can provide additional insight into 

genetic etiologies of myocardial hypertrophy. While there are known clinical patterns of asymmetric 

hypertrophy3,4, including septal and apical hypertrophy patterns5–7 in hypertrophic cardiomyopathy 

(HCM)1,5,6, there are few studies detailing the genetic determinants of focal or disproportionate 

hypertrophy7. Studies of asymmetric cardiomyopathy have been limited by cohort size and incomplete 

characterization by echoacardiography, such that the genetics of patterns of increased mass are not 

thoroughly explored5,7,8.  

Deep learning-enabled high throughput evaluation of cardiac imaging opens an avenue for large-

scale studies of cardiac phenotypes9,10,11. The ability to precisely phenotype cardiac imaging12 and 

combining underlying genetic information allows for the interrogation of a wide range of phenotypes and 

clinically meaningful traits. The United Kingdom BioBank (UKBB) initiative, particularly with the imaging 

cohorts which include cardiac magnetic resonance (CMR) imaging have been leveraged to understand the 

genetics of cardiovascular form and function9,13,14. With high fidelity imaging with CMR, deep learning can 

precisely and reproducibly evaluate imaging structures10,12. Previous studies have already evaluated LV 

wall thickness and mass9,13,14, finding strong associations with TTN and CDKN1A among other variants. In 

this work, we sought to build upon this foundation to evaluate the impact of focal hypertrophy. 

Distinguishing between subtypes of LV hypertrophy may improve risk stratification2 and motivate 

targeted therapies15. Our study developed a deep learning algorithm to estimate total LV mass (LVM), 

apical LV mass, and septal mass from CMR images of 35,268 UKBB participants. These quantifications 

were used to examine the genetic basis for asymmetric LV mass and the associations and additional risk of 

isolated septal and apical hypertrophy with cardiovascular outcomes. Expression quantitative trait loci 

(eQTLs), gene set analysis, and chromatin interaction mapping were performed to further characterize the 

functional impact of these loci.  

 

Results  

Characterizing apical and septal mass in the UKBB cohort  

We established a cohort of 35,268 individuals with measurable total LV, apex, and septum mass 

from the short axis CMR images (Figure 1). Subjects were excluded if images were low-quality or did not 

fully demonstrating the apex or septum (Supplementary Figure 1). LV septal and apical mass were both 

normally distributed with higher mean values observed among males (Supplementary Figure 2). There 
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was modest correlation between apical mass and total LV mass (r2 = 0.44) but a higher correlation between 

septal mass and LV mass (r2 = 0.74). Neither septal mass nor apical mass were significantly correlated with 

other traditional imaging measurements of the LV (Figure 2).  

 

Focal hypertrophy’s association with incident cardiovascular disease 

Given the correlation between focal regional mass and total left ventricular mass, we assessed the 

individual and combined contribution of increased mass and its association with incident cardiomyopathy 

(Figure 3). Hypertrophy was defined as exceeding sex-specific 90th percentile, and we identified subjects 

with global LVH, isolated apical hypertrophy without global hypertrophy, and isolated septal hypertrophy 

without global hypertrophy. Using a Cox proportional hazards model, subjects with global hypertrophy had 

the highest risk of cardiomyopathy (hazard ratio (HR) = 9.28, 95% confidence interval = [5.34, 16.11]). In 

parallel, isolated apical hypertrophy without the presence of global hypertrophy also conferred a higher risk 

of cardiomyopathy (HR = 2.69 [1.15, 6.28]) and isolated septal hypertrophy conferred a higher risk (HR = 

4.41 [1.69, 11.53]). Our findings suggest that isolated regional hypertrophy confers excess risk for incident 

cardiomyopathy independent of global hypertrophy. 

In addition to binary classification as hypertrophy, we investigated whether quantitative apical mass 

and septal mass are independent risk factors for incident cardiovascular disease. Using a Cox proportional 

hazards model, we found that increased apical, septal, and global mass predicts incident cardiomyopathy, 

atrial fibrillation, and myocardial infarction (Supplementary Figure 3). One standard deviation increase in 

LVM (22.29 g) was associated with a HR of 2.27 [2.02-2.55] increased risk for cardiomyopathy, and one 

standard deviation increase in apical mass (5.58 g) was associated with a HR of 2.89 [2.47, 3.51] for 

increased risk for cardiomyopathy. To test whether increased focal mass have independent predictive value 

beyond global LVM, we performed Cox analysis with models including both LVM and apical mass 

(MLVM+apical) and both LVM and septal mass (MLVM+septal). In MLVM+apical, in addition to a significant HR for 

global LVM, apical mass was also independent predictor of cardiomyopathy and atrial fibrillation. In 

contrast, in MLVM+septal, the HR for septal mass completely attenuated with adjustment for global LVM. Our 

results suggest septal mass predicts incident disease by proxying global LVM, while apical mass provides 

additive independent predictive value for incident cardiovascular disease. 

  

Genome-wide studies of CMR-derived global LVM, apical, and septal mass 

We performed genome-wide association studies (GWAS) of apical and septal mass in 34,421 

individuals who met CMR image and genetic quality criteria and compared the results with the genetic 

associations of global LVM (Figure 4). For global LVM, seventeen independent variants reached genome-

wide significance (Table 1), including many genes previously recognized to be associated with 
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cardiovascular disease. BAG3, BTN3A2 and other identified variants include those previously associated 

with hypertrophic cardiomyopathy, restrictive cardiomyopathy, mitral valve disease, and left ventricular 

dilation16–25 . GWAS of septal mass identified three unique genes (HIVEP3, ESYT3, and HMGA1) and nine 

genes shared with LVM. Among loci shared between the septal and LVM GWASs, TTN is an established 

gene for familial DCM, GDF5 promotes cardiomyocyte survival, and loss of GDF5 is associated with LV 

dilation and contractile dysfunction24. Of the genes unique to septal mass, HIVEP3 is a transcription factor 

that is differentially methylated in HCM26, ESYT3 is part of a genetic module that is differentially expressed 

in arrhythmogenic cardiomyopathy27, and HMGA1 regulates cardiomyocyte growth with roles in concentric 

cardiac hypertrophy, myocardial infarction, and inflammation28–30.  

For apical mass, we identified three distinct loci that were not previously associated with total LVM 

or septal mass and that have not been previously associated with apical hypertrophy3,31. CASQ2 encodes 

the protein calsequestrin, with pathologic variants results in aberrant calcium release from the sarcoplasmic 

reticulum, contractile dysfunction, dilated cardiomyopathy, and catecholaminergic ventricular arrhythmia 

without structural heart disease32,33. PLN plays a causal role in dilated, hypertrophic, arrhythmogenic, and 

familial cardiomyopathies34,35.  MAPT-AS1, which has been previously correlated with LVM9 and cross-

sectional area of the septal wall36, regulates sarcomere assembly and function37; its dysfunction has been 

attributed to heart failure with preserved ejection fraction38.  

 

Functional investigation of markers for apical and septal mass 

We leveraged eQTL analysis and Hi-C chromatin mapping to annotate the functions of significant 

variants of apical and septal mass. eQTL analysis of apical mass variants reveals that the lead variant is 

associated with increased expression of CASQ2 in the left ventricle, atrial appendage, and coronary artery 

(Supplementary Table 1). With Hi-C chromatin mapping, we also identified interactions between CASQ2 

and NHLH2, a gene with elevated expression in DCM39, and between CASQ2 and VANGL1, which is 

involved in the development of cardiac outflow tracts40. Additionally, PLN interacts with ASF1A, a gene 

involved with cardiogenic mesoderm development and associated with ventricular and atrial septal defects. 

The lead variant for PLN is associated with increased expression in the aorta and atrial appendage.  MAPT-

AS1 is associated with increased expression in the LV and has chromatin contacts with KANSL1, which 

modulates congenital heart defects, and WNT3, which regulates cardiomyocyte differentiation and cardiac 

mesoderm21–23,41. To further investigate the physiological function of genes associated with apical mass, we 

performed gene set analysis. We found strong associations with networks for cardiomyocyte contraction 

by calcium ion signaling (p = 4.01e-5), regulation of sequestered calcium ion release for cardiac muscle 

contraction (p = 5.25e-5), and cell communication by electrical coupling (p = 6.54e-6).  
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Applying this analysis to variants governing septal mass, we found that HIVEP3 interacts with 

EDN2, a risk factor for atrial fibrillation in individuals with hypertrophic cardiomyopathy42. GDF5, which 

is shared between the total LV and septal mass phenotypes, has chromatin contacts with MYH7B, which in 

turn activates the CaMK signaling pathway involved in the pathophysiology of HCM43. ESYT3 is associated 

with enriched expression in the coronary arteries (Supplementary Table 1). Finally, with gene set analysis, 

we discovered that genes governing septal mass are significantly associated with pathways for the 

morphogenesis and development of the atria (pBon = 0.0087), septum (pBon = 0.0122), and striated muscle 

(pBon = 0.0042).  

 

Discussion  

In this study, we leveraged deep learning to identify novel genetic variants of CMR-derived total 

LV, apical, and septal mass in over 35,000 individuals and established their relationship to incident 

cardiovascular disease. Notably, apical and septal hypertrophy without increased total LVM both conferred 

independent excess risk for cardiomyopathy, and apical mass had unique genetic loci compared to prior 

associations with septal and total LVM. Our findings emphasize the diagnostic importance of focal 

hypertrophy, which may confer independent as well as additive risk for incident cardiovascular disease. 

Through downstream in silico analysis, we found that genes for apical and septal mass govern 

cardiovascular structure, function, and implicated in cardiomyopathy, further providing evidence of unique 

genetic and risk profiles for patterns of hypertrophy.  

 Whether evaluated as categorically as hypertrophy or based on quantitative mass, both increased 

apical and septal mass resulted in an increased risk for incident cardiomyopathy that was only partially 

attenuated by global LV hypertrophy. Subjects with isolated apical cardiomyopathy and isolated septal 

hypertrophy have a higher risk of cardiomyopathy even without global hypertrophy as defined by current 

clinical protocols44. The attenuation of the effect of septal mass on incident cardiovascular disease by global 

LVM parallels the overlapping loci in our genetic association studies for septal mass and global LVM. 

Nevertheless, we identify three genes unique to septal mass, emphasizing that septal hypertrophy may be 

governed by novel genes in addition to those classically attributed to global hypertrophy, such as TTN.  

Additionally, we uncover variants unique to apical mass, which have not been previously associated with 

apical hypertrophic cardiomyopathy3,31. Notably, CASQ2 and PLN maintain cardiac calcium homeostasis, 

and their dysfunction increases the risk of atrial fibrillation45,46, which is a common complication in apical 

HCM47. These unique loci suggest that apical hypertrophy may have a genetically distinct pathophysiology, 

which may contribute to its different clinical outcomes and treatment from other types of HCM. Our 

findings highlight the significance of focal hypertrophy to cardiovascular pathophysiology5–8,48 and reaffirm 

the value of characterizing distinct subtypes of LV hypertrophy.  
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While smaller clinical cohorts are often underpowered to assess a difference in clinical outcomes, 

the presence of focal hypertrophy in the UKBB imaging cohort highlights the ability to identify unique 

subpopulations and their subsequent risk for incident cardiovascular disease. Understanding these patterns 

of regional hypertrophy may paint a fuller picture of cardiovascular disease outcomes and risk. Limitations 

of our study include the lack of replication across other cohorts. Although the UKBB cohort is of mixed-

ancestry, European descent predominates, and our results may not be generalizable for individuals of other 

ancestries.  

 In conclusion, we analyzed the genotypic and clinical significance of apical, septal, and LV mass 

in over 35,000 UKBB participants. Our results identify twelve loci of clinically observed increased left 

ventricular mass, with three unique loci to increased apical mass. Our findings suggest that increased apical 

mass is a significant additional independent risk factor for cardiomyopathy and atrial fibrillation. Such 

results might be relevant to existing work in characterizing subtypes of hypertrophic cardiomyopathy, as 

we find distinct risk profiles for incident cardiovascular disease based on pattern of focal hypertrophy. 

Methods  

UK Biobank  

The UK Biobank (UKBB) is a prospective study with 502,461 participants from 40 to 60 years of age. 

Detailed non-imaging data, such as genotyping, diagnoses, and environmental factors are also included. 

Our analysis focused on the 45,361 individuals who underwent cardiac magnetic resonance (CMR) 

imaging.  

 

Measurement of apical and interventricular septal mass  

We leveraged a fully convolutional neural network to segment the end-diastolic short-axis CMR images of 

45,361 individuals in the UK Biobank (UKBB). Participants were excluded based on image quality and 

visualization of the ventricles and apex (Supplemental Figure 1). We established our final study cohort 

(n=35,268) to measure apical and interventricular mass. Apical mass was calculated by isolating the pixels 

corresponding to the LV myocardial wall in the last four slices. The pixels were then summed to obtain 

apical area, then multiplied by slice thickness and slice gap to calculate apical volume. Finally, the volume 

was multiplied by myocardial density (1.055 g/cm3) to obtain apical mass. For each slice, we defined the 

septum as the segment of the LV myocardium bounded by the insertion points of the right ventricle wall. 

The pixels were summed to calculate the septal area, then multiplied by slice thickness, slice gap, and 

myocardial density to measure septal mass. 

 

Testing for associations with incident disease 
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We analyzed associations between CMR-derived LVM, apical mass, and septal mass with cardiomyopathy, 

atrial fibrillation, and acute myocardial infarction. We also examined the relationship between these 

outcomes and global, apical, and septal hypertrophy. Based on current clinical definitions, we defined 

global hypertrophy as individuals with overall LVM above the sex-specific 90th percentile49. Similarly, 

apical hypertrophy was defined as individuals with 90th percentile of apical mass and septal hypertrophy as 

the 90th percentile of septal mass. Cox proportional hazards analysis was performed adjusted for sex, age 

pulse rate, and hypertension. Incident disease was identified using the reported International Classification 

of Disease 9th and 10th codes available in UKB starting from the time of CMR acquisition until the date of 

the first incident, death, or the last follow-up.  

To analyze apical, septal and LV mass as continuous variables, we leveraged Cox proportional 

hazards testing in 3 different models. The first model investigated each mass phenotype individually as 

independent risk factors while adjustments for sex, age at MRI acquisition, pulse rate, and hypertension. 

The second model jointly analyzed apical mass and LVM, with the same adjustments as the first model. 

The third model jointly analyzed septal mass and LVM. To test associations between cardiomyopathy and 

ventricular hypertrophy, we created seven different cohorts.  

 

Genome-wide Association Study  

Given our cohort of 35,268 individuals, 847 were removed due to incomplete or low-quality genetic data. 

We then performed GWAS of total LVM, apical mass, and septal mass on 34,421 individuals with 

BOLT-LMM v2.3.450, which uses a Bayesian mixture prior as a random effect to fit a linear mixed model. 

We utilized the UKB imputed genotype calls in BGEN v1.2 format. Variants were required to have a 

minor allele frequency (MAF) ≥ 0.01, and imputed variants had an INFO score ≥ 0.3. Our model was 

adjusted for age at CMR imaging, sex, and the first 10 principal components of genetic ancestry. Variants 

were considered statistically significant at the standard genome-wide significance level of p = 5e-8. 

Independent significant SNPs were then defined as SNPs that met the threshold for genome-wide 

significance, had an r2 > 0.6, and were located at least ±500 kb away from each other.  

 

Functional annotation of significant loci  

We utilized FUMA v1.6.051 to investigate eQTL, 3D chromatin interaction mapping, and gene set 

analysis to better understand the function of genome-wide significant variants. First, using GTEx version 

8 eQTL tissue data, we evaluated the relationship between SNPs of genome-wide significance with 

cardiac gene expression in the aorta, atrial appendage, and LV tissue. GTEx contains pre-calculated false 

discovery rates (FDR) for gene-tissue pairs. FUMA defines significant eQTLs as SNP-gene pairs with p < 

0.05 and gene-tissue pairs with an FDER ≤ 0.05. Second, 3D chromatin interaction mapping was 
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performed using pre-processed Fit-Hi-C datasets of the LV, right ventricle, and aorta. One end of a 

signification interaction is defined by the independent, significance SNP and those in linkage 

disequilibrium with it. The other end of the significant regions is the mapped gene reported in the Results 

section.  Finally, we performed gene set analysis using 10,678 curated gene sets annotated with Gene 

Ontology terms; Bonferroni correction was performed for all gene sets. Significant gene sets were those 

with a pBon < 0.05.  
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Figure 1. We characterized a cohort of 35, 268 participants for total LV, apical, and septal mass using 

deep learning. From these derived traits, we performed GWAS to identify genetic drivers of these 

phenotypes and analyzed the relationship between apical mass, septal mass, and incident cardiovascular 

disease.  
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Figure 2. a) Heatmap showing the correlation between apical mass, septal mass, LVM, LVESV, LVEDV, 

and LVEF. Relationship between b) apical and septal mass, c) apical and LVM, and d) septal mass and 

LVM in the cohort.  
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Figure 3. Each category of hypertrophy was defined as sex-specific 90th percentile of mass.  a) Venn 
diagram displaying global hypertrophy, isolated apical hypertrophy, isolated septal hypertrophy, and 
combined apical and septal hypertrophy (shaded in purple) b) Hazard ratios and 95% confident intervals 
for each phenotype with regards to cardiomyopathy. Subjects without hypertrophy (n = 28,441) served as 
the control group. 
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Figure 4. Manhattan plots for genome-wide association studies of a) LVM b) apical mass and c) septal 
mass. The horizontal red line represents a genome-wide significant p-value of 5e-8. d) Significant hits are 
compared across the three phenotypes, with novel loci in bold.  
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Table 1. Genome-wide significant variants and candidate genes across all phenotypes, with novel genes 

in bold 

Phenotype Chr Candidate Gene hg37 Position Ref Alt p-value Beta 

Apex 1 CASQ2 116,297,758 A C 3.2e-12 -0.262 

Apex 6 PLN 118,876,539 T C 3.7e-9 -0.220 

Apex 9 RSP19P6 83,396,102 C T 2.7e-8 0.396 

Apex 17 MAPT-AS1 43,948,347 C T 3.3e-8 -0.224 

Septal 1 HIVEP3 42,007,188 A C 2.9e-8 0.192 

Septal 2 TTN 179,839,888 T C 6.2e-11 0.587 

Septal 3 ESYT3 138,172,951 A G 1.8e-8 -0.193 

Septal 4 LCORL 18,034,463 G A 3.2e-9 0.295 

Septal 6 HMGA1 34,190,104 A G 2.00e-8 -0.398 

Septal 7 HMGN1P19 46,620,312 T C 2.50e-12 -0.242 

Septal 11 MYBPC3 47,366,095 T G 2.20e-14 -0.386 

Septal 20 GDF5 34,025,756 G A 1.00e-9 -0.211 

 Global 2 TTN 179,672,414 T C 2.1e-11 1.850 

Global 2 DIRC3 218,288,831 T A 3.50e-8 -0.674 

Global 4 LCORL 17,917,781 C A 1e-8 0.786 

Global 6 BTN3A2 26,327,814 C T 2.10e-9 0.729 

Global 6 CDKN1A 36,646,849 C T 4.30e-11 -0.869 

Global 6 AL356534.1 127,184,986 A G 3.80e-9 -0.747 

Global 7 HMGN1P19 46,620,312 T C 1.10e-8 -0.706 

Global 10 BAG3 121,415,685 A G 4.60e-8 0.815 

Global 11 LSP1 1,902,768 A G 7.8e-9 -0.729 

Global 11 MYBPC3 47,427,180 AGA A 1.3e-10 -1.166 

Global 12 APOLD1 12,883,632 A AG 1.60e-9 0.966 

Global 12 HMGA2 66,343,400 C G 4.00e-9 0.717 

Global 12 SH2B3 111,884,608 C G 3.8e-8 -0.669 

Global 13 TRIM13 50,565,104 A ACT 5.7e-9 -2.538 

Global 16 FTO 53,812,770 A ATTTT 2.90e-8 -0.691 

Global 17 WNT3 44,862,613 G A 9.30e-10 0.873 

Global 20 GDF5 34,025,756 G A 1.50e-9 -0.744 
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Supplementary Information  

Supplementary Figure 1. Flow diagram to create the cohort for genetic and phenotypic analysis  
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Supplementary Figure 2. Distributions of a) apical mass and b) septal mass versus sex. 
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Supplementary Figure 3. Hazard ratios with 95% confidence intervals for cardiomyopathy, atrial fibrillation, 

and acute MI. Individual models include the risk conferred by LVM, apical mass, and septal mass when 

investigated individually as independent variables in models adjusted for sex, age at MRI, BMI, heart rate, and 

hypertension. Model 2 includes apical mass, LVM, sex, age at MRI, BMI, heart rate, and hypertension, and 

Model 3 includes septal mass, LVM, sex, age at MRI, BMI, heart rate, and hypertension. 
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Supplementary Table 1. Results of eQTL analysis using FUMA for lead variants in the GWAS of apical and 

septal mass 

Phenotype Chr Candidate Gene hg37 Position Ref Alt Tissue p-value 

Apex 1 CASQ2 116,297,758 A C Coronary Artery 8.51e-10 

Apex 1 CASQ2 116,297,758 A C Atrial Appendage 3.95e-8 

Apex 1 CASQ2 116,297,758 A C Left Ventricle 1.21e-9 

Apex 6 PLN 118,876539 T C Aorta 2.84e-8 

Apex 6 PLN 118,876539 T C Atrial Appendage 1.5e-4 

Apex 17 MAPT-AS1 43,948,347 C T Left Ventricle 7.80e-5 

Septal 3 ESYT3 138,172,951 A G Coronary Artery 1.0e-5 
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