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 2

Abstract 20 

The neural tissue is rich in polyunsaturated fatty acids (PUFAs), components that are 21 

indispensable for the proper functioning of neurons, such as neurotransmission. PUFA nutritional 22 

deficiency and imbalance have been linked to a variety of chronic brain disorders, including 23 

major depressive disorder (MDD), anxiety, and anorexia. However, the effects of PUFAs on 24 

brain disorders remain inconclusive, and the extent of their shared genetic determinants is largely 25 

unknown. Here, we used genome-wide association summary statistics to systematically examine 26 

the shared genetic basis between six phenotypes of circulating PUFAs (N = 114,999) and 20 27 

brain disorders (N = 9,725-762,917), infer their potential causal relationships, identify 28 

colocalized regions, and pinpoint shared genetic variants. Genetic correlation and polygenic 29 

overlap analyses revealed a widespread shared genetic basis for 77 trait pairs between six PUFA 30 

phenotypes and 16 brain disorders. Two-sample Mendelian randomization analysis indicated 31 

potential causal relationships for 16 pairs of PUFAs and brain disorders, including alcohol 32 

consumption, bipolar disorder (BIP), and MDD. Colocalization analysis identified 40 shared loci 33 

(13 unique) among six PUFAs and ten brain disorders. Twenty-two unique variants were 34 

statistically inferred as candidate shared causal variants, including rs1260326 (GCKR), rs174564 35 

(FADS2) and rs4818766 (ADARB1). These findings reveal a widespread shared genetic basis 36 

between PUFAs and brain disorders, pinpoint specific shared variants, and provide support for 37 

the potential effects of PUFAs on certain brain disorders, especially MDD, BIP, and alcohol 38 

consumption.  39 
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Introduction 40 

Disorders of the brain contribute significantly to the global disease burden [1, 2]. For 41 

example, in 2019, more than 970 million individuals suffered from 12 mental disorders, ranging 42 

from 13.6 million for eating disorders to 301.4 million for anxiety disorders [2]. These disorders 43 

encompass a wide range of psychiatric and neurological symptoms, including cognitive 44 

impairment, emotional dysregulation, and behavioral disturbances, all of which profoundly 45 

disrupt the life of the patients, and can in severe cases lead to suicide [3]. Effective prevention 46 

and treatment of brain disorders are of utmost importance in improving clinical symptoms and 47 

overall quality of life. One promising and emerging therapeutic approach is nutritional medicine 48 

[4], which seeks to prevent the onset of brain disorders or alleviate their clinical manifestations 49 

by implementing specific nutritional interventions [4, 5]. 50 

Brain structural lipids are rich in long-chain omega-3 and omega-6 polyunsaturated fatty 51 

acids (PUFAs) [6]. Dietary deficiency of omega-3 PUFAs leads to global deficits in neural 52 

function in experimental animals [7]. In humans, PUFAs and particularly omega-3s, have been 53 

suggested to have protective and therapeutic effects on brain disorders because they regulate 54 

physiological processes such as neuroinflammation, neurotransmission, and neuron survival [4, 6, 55 

8]. Omega-3 supplementation has shown promising results in reducing clinical symptoms 56 

associated with a range of brain conditions, including MDD [9, 10], anxiety disorders [11], 57 

schizophrenia [12, 13], attention-deficit/hyperactivity disorder (ADHD) [14], autism spectrum 58 

disorder [15] and Alzheimer’s disease (ALZ) [16]. However, several randomized controlled trials 59 

reported small or no effects of PUFAs on schizophrenia [5], depression [17], ALZ  [18] and 60 

psychosis [19, 20]. Consequently, the overall impact of PUFAs on human brain disorders 61 

remains inconclusive, necessitating further investigation to establish their therapeutic potential. 62 
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While observational associations are commonly confounded by unknown or unmeasured 63 

factors [21], exploring the shared genetic basis between PUFAs and brain disorders offers 64 

valuable insights into their shared biological pathways and potential causal relationships [22]. 65 

Previous studies have leveraged genetic information to investigate the connections between 66 

PUFAs and brain disorders (Supplementary Table S1), such as the application of Mendelian 67 

randomization (MR) to statistically infer causal relationships. For instance, a recent MR study 68 

suggested that decreased docosahexaenoic acid (DHA) and increased omega-6 to omega-3 ratio 69 

have causal links with MDD, and it further identified the fatty acid desaturase (FADS) gene 70 

cluster as a common genetic signal [23]. In an experimental study, mice with Fads1/2 genes 71 

knockout were used to simulate the effect of BIP risk allele on Fads1/2 activity, revealing 72 

significant changes in lipid profile and behavioral alterations [24]. However, current genetic 73 

studies primarily concentrate on specific brain disorders (e.g., MDD [23, 25], SCZ [26, 27], and 74 

BIP [24, 28]) or a limited number of genes, such as FADS [23, 24, 26, 28] and ELOVL2/5 [26]. 75 

Therefore, it is necessary to explore the broader genomic landscape to ascertain additional 76 

genetic determinants that underlie the connection between PUFAs and brain disorders.  77 

Our study aims to systematically explore the shared genetic basis between the levels of 78 

circulating PUFAs (cPUFAs) and brain disorders, infer their potential causal relationships, 79 

identify shared genomic regions, and pinpoint specific shared genetic variants. We performed 80 

four major analyses using genome-wide association study (GWAS) summary statistics for six 81 

cPUFA phenotypes (N = 114,999) and 20 brain disorders (N = 9,725-762,917). First, we 82 

estimated genetic correlation, and second, quantified the number of shared genetic variants, 83 

between cPUFA phenotypes and brain disorders. Third, we performed MR analysis to 84 

statistically infer causal associations between cPUFAs and brain disorders. Lastly, we conducted 85 
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colocalization analysis and statistical fine-mapping to identify colocalized regions and pinpoint 86 

putative shared causal variants. Collectively, our study characterizes the shared genetic basis and 87 

informs the relationships between cPUFAs and brain disorders.  88 
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Methods 89 

GWAS summary statistics and preprocessing  90 

Six cPUFA phenotypes and 20 brain disorders were included in the study 91 

(Supplementary Figure S1; Supplementary Table S2). The six cPUFA traits were the relative 92 

percentages of total PUFAs, omega-3, omega-6, DHA, and linoleic acid (LA) in total fatty acids, 93 

and the omega-6 to omega-3 ratio. They are abbreviated as PUFA%, omega-3%, omega-6%, 94 

DHA%, LA%, and omega-6:omega-3, respectively. The 20 brain disorders included 95 

schizophrenia (SCZ) [29], MDD [30], BIP [31], obsessive-compulsive disorder (OCD) [32], 96 

anxiety disorders and factors (ANX) [33], post-traumatic stress disorder (PTSD) [34], anorexia 97 

nervosa (AN) [35], autism spectrum disorder (ASD) [36], Tourette syndrome (TS) [37], attention 98 

deficit-hyperactivity disorder (ADHD) [38], mood disorders (MOOD), insomnia (INS) [39], 99 

neuroticism (NE) [40], ALZ [41], opioid dependence (OD) [42], cannabis use disorder (CUD) 100 

[43], alcohol dependence (AD) [44], alcohol use disorder identification test total score 101 

(AUDIT_T), AUDIT focusing on alcohol consumption (AUDIT_C) and AUDIT focusing on the 102 

problematic consequences of drinking (AUDIT_P) [45]. 103 

Publicly available GWAS summary statistics of all cPUFAs and brain disorders were 104 

downloaded from IEU Open GWAS [46] and Psychiatric Genomic Consortium (PGC) [47]. 105 

GWAS summary statistics for insomnia [39] were downloaded from the Center for 106 

Nutrigenomics and Cognitive Research (CNCR, https://ctg.cncr.nl/software/summary_statistics). 107 

Multiple GWAS for each of seven brain disorders (i.e., SCZ, BIP, MDD, INS, ALZ, AN, ASD) 108 

were included for replication analysis (Supplementary Table S2). A total of 34 GWAS for brain 109 

disorders and 11 GWAS for cPUFAs were examined. Four GWAS were removed from our study 110 

for reasons including 1) no clear information indicating effect allele (n=2) [48, 49]; 2) incorrect 111 
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data format (n=1) [50]; 3) the number of cases is less than 1000 (n=1) [51]. We focused on 112 

European ancestry to align ancestry across studies. Phenotypes associated with alcohol intake 113 

(AD, AUDIT_T, AUDIT_C, AUDIT_P) had pairwise genetic correlations less than 1 [45], and 114 

therefore were analyzed separately.  115 

All GWAS summary statistics were harmonized to ensure data quality and consistency. 116 

Summary statistics of three GWAS from hg18 reference genome build were converted into 117 

hg19/GRCh37 genome build by Liftover [52]. MungeSumstats (v1.3.17) [53] was used to 118 

harmonize all GWAS summary statistics including: 1) uniformity in strand designation; 2) 119 

uniformity in SNP ID; 3) same effect allele; 4) effect size and standard error, or Z score are 120 

included; 5) hg19/GRCh37 reference genome build is used; 6) uniformity in the p-value format; 121 

7) removal of InDels; 8) removal of SNPs with low genotype imputation quality (INFO < 0.3). 122 

After harmonization, a total of 10,568,861 SNPs for six cPUFAs and 1,147,602 to 14,124,455 123 

SNPs for 20 brain disorders were included in the downstream analysis (Supplementary Table 124 

S2). For each trait, we mainly focused on the GWAS with the largest sample size, and the rest 125 

were presented in supplementary results. 126 

Estimation of SNP-based heritability (h2
SNP) and pairwise genetic correlation (rg) 127 

Linkage Disequilibrium Score regression (LDSC, v1.0.1) [54] was applied to estimate 128 

SNP-based heritability (h2
SNP) for each phenotype using GWAS summary statistics. For case-129 

control traits, h2
SNP was converted to the liability-scale by considering the disease prevalence and 130 

sample proportion (Supplementary Table S2). For quantitative traits, the observed-scale 131 

heritability was estimated.  132 

Cross-trait LDSC [55] was used to compute pairwise genetic correlations (rg) using 133 

GWAS summary statistics between six cPUFAs and 20 brain disorders. Pre-computed reference 134 
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panel LD score of European samples in the 1000 Genomes Project (1KGP) phase 3 [56] was 135 

downloaded from https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2. 136 

SNP-based heritability and pairwise genetic correlation analyses were run using Hapmap3 SNPs 137 

with imputation INFO > 0.9 and minor allele frequency (MAF) > 1%. SNPs in the major 138 

histocompatibility complex (MHC) region were excluded. P-value cutoffs of 0.05, 0.001, and 139 

0.05 divided by the number of tests (i.e., the Bonferroni-corrected threshold) were used to 140 

represent different levels of statistical significance. Genetic correlation coefficients and p-values 141 

were visualized using the R corrplot (v0.92) package [57].   142 

Estimation of polygenicity 143 

To estimate the number of common variants that are associated with cPUFAs or brain 144 

disorders, a univariate Gaussian mixture model in MiXeR [58] was applied to the GWAS 145 

summary statistics. We restricted the univariate analysis to 19 brain disorder GWAS 146 

(corresponding to 15 unique phenotypes) with N > 46,000 to ensure statistical power. Five 147 

GWAS for ANX, OCD, TS, OD, AD had small sample sizes and were not included in the 148 

analysis. Pre-computed EUR reference panel LD score was used as in the LDSC analysis. To 149 

ensure compatibility with MiXeR, we utilized the munge_sumstats.py script provided by MiXeR 150 

to further process GWAS summary statistics. This step was necessary to meet the specific 151 

requirements of MiXeR, particularly addressing the sample imbalance in case-control 152 

phenotypes by utilizing the effective sample size (���� �
�

�

�����
�

�

����	
��

 ). Additionally, we 153 

obtained information on allelic LD r2 correlations and allele frequency in the 1KGP European 154 

samples from the MiXeR GitHub repository. MiXeR provides a reference set of about 11 million 155 

SNPs, which is used to estimate the number of trait-associated variants that explain 90% of h2
SNP.  156 
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Quantification of polygenic overlap between cPUFAs and brain disorders 157 

The MiXeR bivariate causal mixture model [59] was applied to quantify the number of 158 

variants that have nonzero effects on both traits (nc12). We performed cross-trait analyses to 159 

estimate polygenic overlap between cPUFAs and brain disorders, including six GWAS for six 160 

cPUFAs and 19 GWAS for 15 brain disorders. The bivariate analysis provides the proportion 161 

(π12), number (nc12), and correlation of effect size within the shared polygenic components (ρ12). 162 

We calculated Z-statistics using the formula � � �/��  and visualized the effect sizes of all 163 

SNPs in pairs of GWAS summary statistics using the R hexbin (v1.28.2) package. We used R 164 

ComplexHeatmap (v2.14.0) [60] package to visualize the number of shared variants between 165 

cPUFAs and brain disorders. 166 

Mendelian randomization  167 

MR is a method in genetic epidemiology that uses SNPs as genetic instruments to 168 

statistically infer causal associations between exposures and outcomes [61]. SNPs were 169 

identified as being significantly associated with each exposure at the genome-wide significance 170 

level (P < 5×10-8), and independent SNPs were derived using LD clumping (r2 < 0.001 within a 171 

10,000 kb window). For the primary analysis, the potential causal effects were estimated using a 172 

multiplicative random-effect inverse weighted variance (IVW) model [62]. The MR-Egger 173 

method was applied to detect and correct for possible pleiotropy, while a p-value > 0.05 in its 174 

intercept test was used to rule out the presence of horizontal pleiotropic effects [63]. We also 175 

used weighted median and weighted mode approaches to explore the robustness of our findings 176 

in the presence of potential pleiotropy [64, 65]. As an additional sensitivity analysis against 177 

pleiotropy, the MR-PRESSO method was performed to evaluate overall horizontal pleiotropy 178 

and to re-calculate effect estimates after removing outlier SNPs [66]. A threshold of F-statistics > 179 
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10 indicates strong genetic instruments. Cochran Q-statistic was calculated to quantify the 180 

heterogeneity among SNPs [67, 68]. Scatter plots, forest plots, and leave-one-out plots were 181 

generated to visualize the effects of individual genetic instruments. To adjust for multiple testing, 182 

we utilized the false-discovery rate (FDR) approach [69]. All analyses were performed using the 183 

TwoSampleMR (v0.5.6) and MR-PRESSO (v1.0) packages in R [66, 70]. 184 

Colocalization analysis  185 

We assessed the colocalization of genetic associations across traits using HyPrColoc 186 

(v1.0) [71]. First, pairwise colocalization analyses were conducted for each pair of cPUFA and 187 

brain disorder. We further performed multi-trait colocalization analysis for all cPUFAs and brain 188 

disorders. We used the default prior probability that an SNP is associated with a single trait (P = 189 

1 × 10-4) and a conditional prior probability that an SNP is associated with an additional trait 190 

given that it is already associated with another trait (Pc = 0.02). We defined a significant 191 

colocalized region as a posterior probability (PP) > 0.7. Regional association plots and 192 

colocalization probability plots were generated with gassocplot (v0.14.0) R package, and LD 193 

information was from 1KGP.  194 

Genome-wide statistical fine-mapping  195 

To statistically infer genetic variants that are causally associated with cPUFAs and brain 196 

disorders, we performed genome-wide statistical fine-mapping with GWAS summary statistics 197 

using SuSiE (v0.12.27). We first defined significant loci for each GWAS. Each significant locus 198 

was determined as a region spanning 500kb above and below a top significant SNP (P < 5 × 10-8). 199 

After defining one locus, we eliminated this locus, searched for the most significant SNP in the 200 

remaining dataset, and defined the next locus. We iterated this process until no additional 201 
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significant locus was found. Note that some loci overlap with each other, and the inclusion of LD 202 

information in the overlapped region is sometimes necessary for accurate fine-mapping. Since 203 

samples of all cPUFA phenotypes and some brain disorders were obtained from UK Biobank, we 204 

used LD matrices calculated based on 337,000 British-ancestry individuals in UK Biobank 205 

(UKBB-LD) [72]. All LD matrices files were downloaded from 206 

https://labs.icahn.mssm.edu/minervalab/resources/data-ark/ukbb_ld/. We extracted pairwise 207 

allelic LD correlations (r) for all SNPs in each defined locus. We summarized and reported 95% 208 

credible sets (CS) of all significant loci. Additionally, we identified SNPs within the CS of the 209 

cPUFAs and brain disorders dataset, which exhibited a posterior probability greater than 0.5 in at 210 

least one dataset. 211 

Functional annotation and gene set enrichment analysis 212 

To assess the functional consequences of the potentially causal variants prioritized by 213 

HyPrColoc and SuSiE, we used the Ensembl Variant Effect Predictor (VEP) [73] for functional 214 

annotation, including their nearby genes, variant type and consequence, allele frequency in the 215 

1KGP European sample, pathogenicity, and related phenotypes. Gene set enrichment analysis 216 

was conducted for candidate genes using the FUMA [74] GENE2FUNC module. GTEx v8 217 

RNA-seq data [75] was used to examine tissue-specific expression patterns of candidate genes. 218 

Data and code availability 219 

All GWAS summary statistics are publicly available as described above. All the code for 220 

this study was uploaded to GitHub for public access (https://github.com/Huifang-Xu/PUFA-BD). 221 
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Results 222 

Widespread, moderate genetic correlations between cPUFAs and brain disorders 223 

 Genetic correlations (rg) between cPUFA phenotypes and brain disorders were estimated 224 

using LDSC. Consistent with previous studies, there were strong genetic correlations between 225 

cPUFAs [76] and between brain disorders [77-80] (Supplementary Figure S2). Widespread and 226 

moderate genetic correlations were observed between 16 brain disorders and six cPUFA relative 227 

measures, including PUFA%, omega-6%, LA%, omega-3%, DHA% and the omega-6:omega-3 228 

ratio (Figure 1A, Supplementary Figure S3 and Supplementary Table S3). Out of the total 229 

120 pairs, 77 pairs (64.2%) had P < 0.05 (average |rg| = 0.19), 43 pairs (35.8%) had P < 0.001 230 

(average |rg| = 0.23), and 34 pairs (28.3%) showed significant genetic correlations after 231 

Bonferroni correction (P < 4.17 × 10-4, average |rg| = 0.22). Over 60% of the significant pairs 232 

(48/77 pairs with P < 0.05 and 22/34 pairs with P < 4.17 × 10-4) showed negative correlations 233 

between cPUFAs and brain disorders, suggesting that the shared genetic determinants are 234 

associated with higher cPUFA levels but with reduced risks of brain disorders, such as NE and 235 

PUFA% (Figure 1C).  236 

PUFA%, omega-6%, omega-3%, LA%, and DHA% have significant negative correlation 237 

with the following brain disorders, including the three substance use disorders (OD: rg = -0.23 ~ -238 

0.40, P < 0.05; AD: rg = -0.18 ~ -0.30, P < 0.05; and CUD: rg = -0.20 ~ -0.27, P < 3 × 10-4), 239 

ADHD (rg = -0.22 ~ -0.33, P < 6.72 × 10-6), PTSD (rg = -0.16 ~ -0.32, P < 0.05) , ANX (rg = -240 

0.22, P < 0.05), INS (rg = -0.12 ~ -0.20, P < 9 × 10-4), MDD (rg = -0.10 ~ -0.19, P < 0.05), and 241 

NE (rg = -0.08 ~ -0.14, P < 0.01; Figure 1A and Supplementary Table S3). In contrast, these 242 

cPUFA measures are positively correlated with two disorders with compulsive behaviors (OCD: 243 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2023. ; https://doi.org/10.1101/2023.10.03.23296500doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.03.23296500
http://creativecommons.org/licenses/by-nc/4.0/


 13

rg = 0.14 ~ 0.30, P < 0.05; AN: rg = 0.16 ~ 0.27, P < 6.50 × 10-5). We did not observe any 244 

significant genetic correlations between any cPUFAs and ALZ, MOOD, ASD, or TS, suggesting 245 

that they share only a small proportion of common genetic components, or that the genetic 246 

components they share have mixed effects on the two traits. It can also be partially explained by 247 

insufficient statistical power due to small sample sizes of the GWAS of MOOD (Ncase = 1,546) 248 

and TS (Ncase = 4,819). 249 

Widespread, moderate polygenic overlap between cPUFAs and brain disorders 250 

To quantify the polygenicity of and polygenic overlap between cPUFAs and brain 251 

disorders, we applied the MiXeR univariate and bivariate Gaussian mixture models, respectively, 252 

to their GWAS summary statistics. MiXeR statistically estimates the number of causal variants 253 

needed to explain 90% of the SNP heritability of a trait without explicitly identifying the specific 254 

variants. It also quantifies the number of shared causal variants between two traits (nc12), 255 

irrespective of their genetic correlation [59]. Five brain disorders (i.e., TS, OCD, ANX, OD and 256 

AD) were not included in this analysis due to insufficient sample sizes.  257 

All pairs of cPUFAs and brain disorders were statistically inferred to share causal variants, 258 

although the degrees of sharing differ (Figure 1B, Supplementary Figure S4 and 259 

Supplementary Table S4). They ranged from five variants between omega-3% and ALZ to 361 260 

between PUFA% and MDD. PUFA% shared the greatest number of common variants (nc12 = 37-261 

361) with brain disorders, while omega-3% shared the least number of common variants (nc12 = 262 

5-33). Consistent with the findings of genetic correlation, 10 brain disorders (MDD, CUD, AN, 263 

ADHD, NE, INS, SCZ, PTSD, AUDIT_C, and AUDIT_T) have strong polygenic overlaps with 264 

multiple cPUFAs. For instance, PUFA% and NE have a strong negative genetic correlation (rg = -265 

0.13, P = 2.0 × 10-4) and a high level of polygenic overlap (nc12 = 348; Figure 1C), indicating 266 
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that most of the common variants shared between PUFA% and NE have opposite effect signs. 267 

ALZ and cPUFAs share very low numbers of common variants. Interestingly, for some pairs of 268 

cPUFAs and brain disorders, we observed no significant genetic correlations; however, they have 269 

strong polygenic overlap, implying the presence of mixed effect directions among shared genetic 270 

variants. For example, LA% does not have significant genetic correlation with AUDIT_C (rg = 271 

0.05, P = 0.28), but they shared a moderate number of common variants (nc12 = 131). In addition, 272 

we found that the genetic variants they share had mixed effects on the two traits (Figure 1D), 273 

which explained why they had no significant genetic correlation but had strong polygenic 274 

overlap. 275 

The numbers of shared variants between cPUFA levels and brain disorders are limited by 276 

the number of variants influencing cPUFAs. Compared with the strong polygenic overlap 277 

between different brain disorders (mean nc12 = 5,093; Supplementary Figure S5 and 278 

Supplementary Table S5), the average number of shared variants between cPUFAs is 76 279 

(Supplementary Figure S5). We found that the number of shared variants is particularly limited 280 

by the number of variants underlying each specific cPUFA. The average number of common 281 

variants associated with cPUFA levels is 139, compared with 10,359 in brain disorders, a 282 

difference of two orders of magnitude (Figure 1B; Supplementary Table S4). Our polygenic 283 

overlap analysis revealed relatively simple genetic architecture of cPUFAs, high polygenicity of 284 

brain disorders, and widespread, moderate polygenic overlap between the two groups of traits. 285 

Statistical inference of causal associations between cPUFAs and brain disorders 286 

To examine putative causal associations between six cPUFAs and 17 brain disorders, we 287 

conducted bidirectional MR analyses using GWAS summary statistics. Three brain disorders 288 
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(AD, ALZ, and OD) were not included in the MR analysis due to the absence of effect sizes and 289 

standard errors in their GWAS summary statistics.  290 

We identified nine pairs, for which genetically predicted cPUFAs were significantly (P < 291 

0.05) associated with increased risks of brain disorders; and seven pairs, for which genetically 292 

predicted cPUFAs were associated with reduced risks of brain disorders (Figure 2A-B and 293 

Supplementary Table S7). Among the 16 significant pairs identified in the forward MR analysis, 294 

we did not detect any effect of brain disorders on cPUFA levels in our reverse MR analysis, 295 

except for the pair of PUFA%-MDD (Supplementary Figure S6 and Supplementary Table 296 

S8).  297 

Among the 16 significant pairs, nine pairs presented consistent and strong evidence for 298 

potential causal effects of cPUFAs on brain disorders when considering results from both genetic 299 

correlation and MR (Figure 1A and 2A). Four pairs (omega-6%-CUD, PUFA%-MDD, omega-300 

3%-MDD, and DHA%-MDD) showed consistent negative associations, implying potential 301 

protective effects of these cPUFAs against CUD and MDD. In contrast, five pairs (PUFA%-302 

AUDIT_C, omega-6%-AUDIT_C, PUFA%-AUDIT_T, omega-3%-AN, and omega-6:omega-3-303 

ADHD) showed consistent positive associations, indicating that these cPUFAs might increase the 304 

risks of alcohol consumption, anorexia nervosa and ADHD. 305 

Omega-3% were genetically predicted to be associated with a reduced risk of BIP. For a 306 

one standard deviation (SD) increase in genetically predicted omega-3%, the odds ratio (OR) for 307 

BIP was 0.91 (95% CI = [0.83, 1.00]) using the IVW method (Figure 2C and Supplementary 308 

Table S7). Although horizontal pleiotropy was detected in the intercept test (Pintercept = 0.043), 309 

the result remained significant after correcting for possible pleiotropy with the MR-Egger 310 

approach (OR = 0.81, 95% CI = [0.70, 0.93]). The finding was consistent across other MR 311 
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methods. In the reverse MR, there was no evidence supporting a causal effect of BIP on omega-3% 312 

(βIVW = -0.10, 95% CI = [-0.33, 0.13]) (Supplementary Table S8). 313 

Prioritization of colocalized loci and shared variants 314 

To statistically prioritize genomic loci and infer causal variants responsible for both 315 

cPUFA levels and brain disorders, we conducted pairwise colocalization analysis and statistical 316 

fine-mapping. This analysis revealed 44 significant colocalized regions with a PP > 0.7 (Figure 317 

3A and Supplementary Table S9). The 44 significant colocalized regions correspond to 13 318 

unique regions. Furthermore, 22 unique SNPs were statistically inferred as potential causal 319 

variants shared between cPUFAs and brain disorders, indicating that more than one variant 320 

within these colocalized regions contribute to multiple trait pairs. Among the 22 unique SNPs, 14 321 

were also included in 95% CSs defined by SuSiE (Supplementary Table S9). We also 322 

performed multi-trait colocalization analysis combining all cPUFAs and brain disorders. We 323 

identified four candidate shared SNPs (Supplementary Table S9). 324 

To gain insights into the functional implications of the identified colocalized SNPs, we 325 

annotated the nearest genes associated with the colocalized and fine-mapped SNPs using VEP 326 

(Supplementary Table S10). Additionally, we performed gene set enrichment analysis using the 327 

FUMA GENE2FUNC function [74]. This analysis revealed that the 36 prioritized genes are 328 

significantly enriched in biological pathways related to lipid metabolism (FDR adjusted P < 329 

0.05), providing further support for their potential biological relevance in the context of cPUFA 330 

levels and brain disorders (Supplementary Table S11).  331 

We highlight here one example that provides insights into the role of PUFAs on brain 332 

disorders. The example involves BIP and all six cPUFA measures (Figure 3B and 3C), all of 333 

which share a colocalized region at the FADS gene cluster (chr11:58,780,549-62,223,771). 334 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2023. ; https://doi.org/10.1101/2023.10.03.23296500doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.03.23296500
http://creativecommons.org/licenses/by-nc/4.0/


 17

Within this region, three distinct shared SNPs (i.e., rs174564, rs174567, rs174528) were 335 

identified (Supplementary Table S9). To further investigate this region, we performed statistical 336 

fine-mapping analysis using SuSiE, which supported the presence of multiple causal variants for 337 

omega-3%, DHA%, PUFA% and omega-6:omega-3 (Supplementary Figure S7). This analysis 338 

provided additional evidence for the potential involvement of multiple causal variants within the 339 

FADS region in modulating the circulating levels of omega-3%, DHA%, PUFA%, and omega-340 

6:omega-3.  341 

We also performed a multi-trait colocalization analysis combining these six cPUFA 342 

phenotypes with BIP. The variant rs174564 (chr11:61588305A>G) had the highest PP of 0.95 343 

(Figure 3C), suggesting that it is likely the shared causal variant between cPUFAs and BIP. The 344 

SNP is an intronic variant of the FADS2 gene and is known to be associated with both cPUFA 345 

levels and BIP. The A allele of rs174564 was associated with an increased level of DHA% (β = 346 

0.28, SE = 0.004, P < 1 × 10-300) and omega-3% (β = 0.39, SE = 0.004, P < 1 × 10-300), while 347 

with a reduced risk of BIP (OR = 0.93, 95% CI = [0.91, 0.95], P = 6.24 × 10-13). Furthermore, 348 

MR analysis also revealed a negative association between omega-3% and BIP (Figure 2A-C). 349 

Combining the results of MR and colocalization analysis, there is strong evidence supporting that 350 

omega-3% has a protective effect on bipolar disorder.  351 

Potential causal relationships informed by shared genetic basis 352 

To advance our understanding of the potential causal relationship between cPUFAs and 353 

brain disorders, we compared and synthesized the findings across the multiple approaches of 354 

evaluating shared genetic basis. We designated strong evidence supporting a potential causal 355 

relationship when there are statistically significant and directionally consistent results in genetic 356 

correlation (P < 0.05), MR (P < 0.05), and colocalization (PP > 0.7). We did not include 357 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2023. ; https://doi.org/10.1101/2023.10.03.23296500doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.03.23296500
http://creativecommons.org/licenses/by-nc/4.0/


 18

polygenic overlap due to its ubiquity among all six cPUFA phenotypes and brain disorders. We 358 

considered that there is suggestive evidence when there were statistically significant and 359 

directionally consistent results in genetic correlation (P < 0.05) and colocalization (PP > 0.7).  360 

We identified four pairs with strong evidence supporting potential causal effects of the 361 

specific cPUFAs on the corresponding brain disorders (Table 1). For example, PUFA% is likely 362 

to have protective effect on MDD with support from the following evidence: 1) PUFA% showed 363 

a negative genetic correlation with MDD (rg = -0.19, P = 7.14 × 10-16); 2) MR results suggest 364 

that higher PUFA% is associated with a reduced risk of MDD (OR = 0.95, 95% CI = [0.92, 0.99], 365 

P = 5.76 × 10-3); 3) Colocalization analysis identified a colocalized region at chr21q22.3 366 

(chr21:46,177,105-47,492,226; PP = 0.83) and a potential shared causal variant rs4818766 367 

(chr21:46635351A>G), which is an intronic variant of gene ADARB1. SNP rs4818766 is known 368 

to be associated with body fat distribution [81]. ADARB1 is highly expressed in the brain and 369 

related to developmental and epileptic encephalopathy [82] and psychiatric disorders [83, 84]. In 370 

addition to PUFA%, our forward MR results also show that higher levels of omega-3% and DHA% 371 

were associated with a reduced risk of MDD, in line with a recent finding [23]. Interestingly, our 372 

forward and reverse MR both showed negative associations between PUFA% and MDD 373 

(forward MR: OR = 0.95, 95% CI = [0.92, 0.99], P = 5.76 × 10-3; reverse MR: OR = 0.91, 95% 374 

CI = [0.84, 0.99], P = 0.013), driven by different genetic variants (Supplementary Figure S8), 375 

supporting a potential bidirectional relationship. 376 

We also found that lower omega-6% are related to lower alcohol consumption (Table 1). 377 

Both genetic correlation (rg = 0.08, P = 0.036; Figure 4A) and forward MR results (βIVW = 0.019, 378 

P = 0.001; Figure 4B) revealed a positive association between omega-6% and alcohol 379 

consumption. In our colocalization analysis (Figure 4C and 4D), we observed that genomic 380 
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region 2p23.2-2p23.3 (chr2:26,894,985-28,598,777) exhibited colocalization signals among 381 

three alcohol-intake phenotypes (AUDIT_C, AUDIT_T, AUDIT_P) and five cPUFA phenotypes 382 

(omega-3%, omega-6%, LA%, PUFA% and omega-6:omega-3). Within this region, SNP 383 

rs1260326 (chr2:27730940T>C) was identified as a potential shared causal variant (PP = 0.99). 384 

Notably, the T allele of rs1260326 was associated with lower levels of omega-6% (β = -0.11, SE 385 

= 0.004, P = 7.0  × 10-159), LA% (β = -0.08, SE = 0.004, P = 1.20  × 10-87) and lower alcohol 386 

consumption (AUDIT_C: β = -0.007, SE = 0.001, P = 5.47  × 10-9; AUDIT_T: β = -0.008, SE = 387 

0.001, P = 2.11  × 10-10; AUDIT_P: β = -0.005, SE = 0.001, P = 6.7  × 10-7). SNP rs1260326, a 388 

missense variant for gene GCKR, is known to be associated with alcohol intake [85], type 2 389 

diabetes [86], liver diseases [87, 88] and lipid levels such as triglyceride and cholesterol [89]. 390 

Taken together evidence from genetic correlation, MR and colocalization analysis, our findings 391 

indicate that lower omega-6% may lower alcohol consumption.  392 

We identified eight trait pairs that display suggestive evidence for a potential causal 393 

relationship. Interestingly, our genetic correlation analysis unveiled a negative correlation 394 

between ADHD and three cPUFA phenotypes: PUFA% (rg = -0.3, P = 2.51 × 10-12), omega-6% 395 

(rg = -0.25, P = 5.67 × 10-8), and DHA% (rg = -0.32, P = 1.73 × 10-10). Further colocalization 396 

analysis identified a genomic locus chr9:85,440,801-86,938,196 shared among ADHD, PUFA%, 397 

omega-6% and LA% (PP > 0.7; Table 1). Our forward MR did not reveal significant associations 398 

between ADHD and the three cPUFAs. However, the reverse MR displayed significant negative 399 

associations (PUFA%: βIVW = -0.07, P = 3.48 × 10-3; omega-6%: βIVW = -0.05, P = 0.046; and 400 

DHA%: βIVW = -0.08, P = 3.43 × 10-3; Supplementary Table S8), suggesting that the presence 401 

of ADHD might contribute to decreased circulating PUFA levels. These findings align with 402 

previous research indicating that individuals with ADHD generally exhibit lower omega-3 PUFA 403 
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levels compared to the control group [14]. This ADHD example provides clues for further studies 404 

into the intricate relationship between ADHD and cPUFAs.  405 
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Discussion 406 

By leveraging GWAS summary statistics of six cPUFA phenotypes and 20 brain disorders, 407 

we revealed a widespread shared genetic basis between the two groups of traits. Our MR analysis 408 

found 16 pairs of cPUFAs and brain disorders that display potential causal associations. Further 409 

colocalization and fine-mapping analysis led to statistically inferred candidate shared causal 410 

variants, such as rs1260326 (GCKR), rs174564 (FADS2) and rs4818766 (ADARB1). We also 411 

identified cPUFA-brain disorder pairs with consistent results across various analysis approaches, 412 

emphasizing a prominent role of cPUFAs in brain disorders, especially MDD, BIP and alcohol 413 

consumption-related phenotypes. Our discoveries provide novel insights into the intricate 414 

relationships between cPUFAs and brain disorders, improving our knowledge in refining dietary 415 

strategies for prevention and intervention. 416 

The protective effect of PUFA% on MDD is strongly supported by various methods with 417 

different model assumptions, including genetic correlation, MR and colocalization. We identified 418 

a putative shared variant rs4818766 and a candidate gene ADARB1. ADARB1 encodes one of the 419 

enzymes involved in the adenosine-to-inosine (A-to-I) RNA editing process known as Adenosine 420 

Deaminases Acting on RNA (ADAR2) [90]. One of the leading hypotheses regarding the 421 

pathogenicity of MDD is the serotonin hypothesis, which suggests that depression may arise 422 

from abnormalities in neurotransmitters, particularly serotonin [90, 91]. ADAR2 could edit 423 

serotonin 2C receptor (5-HT2c-R) at the D site, which reduces G protein coupling and affinity for 424 

serotonin [90]. Notably, prior research has shown that ADAR2 knock-out and mutant mice 425 

lacking the deaminase activity of ADAR2 exhibit elevated body fat and reduced ability to utilize 426 

fatty acids [92, 93]. Animal studies have also demonstrated that supplementing PUFAs in rats 427 
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leads to higher concentrations of serotonin in the brain [94]. Taken together, it is plausible that 428 

PUFAs reduce the risk of MDD by modulating the serotonin transportation through ADAR2 [95]. 429 

Our study also supports the protective effect of omega-3% on BIP. MR analysis showed 430 

that higher omega-3% are associated with a reduced risk of bipolar disorder. Further 431 

colocalization analysis identified a colocalized region where the FADS1 and FADS2 genes are 432 

located. Statistically inferred shared causal variant rs174564 is an intronic variant of the FADS2 433 

gene. SNPs in the FADS1/2 region have been reported to be associated with circulating PUFA 434 

levels and the risk of bipolar disorder in different populations [28, 96, 97]. Significant changes in 435 

the lipid profiles of the plasma and brain, as well as behavioral changes (e.g., hyperactivity and 436 

hypoactivity episodes), were observed in heterozygous Fads1/2 knockout mice [24]. Moreover, 437 

dietary DHA supplementation reduced depressive episodes in the mutant mice, supporting the 438 

protective role of omega-3% against BIP. 439 

We show that lower levels of omega-6% are related to lower alcohol consumption. We 440 

statistically inferred a shared causal variant rs1260326 (gene: GCKR), which explains a 441 

colocalized association signal between omega-6% levels and alcohol consumption. GCKR 442 

encodes glucokinase regulatory protein that binds to glucokinase. Compared to the C allele of 443 

rs1260326, the T allele results in lower binding efficiency of glucokinase regulatory protein, 444 

leading to increased total fatty acids formation, liver fat and triglyceride accumulation [98]. In 445 

addition, the T allele is linked to a higher risk of liver diseases, including nonalcoholic fatty liver 446 

disease (NAFLD) and non-alcoholic steatohepatitis [99]. Lower serum levels of omega-6 fatty 447 

acids and LA were associated with a higher risk for NAFLD [100]. Taken together, it is possible 448 

that individuals with lower PUFA and omega-6 levels tend to have more liver problems (e.g., 449 
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accumulation of liver fat, elevated levels of triglyceride, and alanine aminotransferase), and thus 450 

tend to drink less. 451 

We note that disease status itself might influence cPUFA levels. Our reverse MR results 452 

revealed a significant negative association between ADHD and three cPUFAs (PUFA%, omega-6% 453 

and LA%), suggesting that altered cPUFA levels may be one of the metabolic consequences of 454 

ADHD. Further pairwise colocalization analysis identified a region chr9:85,440,801-86,938,196 455 

colocalized among ADHD, PUFA%, omega-6% and LA% (Table 1 and Supplementary Table 456 

S9). Three distinct SNPs (i.e., rs2576362, rs1982151, rs6559744) were statistically inferred as 457 

putative causal variants that explain the shared association signal. However, none of the 458 

identified SNP has strong enough evidence for causation (PP < 0.1), and further studies are 459 

needed to pinpoint shared causal variants and candidate genes in this region. 460 

The discrepancy between the genetic correlation and MR results could be attributed to the 461 

differences in the sets of genetic variants analyzed in either approach and the existence of 462 

discordant pleiotropy across variants. It also reflects the limitations of different methods as well 463 

as the complex genetic architecture of brain disorders [101]. Taking omega-3% and BIP as an 464 

example, their positive genetic correlation suggests the presence of a substantial number of 465 

common variants that exert small yet consistent effects on both phenotypes (Supplementary 466 

Figure S9). However, the negative association observed in MR and colocalization analysis is 467 

driven by the FADS locus that exhibited a relatively large effect but with opposite directions on 468 

the two phenotypes (Supplementary Figure S8 and Supplementary Table S12). We highlight 469 

the need to understand the biological function of genetic variants in MR analysis, especially 470 

when the trait of interest has complicated genetic architecture [101, 102]. 471 
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In our analysis, we focused on relative measures of cPUFAs. We found limited genetic 472 

correlations or polygenic overlaps between the absolute measures of cPUFAs and brain disorders 473 

(Supplementary Figure S3-S4 and Table S3-S4). It is important to note that absolute and 474 

relative measures of cPUFAs offer distinct perspectives on fatty acid metabolism. Relative 475 

measures are preferred in the majority of cases because PUFAs as well as saturated and 476 

monounsaturated fatty acids are metabolized by the same enzymes derived from common genes 477 

(e.g. FADS1/FADS2) [103]. They are also preferred because relative measures are more precise 478 

(lower analytical SDs) since they are all referenced to one another and not to exogenously-added 479 

internal standards. Absolute measures provide direct information about the quantities of cPUFAs 480 

which become important when any particular fatty acid may become limiting for a particular 481 

physiological requirement [104-106]. The different patterns with brain disorders are consistent 482 

with the limited genetic correlation between absolute and relative cPUFAs (Supplementary 483 

Figure S2). They likely reflect different aspects of lipid metabolism. Future studies are needed to 484 

discern the exact mechanisms.  485 

Our study is not without limitations. First, using different GWAS summary statistics 486 

could lead to minor differences in the results since slightly different analytical strategies were 487 

applied (e.g., association methods, quality control criteria, and covariates). To address this issue, 488 

we analyzed multiple GWAS of the same phenotype to evaluate robustness of our discoveries. 489 

We observed consistent correlation patterns with different GWAS of the same traits 490 

(Supplementary Figure S3 and Supplementary Table S3). Second, five brain disorders (i.e., 491 

ANX, OCD, OD, AD, and TS) had relatively small sample sizes that did not meet the 492 

requirement of MiXeR and were therefore excluded from the estimation of polygenic overlap. 493 

Finally, our study focused only on the European population. Genetic adaptation and variation of 494 
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fatty acid composition have been demonstrated in the Inuit, African, South Asian, East Asian, 495 

and European populations [23, 107-109]. Differences in prevalence [110, 111] and genetic risk 496 

factors [89] of psychiatric disorders were also demonstrated across ethnic groups. Therefore, 497 

expanding our research to other populations is necessary to gain a deeper understanding of the 498 

shared genetic basis and genetic determinants between cPUFAs and brain disorders across 499 

populations. 500 

Our systemic genetic analysis of six cPUFA traits and 20 brain disorders uncovered a 501 

widespread shared genetic basis between the two groups. We pinpointed specific shared genetic 502 

variants and provided evidence supporting the potential effects of certain cPUFAs on specific 503 

brain disorders. Our findings provide new insights into the shared genetic architecture underlying 504 

these traits and have implications for interventions and dietary recommendations of PUFAs in the 505 

context of brain disorders.  506 
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Abbreviations 532 

1KGP 1000 Genomes Project 
AD Alcohol dependence 
ADARB1 Adenosine Deaminase RNA Specific B1 
ADHD Attention deficit-hyperactivity disorder 
ALZ Alzheimer’s disease 
AN Anorexia nervosa 
ANX Anxiety disorders and factors 
ASD Autism spectrum disorder 
AUDIT Alcohol use disorder identification test 
AUDIT_C AUDIT focusing on alcohol consumption 
AUDIT_P AUDIT focusing on the problematic consequences of drinking 
AUDIT_T AUDIT total score 
BIP Bipolar disorder 
cPUFA Circulating polyunsaturated fatty acids 
CS Credible set 
CUD Cannabis use disorder 
DHA Docosahexaenoic acid 
FADS Fatty acid desaturase 
GCKR Glucokinase regulatory protein 
GWAS Genome-wide association study 
h2 Heritability 
INS Insomnia 
IVW Inverse weighted variance  
LA Linoleic acid 
LD Linkage disequilibrium 
LDSC LD Score regression 
MAF Minor allele frequency 
MDD Major depression 
MHC Major histocompatibility complex 
MOOD Mood disorders 
MR Mendelian randomization 
NAFLD Nonalcoholic fatty liver disease 
nc12 Number of common variants shared between trait1 and trait2 
NE Neuroticism 
OCD Obsessive-compulsive disorder 
OD Opioid dependence 
PGC Psychiatric Genomic Consortium 
PP Posterior probability 
PTSD Post-traumatic stress disorder 
PUFA Polyunsaturated fatty acids 
rg Genetic correlation coefficient 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2023. ; https://doi.org/10.1101/2023.10.03.23296500doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.03.23296500
http://creativecommons.org/licenses/by-nc/4.0/


 28

SCZ Schizophrenia 
SNP Single-nucleotide polymorphism 
TS Tourette syndrome 
VEP Variant Effect Predictor 
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 Table 1. Evidence supporting the potential role of cPUFAs in brain disorders  1 

Note: rg, genetic correlation; βIVW, estimated effects of trait 1 on trait 2 using IVW method; PP, posterior probability. A1, effect allele; A2, reference allele. β1, SE1 and β2, SE2 are 2 

genetic effects and standard errors of A1 on trait 1 and trait 2, respectively. P1 and P2 are P values for trait 1 and trait 2 extracted from GWAS summary statistics, respectively. 3 
aThe reverse MR of the two PUFA-ADHD pairs showed significant results (PIVW < 0.05).4 

Triat1 Trait2 
Genetic correlation  MR  Colocalization 

A1 A2 β1 (SE1) β2 (SE2) P1 P2 
rg P βIVW PIVW colocalized 

regions PP Candidate 
SNP 

Strong evidence 

PUFA% MDD -0.193 7.14E-16 -0.051 0.006 chr21q22.3 0.829 rs4818766 G A 
-0.019 
(0.004) 

0.022 
(0.005) 

1.30E-06 6.38E-07 

PUFA% AUDIT_C 0.116 2.0E-3 0.014 0.019 chr2p23.2 0.996 rs1260326 C T 
0.090 

(0.004) 
0.007 

(0.001) 
9.8E-113 5.47E-09 

Omega-6% AUDIT_C 0.084 0.036 0.019 0.001 chr2p23.2 0.996 rs1260326 C T 
0.109 

(0.004) 
0.007 

(0.001) 
7.0E-159 5.47E-09 

PUFA% AUDIT_T 0.079 0.037 0.014 0.049 chr2p23.2 0.999 rs1260326 C T 
0.090 

(0.004) 
0.008 

(0.001) 
9.8E-113 2.11E-10 

Suggestive evidence 

LA% ADHD -0.338 3.25E-13 -0.070 0.230 chr9q21.32 0.768 rs2576362 T G 
0.025 

(0.005) 
-0.067 
(0.015) 

8.20E-08 1.30E-05 

PUFA% ADHDa -0.301 2.51E-12 -0.089 0.151 chr9q21.32 0.722 rs6559744 A G 
0.025 

(0.005) 
-0.067 
(0.015) 

1.90E-08 1.26E-05 

DHA% AN 0.276 6.35E-12 0.072 0.248 chr6q16.1 0.797 rs1487445 T C 
0.020 

(0.004) 
0.056 

(0.013) 
4.30E-07 2.70E-05 

Omega-6% ADHDa -0.254 5.67E-08 -0.062 0.306 chr9q21.32 0.755 rs1982151 G A 
-0.026 
(0.005) 

0.068 
(0.015) 

1.70E-08 1.04E-05 

PUFA% SCZ 0.100 2.0E-4 0.062 0.364 
chr12q24.31 0.858 rs2851447 C G 

-0.022 
(0.005) 

-0.091 
(0.012) 

1.70E-06 2.19E-14 

chr1p36.11 0.854 rs79598313 T C 
-0.081 
(0.013) 

-0.141 
(0.035) 

3.00E-09 4.86E-05 

Omega-3% SCZ 0.091 0.006 0.013 0.815 chr6p21.33 0.818 rs2596500 C A 
-0.027 
(0.006) 

-0.166 
(0.018) 

1.10E-06 1.16E-19 

Omega-6% SCZ 0.077 0.006 0.015 0.779 chr12q24.31 0.702 rs2851447 C G 
-0.024 
(0.005) 

-0.091 
(0.012) 

2.30E-07 2.19E-14 

Omega-6: 
Omega-3 

BIP -0.068 0.042 0.041 0.429 
chr6p22.1 0.790 rs3094067 G T 

0.029 
(0.006) 

-0.103 
(0.016) 

7.20E-06 9.88E-11 

chr6p21.33 0.877 rs3130490 T G 
0.028 

(0.006) 
-0.082 
(0.016) 

3.30E-06 1.30E-07 
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Figures835 

836 

Figure 1: Widespread, moderate genetic basis shared between cPUFAs and brain disorders.837 

A) Pairwise genetic correlations between six cPUFAs and 20 brain disorders. P-value cutoffs of838 

0.05, 0.001, 4.17×10-4 are used to represent increasing levels of statistical significance; colors are839 

used to represent degree of genetic correlation (rg) between two traits. B) Pairwise polygenic840 

overlaps between six cPUFAs and 15 brain disorders. The color and number of each box indicate841 

the degree of polygenic overlap and number of causally associated SNPs shared between842 

cPUFAs and brain disorders (nc12). Bar plots on the top and left indicate the number of cPUFAs-843 

and brain disorders- associated variants, respectively, which explain 90% of SNP-based844 

heritability. Two cPUFA-brain disorder pairs highlighted in the red boxes correspond to panels C845 

and D). C) Genetic effects of genome-wide SNPs on PUFA% (x axis) and NE (y axis). D)846 

Genetic effects of genome-wide SNPs on LA% (x axis) and AUDIT_C (y axis). Each dot847 

represents a genetic variant; colors indicate variant density. 848 
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849 

Figure 2. Statistical inference of causal relationship between cPUFAs and brain disorders.850 

A) A heatmap summarizing the effects of six cPUFAs on 17 brain disorders. IVW p-value of 0.05851 

is used to represent statistical significance. Colors represent the effects (βIVW) of cPUFAs on852 

brain disorders. The pair of omega-3% and BIP highlighted in the red box corresponds to panel853 

C).  B) MR results showing a significant association between cPUFAs and brain disorders. Beta854 

and OR estimated using IVW method are used to represent the effects of cPUFAs on continuous855 

and binary outcomes, respectively. C) MR estimated effects of omega-3% (x axis) on BIP (y856 

axis). Effects estimated by the four models are shown by fitted lines; slopes of these lines857 

indicate the effect sizes.  858 
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859 

Figure 3. Colocalization analysis detects genomic loci shared between cPUFAs and brain860 

disorders. A) A heatmap summarizing pairwise colocalization between six cPUFAs and 17 brain861 

disorders. The color and number of each box indicate the number of significant colocalized862 

regions between cPUFAs and brain disorders (PP > 0.7). Bar plots on the top and left indicate the863 

numbers of unique colocalized SNPs (black) and loci (grey, PP > 0.7) for cPUFAs and brain864 

disorders, respectively. B) Regional association plots of six cPUFA phenotypes and BIP in865 

chr11:61,520,000-61,660,000. Variant positions are shown on x axis, -log10P on the left y axis,866 

recombination rate on the right y axis; variant rs174564 is marked as the lead SNP; genes located867 

in the region are shown in the bottom. LD r2 values are indicated by colors, and recombination868 
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rates by curves. C) Multi-trait colocalization analysis combing six cPUFA phenotypes and BIP869 

identified a putative shared causal variant rs174564 (PP = 0.95). PP values are shown on y axis. 870 

871 

Figure 4. Evidence supporting the effect of omega-6% on alcohol consumption. A) Genetic872 

effects of genome-wide SNPs on omega-6% (x axis) and AUDIT_C (y axis). Each dot represents873 

a genetic variant; colors indicate the variant density. B) MR estimated effects of omega-6% (x874 

axis) on AUDIT_C (y axis). Effects estimated by the four models are shown by fitted lines;875 
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slopes of these lines indicate the effect sizes. C) Regional association plots of five cPUFA 876 

phenotypes and three alcohol consumption phenotypes in chr2:276,000,000-27,900,000. Variant 877 

positions are shown on x axis, -log10P on the left y axis, recombination rate on the right y axis; 878 

variant rs1260326 is marked as the lead SNP; genes located in the region are shown in the 879 

bottom. LD r2 values are indicated by colors, and recombination rates by curves. D) Multi-trait 880 

colocalization analysis combing five cPUFA phenotypes and three alcohol consumption 881 

phenotypes identified a shared putative causal variant rs1260326 (PP = 0.99). PP values are 882 

shown on y axis. 883 
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