- **Shared genetic basis informs the roles of polyunsaturated**
 1 fatty acids in brain disorders

Huifang Xu^{1*}, Yitang Sun^{1*}, Michael Francis², Claire F. Cheng¹, Nitya T.R. Modulla¹, J. Thoma
 1 Brenna^{3,4,5}, **fatty acids in brain disorders**

Huifang Xu^{1*}, Yitang Sun^{1*}, Michael Francis², Claire F. Cheng¹, Nitya⁷

Brenna^{3,4,5}, Charleston W. K. Chiang^{6,7}, <u>Kaixiong Y</u>

¹ Department of Genetics, University of Georg Huifang Xu^{1*}, Yitang Sun^{1*}, Michael Francis², Claire F. Cheng¹, Nitya T.R. Modulla¹ 3 Huifang Xu^{1*}, Yitang Sun^{1*}, Michael Francis², Claire F. Cheng¹, Nitya T.R. Modulla¹, J. Thomas

4 Brenna^{3,4,5}, Charleston W. K. Chiang^{6,7}, <u>Kaixiong Ye^{1,2#}</u>

¹Department of Genetics, University of Geor Brenna^{3,4,5}, Charleston W. K. Chiang^{6,7}, Kaixiong Ye^{1,2#}
- ¹Department of Genetics, University of Georgia, Athens, Georgia;
- ²Institute of Bioinformatics, University of Georgia, Athens, Georgia;
- -5678901 ¹Department of Genetics, University of Georgia, Athens, Georgia;

²Institute of Bioinformatics, University of Georgia, Athens, Georgia;

³Dell Pediatric Research Institute and Department of Pediatrics, The Austin, Te ² Institute of Bioinformatics, University of Georgia, Athens, Georgia;

³ Dell Pediatric Research Institute and Department of Pediatrics, The

⁴ Dell Pediatric Research Institute and Department of Chemistry, The

⁵ ³Dell Pediatric Research Institute and Department of Pediatrics, The University of Texas at
-
- ³ Dell Pediatric Research Institute and Department of Pediatrics, The University of Texas at

⁴ Dell Pediatric Research Institute and Department of Chemistry, The University of Texas at

⁴ Dell Pediatric Research Ins 8 Austin, Texas;
9 ⁴Dell Pediatric
0 Austin, Texas;
1 ⁵Department of
8 Austin, Texas;
⁶Center for Ge
8 School of Med ⁴Dell Pediatric Research Institute and Department of Chemistry, The University of Texas at
-
- ⁴ Dell Pediatric Research Institute and Department of Chemistry, The University of Texas at

⁵ Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at

⁵ Austin, Texas;

⁶ Center 10 Austin, Texas;

11 ⁵Department of

12 Austin, Texas;

13 ⁶Center for Ger

14 School of Med

15 ⁷Department of

16 Angeles, Califo ³Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at
-
- ⁶Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck
-
- ²Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at

12 Austin, Texas;

⁶Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Kec

14 School of 12 Austin, Texas;

13 ⁶Center for General

14 School of Med

15 ⁷Department of

16 Angeles, Califo

17 ^{*}Co-first autho ⁹Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck

14 School of Medicine, University of Southern California, Los Angeles, California;

⁷Department of Quantitative and Computati 14 School of Medicine, University of Southern California, Los Angeles, California;

⁷Department of Quantitative and Computational Biology, University of Southern

16 Angeles, California;

¹⁷Co-first authors

[#]Corresp ⁷Department of Quantitative and Computational Biology, University of Southern California, Los 15 Tepartment of Quantitative and Computational Biology, University of Southern California, Los

16 Angeles, California;

17 ^{*}Co-first authors

[#]Corresponding author: kaixiong.ye@uga.edu
-
-
- *C*o-first authors^{*}
- 16 Angeles, California;
17
18 ^{*}Co-first authors
19 [#]Corresponding authors 18
19 18 Co-first authors
19 to Corresponding a
19 to Corresponding a Corresponding author: kaixiong.ye@uga.edu 19 "Corresponding author: kaixiong.ye@uga.edu

20 **Abstract**
21 The neura
22 indispensal
23 deficiency
24 major depi 21 The neural tissue is rich in polyunsaturated fatty acids (PUFAs), components that are
22 indispensable for the proper functioning of neurons, such as neurotransmission. PUFA nutritional
23 deficiency and imbalance have indispensable for the proper functioning of neurons, such as neurotransmission. PUFA nutritional
23 deficiency and imbalance have been linked to a variety of chronic brain disorders, including
24 major depressive disorder 23 deficiency and imbalance have been linked to a variety of chronic brain disorders, including
24 major depressive disorder (MDD), anxiety, and anorexia. However, the effects of PUFAs on
25 brain disorders remain inconcl 24 major depressive disorder (MDD), anxiety, and anorexia. However, the effects of PUFAs on
25 brain disorders remain inconclusive, and the extent of their shared genetic determinants is largely
26 unknown. Here, we used g 25 brain disorders remain inconclusive, and the extent of their shared genetic determinants is largely
26 unknown. Here, we used genome-wide association summary statistics to systematically examine
27 the shared genetic b 26 unknown. Here, we used genome-wide association summary statistics to systematically examine

27 the shared genetic basis between six phenotypes of circulating PUFAs ($N = 114,999$) and 20

28 brain disorders ($N = 9,725-$ 27 the shared genetic basis between six phenotypes of circulating PUFAs $(N = 114,999)$ and 20
28 brain disorders $(N = 9,725-762,917)$, infer their potential causal relationships, identify
29 colocalized regions, and pinpoin brain disorders (N = 9,725-762,917), infer their potential causal relationships, identify

29 colocalized regions, and pinpoint shared genetic variants. Genetic correlation and polygenic

30 overlap analyses revealed a wid colocalized regions, and pinpoint shared genetic variants. Genetic correlation and polygenic
30 overlap analyses revealed a widespread shared genetic basis for 77 trait pairs between six PUFA
31 phenotypes and 16 brain dis overlap analyses revealed a widespread shared genetic basis for 77 trait pairs between six PUFA

31 phenotypes and 16 brain disorders. Two-sample Mendelian randomization analysis indicated

32 potential causal relationship 31 phenotypes and 16 brain disorders. Two-sample Mendelian randomization analysis indicated
32 potential causal relationships for 16 pairs of PUFAs and brain disorders, including alcohol
33 consumption, bipolar disorder (B 32 potential causal relationships for 16 pairs of PUFAs and brain disorders, including alcohol
33 consumption, bipolar disorder (BIP), and MDD. Colocalization analysis identified 40 shared loci
34 (13 unique) among six PUF 33 consumption, bipolar disorder (BIP), and MDD. Colocalization analysis identified 40 shared loci
34 (13 unique) among six PUFAs and ten brain disorders. Twenty-two unique variants were
35 statistically inferred as candid 34 (13 unique) among six PUFAs and ten brain disorders. Twenty-two unique variants were
35 statistically inferred as candidate shared causal variants, including rs1260326 (*GCKR*), rs174564
36 (*FADS2*) and rs4818766 (*ADA* 35 statistically inferred as candidate shared causal variants, including rs1260326 (*GCKR*), rs174564 (*FADS2*) and rs4818766 (*ADARB1*). These findings reveal a widespread shared genetic basis between PUFAs and brain diso 36 (*FADS2*) and rs4818766 (*ADARB1*). These findings reveal a widespread shared genetic basis
37 between PUFAs and brain disorders, pinpoint specific shared variants, and provide support for
38 the potential effects of PU 37 between PUFAs and brain disorders, pinpoint specific shared variants, and provide support for
38 the potential effects of PUFAs on certain brain disorders, especially MDD, BIP, and alcohol
39 consumption. 38 the potential effects of PUFAs on certain brain disorders, especially MDD, BIP, and alcohol
39 consumption. 39 consumption.

40 **Introduction**
41 Disorder
42 example, in 201
43 from 13.6 millionals Disorders of the brain contribute significantly to the global disease burden [1, 2]. For
example, in 2019, more than 970 million individuals suffered from 12 mental disorders, ranging
from 13.6 million for eating disorders example, in 2019, more than 970 million individuals suffered from 12 mental disorders, ranging
from 13.6 million for eating disorders to 301.4 million for anxiety disorders [2]. These disorders
encompass a wide range of ps 43 from 13.6 million for eating disorders to 301.4 million for anxiety disorders [2]. These disorders
44 encompass a wide range of psychiatric and neurological symptoms, including cognitive
45 impairment, emotional dysregu encompass a wide range of psychiatric and neurological symptoms, including cognitive
45 impairment, emotional dysregulation, and behavioral disturbances, all of which profoundly
46 disrupt the life of the patients, and can 45 impairment, emotional dysregulation, and behavioral disturbances, all of which profoundly
46 disrupt the life of the patients, and can in severe cases lead to suicide [3]. Effective prevention
47 and treatment of brain disrupt the life of the patients, and can in severe cases lead to suicide [3]. Effective prevention
and treatment of brain disorders are of utmost importance in improving clinical symptoms and
overall quality of life. One and treatment of brain disorders are of utmost importance in improving clinical symptoms and

48 overall quality of life. One promising and emerging therapeutic approach is nutritional medicine

49 [4], which seeks to prev overall quality of life. One promising and emerging therapeutic approach is nutritional medicine

49 [4], which seeks to prevent the onset of brain disorders or alleviate their clinical manifestations

50 by implementing s

49 [4], which seeks to prevent the onset of brain disorders or alleviate their clinical manifestations
50 by implementing specific nutritional interventions [4, 5].
51 Brain structural lipids are rich in long-chain omega-3 by implementing specific nutritional interventions [4, 5].

51 Brain structural lipids are rich in long-chain ome

52 acids (PUFAs) [6]. Dietary deficiency of omega-3 PU

53 function in experimental animals [7]. In humans, Brain structural lipids are rich in long-chain omega-3 and omega-6 polyunsaturated fatty

52 acids (PUFAs) [6]. Dietary deficiency of omega-3 PUFAs leads to global deficits in neural

53 function in experimental animals [7 acids (PUFAs) [6]. Dietary deficiency of omega-3 PUFAs leads to global deficits in neural
function in experimental animals [7]. In humans, PUFAs and particularly omega-3s, have been
suggested to have protective and therape function in experimental animals [7]. In humans, PUFAs and particularly omega-3s, have been
suggested to have protective and therapeutic effects on brain disorders because they regulate
physiological processes such as neur suggested to have protective and therapeutic effects on brain disorders because they regulate
physiological processes such as neuroinflammation, neurotransmission, and neuron survival [4, 6,
8]. Omega-3 supplementation has physiological processes such as neuroinflammation, neurotransmission, and neuron survival [4, 6, 8]. Omega-3 supplementation has shown promising results in reducing clinical symptoms associated with a range of brain condit 8]. Omega-3 supplementation has shown promising results in reducing clinical symptoms
associated with a range of brain conditions, including MDD [9, 10], anxiety disorders [11],
schizophrenia [12, 13], attention-deficit/hy 57 associated with a range of brain conditions, including MDD [9, 10], anxiety disorders [11],
58 schizophrenia [12, 13], attention-deficit/hyperactivity disorder (ADHD) [14], autism spectrum
59 disorder [15] and Alzheimer 58 schizophrenia [12, 13], attention-deficit/hyperactivity disorder (ADHD) [14], autism spectrum
disorder [15] and Alzheimer's disease (ALZ) [16]. However, several randomized controlled trials
reported small or no effects 59 disorder [15] and Alzheimer's disease (ALZ) [16]. However, several randomized controlled trials
60 reported small or no effects of PUFAs on schizophrenia [5], depression [17], ALZ [18] and
61 psychosis [19, 20]. Consequ 60 reported small or no effects of PUFAs on schizophrenia [5], depression [17], ALZ [18] and
61 psychosis [19, 20]. Consequently, the overall impact of PUFAs on human brain disorders
62 remains inconclusive, necessitating 61 psychosis [19, 20]. Consequently, the overall impact of PUFAs on human brain disorders
62 remains inconclusive, necessitating further investigation to establish their therapeutic potential.
3 62 remains inconclusive, necessitating further investigation to establish their therapeutic potential.

63 While observational associations are commonly confounded by unknown or unmeasured
64 factors [21], exploring the shared genetic basis between PUFAs and brain disorders offers
65 valuable insights into their shared biolo factors [21], exploring the shared genetic basis between PUFAs and brain disorders offers

stallable insights into their shared biological pathways and potential causal relationships [22].

Previous studies have leveraged valuable insights into their shared biological pathways and potential causal relationships [22].

Frevious studies have leveraged genetic information to investigate the connections between

PUFAs and brain disorders (**Supp** 66 Previous studies have leveraged genetic information to investigate the connections between
67 PUFAs and brain disorders (**Supplementary Table S1**), such as the application of Mendelian
68 randomization (MR) to statistic FUFAs and brain disorders (**Supplementary Table S1**), such as the application of Mendelian
randomization (MR) to statistically infer causal relationships. For instance, a recent MR study
suggested that decreased docosahexa 68 randomization (MR) to statistically infer causal relationships. For instance, a recent MR study
69 suggested that decreased docosahexaenoic acid (DHA) and increased omega-6 to omega-3 ratio
69 have causal links with MD 69 suggested that decreased docosahexaenoic acid (DHA) and increased omega-6 to omega-3 ratio

70 have causal links with MDD, and it further identified the fatty acid desaturase (*FADS*) gene

21 cluster as a common genet 70 have causal links with MDD, and it further identified the fatty acid desaturase (*FADS*) gene

71 cluster as a common genetic signal [23]. In an experimental study, mice with *Fads1/2* genes

87 knockout were used to si 71 cluster as a common genetic signal [23]. In an experimental study, mice with *Fads1/2* genes
72 knockout were used to simulate the effect of BIP risk allele on *Fads1/2* activity, revealing
73 significant changes in lip 22 knockout were used to simulate the effect of BIP risk allele on *Fads1/2* activity, revealing
32 significant changes in lipid profile and behavioral alterations [24]. However, current genetic
32 studies primarily concen is significant changes in lipid profile and behavioral alterations [24]. However, current genetic
studies primarily concentrate on specific brain disorders (e.g., MDD [23, 25], SCZ [26, 27], and
BIP [24, 28]) or a limited 57 studies primarily concentrate on specific brain disorders (e.g., MDD [23, 25], SCZ [26, 27], and

75 BIP [24, 28]) or a limited number of genes, such as *FADS* [23, 24, 26, 28] and *ELOVL2/5* [26].

76 Therefore, it is Therefore, it is necessary to explore the broader genomic landscape to ascertain additional

Therefore, it is necessary to explore the broader genomic landscape to ascertain additional

genetic determinants that underlie t

Therefore, it is necessary to explore the broader genomic landscape to ascertain additional

genetic determinants that underlie the connection between PUFAs and brain disorders.

Our study aims to systematically explore th The process of the connection between PUFAs and brain disorders.

The course of the shared genetic basis between the circulating PUFAs (cPUFAs) and brain disorders, infer their potential causal relations in disorders and 78 Our study aims to systematically explore the shared genetic basis between the levels of
79 circulating PUFAs (cPUFAs) and brain disorders, infer their potential causal relationships,
80 identify shared genomic regions, circulating PUFAs (cPUFAs) and brain disorders, infer their potential causal relationships,

80 identify shared genomic regions, and pinpoint specific shared genetic variants. We performed

81 four major analyses using gen 80 identify shared genomic regions, and pinpoint specific shared genetic variants. We performed
81 four major analyses using genome-wide association study (GWAS) summary statistics for six
82 cPUFA phenotypes (N = 114,999) 81 four major analyses using genome-wide association study (GWAS) summary statistics for six
82 cPUFA phenotypes ($N = 114,999$) and 20 brain disorders ($N = 9,725-762,917$). First, we
83 estimated genetic correlation, and 82 cPUFA phenotypes (N = 114,999) and 20 brain disorders (N = 9,725-762,917). First, we estimated genetic correlation, and second, quantified the number of shared genetic variants, between cPUFA phenotypes and brain disor 83 estimated genetic correlation, and second, quantified the number of shared genetic variants,
84 between cPUFA phenotypes and brain disorders. Third, we performed MR analysis to
85 statistically infer causal associations 84 between cPUFA phenotypes and brain disorders. Third, we performed MR analysis to statistically infer causal associations between cPUFAs and brain disorders. Lastly, we conducted 4 85 statistically infer causal associations between cPUFAs and brain disorders. Lastly, we conducted

-
- 86 colocalization analysis and statistical fine-mapping to identify colocalized regions and pinpoint
87 putative shared causal variants. Collectively, our study characterizes the shared genetic basis and
98 informs the rel 87 putative shared causal variants. Collectively, our study characterizes the shared genetic basis and
88 informs the relationships between cPUFAs and brain disorders.
- 88 informs the relationships between cPUFAs and brain disorders.

89 **Methods**
90 **GWAS sun**
91 Six
92 **(Suppleme**)
93 percentages 90 **GWAS summary statistics and preprocessing**
91 **Six cPUFA phenotypes and 20 br**
92 **(Supplementary Figure S1; Supplementary T**
93 percentages of total PUFAs, omega-3, omega-6,
94 and the omega-6 to omega-3 ratio. They a Six cPUFA phenotypes and 20 brain disorders were included in the study

92 (**Supplementary Figure S1; Supplementary Table S2**). The six cPUFA traits were the relative

93 percentages of total PUFAs, omega-3, omega-6, DHA, 92 (**Supplementary Figure S1; Supplementary Table S2**). The six cPUFA traits were the relative
93 percentages of total PUFAs, omega-3, omega-6, DHA, and linoleic acid (LA) in total fatty acids,
94 and the omega-6 to omega-93 percentages of total PUFAs, omega-3, omega-6, DHA, and linoleic acid (LA) in total fatty acids,
94 and the omega-6 to omega-3 ratio. They are abbreviated as PUFA%, omega-3%, omega-6%,
95 DHA%, LA%, and omega-6:omega-3, 94 and the omega-6 to omega-3 ratio. They are abbreviated as PUFA%, omega-3%, omega-6%,
95 DHA%, LA%, and omega-6:omega-3, respectively. The 20 brain disorders included
96 schizophrenia (SCZ) [29], MDD [30], BIP [31], obse 95 DHA%, LA%, and omega-6:omega-3, respectively. The 20 brain disorders included
96 schizophrenia (SCZ) [29], MDD [30], BIP [31], obsessive-compulsive disorder (OCD) [32],
97 anxiety disorders and factors (ANX) [33], post-96 schizophrenia (SCZ) [29], MDD [30], BIP [31], obsessive-compulsive disorder (OCD) [32],
97 anxiety disorders and factors (ANX) [33], post-traumatic stress disorder (PTSD) [34], anorexia
98 nervosa (AN) [35], autism spec 97 anxiety disorders and factors (ANX) [33], post-traumatic stress disorder (PTSD) [34], anorexia

98 nervosa (AN) [35], autism spectrum disorder (ASD) [36], Tourette syndrome (TS) [37], attention

99 deficit-hyperactivity 98 nervosa (AN) [35], autism spectrum disorder (ASD) [36], Tourette syndrome (TS) [37], attention

deficit-hyperactivity disorder (ADHD) [38], mood disorders (MOOD), insomnia (INS) [39],

neuroticism (NE) [40], ALZ [41], o 99 deficit-hyperactivity disorder (ADHD) [38], mood disorders (MOOD), insomnia (INS) [39],

00 neuroticism (NE) [40], ALZ [41], opioid dependence (OD) [42], cannabis use disorder (CUD)

143], alcohol dependence (AD) [44], neuroticism (NE) [40], ALZ [41], opioid dependence (OD) [42], cannabis use disorder (CUD)

101 [43], alcohol dependence (AD) [44], alcohol use disorder identification test total score

102 (AUDIT_T), AUDIT focusing on alco 101 [43], alcohol dependence (AD) [44], alcohol use disorder identification test total score

102 (AUDIT_T), AUDIT focusing on alcohol consumption (AUDIT_C) and AUDIT focusing on the

103 problematic consequences of drinki

(AUDIT_T), AUDIT focusing on alcohol consumption (AUDIT_C) and AUDIT focusing on the

103 problematic consequences of drinking (AUDIT_P) [45].

104 Publicly available GWAS summary statistics of all cPUFAs and brain disorde 103 problematic consequences of drinking (AUDIT_P) [45].

104 Publicly available GWAS summary statistics of

105 downloaded from IEU Open GWAS [46] and Psychia

106 GWAS summary statistics for insomnia [39] wer

107 Nutrig 104 Publicly available GWAS summary statistics of all cPUFAs and brain disorders were
105 downloaded from IEU Open GWAS [46] and Psychiatric Genomic Consortium (PGC) [47].
106 GWAS summary statistics for insomnia [39] were downloaded from IEU Open GWAS [46] and Psychiatric Genomic Consortium (PGC) [47].
106 GWAS summary statistics for insomnia [39] were downloaded from the Center for
107 Nutrigenomics and Cognitive Research (CNCR, https://ct 106 GWAS summary statistics for insomnia [39] were downloaded from the Center for
107 Nutrigenomics and Cognitive Research (CNCR, https://ctg.cncr.nl/software/summary_statistics).
108 Multiple GWAS for each of seven brain 107 Nutrigenomics and Cognitive Research (CNCR, https://ctg.cncr.nl/software/summary_statistics).

108 Multiple GWAS for each of seven brain disorders (i.e., SCZ, BIP, MDD, INS, ALZ, AN, ASD)

109 were included for replica 108 Multiple GWAS for each of seven brain disorders (i.e., SCZ, BIP, MDD, INS, ALZ, AN, ASD)
109 were included for replication analysis (**Supplementary Table S2**). A total of 34 GWAS for brain
110 disorders and 11 GWAS for were included for replication analysis (**Supplementary Table S2**). A total of 34 GWAS for brain disorders and 11 GWAS for cPUFAs were examined. Four GWAS were removed from our study for reasons including 1) no clear inform 110 disorders and 11 GWAS for cPUFAs were examined. Four GWAS were removed from our study
111 for reasons including 1) no clear information indicating effect allele $(n=2)$ [48, 49]; 2) incorrect
6 111 for reasons including 1) no clear information indicating effect allele $(n=2)$ [48, 49]; 2) incorrect 6

data format (n=1) [50]; 3) the number of cases is less than 1000 (n=1) [51]. We focused on

113 European ancestry to align ancestry across studies. Phenotypes associated with alcohol intake

114 (AD, AUDIT_T, AUDIT_C, AUDI European ancestry to align ancestry across studies. Phenotypes associated with alcohol intake

114 (AD, AUDIT_T, AUDIT_C, AUDIT_P) had pairwise genetic correlations less than 1 [45], and

115 therefore were analyzed separa

(AD, AUDIT_T, AUDIT_C, AUDIT_P) had pairwise genetic correlations less than 1 [45], and

therefore were analyzed separately.

116 All GWAS summary statistics were harmonized to ensure data quality and consistency.

117 Sum therefore were analyzed separately.

116 All GWAS summary statist

117 Summary statistics of three GWA

118 hg19/GRCh37 genome build by l

119 harmonize all GWAS summary statistics of three CWA

120 uniformity in SNP ID: 3 116 All GWAS summary statistics were harmonized to ensure data quality and consistency.

117 Summary statistics of three GWAS from hg18 reference genome build were converted into

118 hg19/GRCh37 genome build by Liftover [117 Summary statistics of three GWAS from hg18 reference genome build were converted into
118 hg19/GRCh37 genome build by Liftover [52]. MungeSumstats (v1.3.17) [53] was used to
119 harmonize all GWAS summary statistics in harmonize all GWAS summary statistics including: 1) uniformity in strand designation; 2) uniformity in SNP ID; 3) same effect allele; 4) effect size and standard error, or Z score are included; 5) hg19/GRCh37 reference gen harmonize all GWAS summary statistics including: 1) uniformity in strand designation; 2)
120 uniformity in SNP ID; 3) same effect allele; 4) effect size and standard error, or Z score are
121 included; 5) hg19/GRCh37 refer uniformity in SNP ID; 3) same effect allele; 4) effect size and standard error, or Z score are

121 included; 5) hg19/GRCh37 reference genome build is used; 6) uniformity in the p-value format;

122 7) removal of InDels; 8 121 included; 5) hg19/GRCh37 reference genome build is used; 6) uniformity in the p-value format;

122 7) removal of InDels; 8) removal of SNPs with low genotype imputation quality (INFO < 0.3).

123 After harmonization, 122 7) removal of InDels; 8) removal of SNPs with low genotype imputation quality (INFO < 0.3).

123 After harmonization, a total of 10,568,861 SNPs for six cPUFAs and 1,147,602 to 14,124,455

124 SNPs for 20 brain disord 123 After harmonization, a total of 10,568,861 SNPs for six cPUFAs and 1,147,602 to 14,124,455

124 SNPs for 20 brain disorders were included in the downstream analysis (**Supplementary Table**

125 S2). For each trait, we SNPs for 20 brain disorders were included in the downstream analysis (**Supplementary Table**

125 **S2**). For each trait, we mainly focused on the GWAS with the largest sample size, and the rest

126 were presented in suppl

Estimation of SNP-based heritability (h²_{SNP}) and pairwise genetic correlation (r_g)

125 **S2**). For each trait, we mainly focused on the GWAS with the largest sample size, and the rest
126 were presented in supplementary results.
127 **Estimation of SNP-based heritability (h²_{SNP}) and pairwise genetic c** 126 were presented in supplementary results.

127 **Estimation of SNP-based heritability (1**

128 Linkage Disequilibrium Score re

129 SNP-based heritability (h^2_{SNP}) for each

130 control traits, h^2_{SNP} was converte **Estimation of SNP-based heritability (h²_{SNP}) and pairwise genetic correlation (r_g)

128 Linkage Disequilibrium Score regression (LDSC, v1.0.1) [54] was applied to

129 SNP-based heritability (h²_{SNP}) for each ph** 128 Linkage Disequilibrium Score regression (LDSC, v1.0.1) [54] was applied to estimate

129 SNP-based heritability (h^2_{SNP}) for each phenotype using GWAS summary statistics. For case-

130 control traits, h^2_{SNP} wa SNP-based heritability (h^{2}_{SNP}) for each phenotype using GWAS summary statistics. For case-SNP-based heritability (h^2_{SNP}) for each phenotype using GWAS summary statistics. For case-
control traits, h^2_{SNP} was converted to the liability-scale by considering the disease prevalence and
sample proportion (**S** control traits, h^2_{SNP} was converted to the liability-scale by considering the disease prevalence and 130 control traits, h²_{SNP} was converted to the liability-scale by considering the disease prevalence and

131 sample proportion (**Supplementary Table S2**). For quantitative traits, the observed-scale

132 heritability 131 sample proportion (**Supplementary Table S2**). For quantitative traits, the observed-scale
132 heritability was estimated.
133 Cross-trait LDSC [55] was used to compute pairwise genetic correlations (r_g) using
134 GW

132 heritability was estimated.
133 Cross-trait LDSC
134 GWAS summary statistics 133 Cross-trait LDSC [55] was used to compute pairwise genetic correlations (r_g) using
134 GWAS summary statistics between six cPUFAs and 20 brain disorders. Pre-computed reference
134 CWAS summary statistics between six 134 GWAS summary statistics between six cPUFAs and 20 brain disorders. Pre-computed reference

panel LD score of European samples in the 1000 Genomes Project (1KGP) phase 3 [56] was
136 downloaded from https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2.
137 SNP-based heritability and pairwise ge downloaded from https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2.

137 SNP-based heritability and pairwise genetic correlation analyses were run using Hapmap3 SNPs

138 with imputation INFO > 0.9 and 137 SNP-based heritability and pairwise genetic correlation analyses were run using Hapmap3 SNPs

138 with imputation INFO > 0.9 and minor allele frequency (MAF) > 1%. SNPs in the major

139 histocompatibility complex (MH 138 with imputation INFO > 0.9 and minor allele frequency (MAF) > 1%. SNPs in the major

139 histocompatibility complex (MHC) region were excluded. P-value cutoffs of 0.05, 0.001, and

140 0.05 divided by the number of te 139 histocompatibility complex (MHC) region were excluded. P-value cutoffs of 0.05, 0.001, and

140 0.05 divided by the number of tests (i.e., the Bonferroni-corrected threshold) were used to

141 represent different level 0.05 divided by the number of tests (i.e., the Bonferroni-corrected threshold) were used to
141 represent different levels of statistical significance. Genetic correlation coefficients and p-values
142 were visualized usin

141 represent different levels of statistical significance. Genetic correlation coefficients and p-values
142 were visualized using the R corrplot (v0.92) package [57].
143 **Estimation of polygenicity**
144 To estimate the were visualized using the R corrplot (v0.92) package [57].
 143 Estimation of polygenicity

144 To estimate the number of common variants that

145 disorders, a univariate Gaussian mixture model in Mix

146 summary stati **Estimation of polygenicity**
144 To estimate the num
145 disorders, a univariate Gau
146 summary statistics. We re
147 (corresponding to 15 unique 144 To estimate the number of common variants that are associated with cPUFAs or brain
145 disorders, a univariate Gaussian mixture model in MiXeR [58] was applied to the GWAS
146 summary statistics. We restricted the univ 145 disorders, a univariate Gaussian mixture model in MiXeR [58] was applied to the GWAS
146 summary statistics. We restricted the univariate analysis to 19 brain disorder GWAS
147 (corresponding to 15 unique phenotypes) summary statistics. We restricted the univariate analysis to 19 brain disorder GWAS
147 (corresponding to 15 unique phenotypes) with $N > 46,000$ to ensure statistical power. Five
148 GWAS for ANX, OCD, TS, OD, AD had small (corresponding to 15 unique phenotypes) with N > 46,000 to ensure statistical power. Five
148 GWAS for ANX, OCD, TS, OD, AD had small sample sizes and were not included in the
149 analysis. Pre-computed EUR reference panel 148 GWAS for ANX, OCD, TS, OD, AD had small sample sizes and were not included in the

149 analysis. Pre-computed EUR reference panel LD score was used as in the LDSC analysis. To

150 ensure compatibility with MiXeR, we 149 analysis. Pre-computed EUR reference panel LD score was used as in the LDSC analysis. To

150 ensure compatibility with MiXeR, we utilized the munge_sumstats.py script provided by MiXeR

151 to further process GWAS su 150 ensure compatibility with MiXeR, we utilized the munge_sumstats.py script provided by MiXeR
151 to further process GWAS summary statistics. This step was necessary to meet the specific
152 requirements of MiXeR, parti 151 to further process GWAS summary statistics. This step was necessary to meet the specific

152 requirements of MiXeR, particularly addressing the sample imbalance in case-control

153 phenotypes by utilizing the effect 152 requirements of MiXeR, particularly addressing the sample imbalance in case-control

153 phenotypes by utilizing the effective sample size ($N_{eff} = \frac{4}{\frac{1}{N \cos \theta} + \frac{1}{N \cot \theta}}$). Additionally, we

154 obtained informat phenotypes by utilizing the effective sample size $(N_{eff} = \frac{1}{N_{cscat} + N_{eff}})$ $\frac{1}{case} + \frac{1}{Ncon}$ 153 phenotypes by utilizing the effective sample size ($N_{eff} = \frac{1}{N_{case} + \frac{1}{N_{control}}}$). Additionally, we obtained information on allelic LD r^2 correlations and allele frequency in the 1KGP European samples from the MiXeR G obtained information on allelic LD r^2 correlations and allele frequency in the 1KGP European 154 obtained information on allelic LD r^2 correlations and allele frequency in the 1KGP European
155 samples from the MiXeR GitHub repository. MiXeR provides a reference set of about 11 million
156 SNPs, which is used 155 samples from the MiXeR GitHub repository. MiXeR provides a reference set of about 11 million SNPs, which is used to estimate the number of trait-associated variants that explain 90% of h^2_{SNP} . SNPs, which is used to estimate the number of trait-associated variants that explain 90% of h^2_{SNP} .

157 Quantification of polygenic overlap between cPUFAs and brain disorders

158 The MiXeR bivariate causal mixture model [59] was applied to quan

159 variants that have nonzero effects on both traits (nc_{12}) . We perfo 158 The MiXeR bivariate causal mixture model [59] was applied to quantify the number of
159 variants that have nonzero effects on both traits (nc₁₂). We performed cross-trait analyses to
160 estimate polygenic overlap b 159 variants that have nonzero effects on both traits (nc₁₂). We performed cross-trait analyses to
160 estimate polygenic overlap between cPUFAs and brain disorders, including six GWAS for six
161 cPUFAs and 19 GWAS for 160 estimate polygenic overlap between cPUFAs and brain disorders, including six GWAS for six

161 cPUFAs and 19 GWAS for 15 brain disorders. The bivariate analysis provides the proportion

162 (π_{12}), number (nc₁₂) 161 cPUFAs and 19 GWAS for 15 brain disorders. The bivariate analysis provides the proportion
162 (π_{12}), number (nc₁₂), and correlation of effect size within the shared polygenic components (ρ_{12}).
163 We calcu 162 (π₁₂), number (nc₁₂), and correlation of effect size within the shared polygenic components (ρ₁₂).

163 We calculated Z-statistics using the formula $Z = \beta / SE$ and visualized the effect sizes of all

164 SNPs in 163 We calculated Z-statistics using the formula $Z =$
164 SNPs in pairs of GWAS summary statistics using
165 ComplexHeatmap (v2.14.0) [60] package to visual
166 cPUFAs and brain disorders.
167 Mendelian randomization We calculated Z-statistics using the formula $Z = \beta / SE$ and visualized the effect sizes of all SNPs in pairs of GWAS summary statistics using the R hexbin (v1.28.2) package. We used R
165 ComplexHeatmap (v2.14.0) [60] package to visualize the number of shared variants between
166 cPUFAs and brain disorders.
167 **Men**

ComplexHeatmap (v2.14.0) [60] package to visualize the number of shared variants between
166 cPUFAs and brain disorders.
167 **Mendelian randomization**
168 MR is a method in genetic epidemiology that uses SNPs as genetic in 166 cPUFAs and brain disorders.

167 **Mendelian randomization**

168 MR is a method in

169 statistically infer causal as

170 identified as being significan 167 **Mendelian randomization**

168 **MR** is a method in

169 statistically infer causal a

170 identified as being significa

171 level $(P < 5 \times 10^{-8})$, and inde 168 MR is a method in genetic epidemiology that uses SNPs as genetic instruments to
169 statistically infer causal associations between exposures and outcomes [61]. SNPs were
170 identified as being significantly associat 169 statistically infer causal associations between exposures and outcomes [61]. SNPs were

170 identified as being significantly associated with each exposure at the genome-wide significance

171 level ($P < 5 \times 10^{-8}$), 170 identified as being significantly associated with each exposure at the genome-wide significance
171 level ($P < 5 \times 10^{-8}$), and independent SNPs were derived using LD clumping ($r^2 < 0.001$ within a
172 10,000 kb wind level ($P < 5 \times 10^{-8}$), and independent SNPs were derived using LD clumping ($r^2 < 0.001$ within a 171 level ($P < 5 \times 10^{-8}$), and independent SNPs were derived using LD clumping ($r^2 < 0.001$ within a
172 10,000 kb window). For the primary analysis, the potential causal effects were estimated using a
173 multiplicativ 172 10,000 kb window). For the primary analysis, the potential causal effects were estimated using a
173 multiplicative random-effect inverse weighted variance (IVW) model [62]. The MR-Egger
174 method was applied to detec multiplicative random-effect inverse weighted variance (IVW) model [62]. The MR-Egger
174 method was applied to detect and correct for possible pleiotropy, while a p-value > 0.05 in its
175 intercept test was used to rule method was applied to detect and correct for possible pleiotropy, while a p-value > 0.05 in its
175 intercept test was used to rule out the presence of horizontal pleiotropic effects [63]. We also
176 used weighted median 175 intercept test was used to rule out the presence of horizontal pleiotropic effects [63]. We also
176 used weighted median and weighted mode approaches to explore the robustness of our findings
177 in the presence of po used weighted median and weighted mode approaches to explore the robustness of our findings
177 in the presence of potential pleiotropy [64, 65]. As an additional sensitivity analysis against
178 pleiotropy, the MR-PRESSO 177 in the presence of potential pleiotropy [64, 65]. As an additional sensitivity analysis against
178 pleiotropy, the MR-PRESSO method was performed to evaluate overall horizontal pleiotropy
179 and to re-calculate effec 178 pleiotropy, the MR-PRESSO method was performed to evaluate overall horizontal pleiotropy
179 and to re-calculate effect estimates after removing outlier SNPs [66]. A threshold of F-statistics >
9 179 and to re-calculate effect estimates after removing outlier SNPs [66]. A threshold of F-statistics > 9

180 10 indicates strong genetic instruments. Cochran Q-statistic was calculated to quantify the

181 heterogeneity among SNPs [67, 68]. Scatter plots, forest plots, and leave-one-out plots were

182 generated to visualize 181 heterogeneity among SNPs [67, 68]. Scatter plots, forest plots, and leave-one-out plots were
182 generated to visualize the effects of individual genetic instruments. To adjust for multiple testing,
183 we utilized the generated to visualize the effects of individual genetic instruments. To adjust for multiple testing,
183 we utilized the false-discovery rate (FDR) approach [69]. All analyses were performed using the
184 TwoSampleMR (v0.

we utilized the false-discovery rate (FDR) approach [69]. All analyses were performed using the

184 TwoSampleMR (v0.5.6) and MR-PRESSO (v1.0) packages in R [66, 70].

185 Colocalization analysis

186 We assessed the coloc 184 TwoSampleMR (v0.5.6) and MR-PRESSO (v1.0) packages in R [66, 70].

185 Colocalization analysis

186 We assessed the colocalization of genetic associations across t

187 (v1.0) [71]. First, pairwise colocalization analy **Colocalization analysis**
186 We assessed the
187 (v1.0) [71]. First, pairwi
188 brain disorder. We furthe
189 disorders. We used the d 186 We assessed the colocalization of genetic associations across traits using HyPrColoc
187 (v1.0) [71]. First, pairwise colocalization analyses were conducted for each pair of cPUFA and
188 brain disorder. We further pe 187 (v1.0) [71]. First, pairwise colocalization analyses were conducted for each pair of cPUFA and

188 brain disorder. We further performed multi-trait colocalization analysis for all cPUFAs and brain

189 disorders. We 188 brain disorder. We further performed multi-trait colocalization analysis for all cPUFAs and brain
189 disorders. We used the default prior probability that an SNP is associated with a single trait $(P = 1 \times 10^{-4})$ and a 189 disorders. We used the default prior probability that an SNP is associated with a single trait $(P = 1 \times 10^{-4})$ and a conditional prior probability that an SNP is associated with an additional trait given that it is alr 1×10^{-4}) and a conditional prior probability that an SNP is associated with an additional trait 190 1×10^{-4}) and a conditional prior probability that an SNP is associated with an additional trait
191 given that it is already associated with another trait ($P_c = 0.02$). We defined a significant
192 colocalized reg 191 given that it is already associated with another trait $(P_c = 0.02)$. We defined a significant

192 colocalized region as a posterior probability (PP) > 0.7. Regional association plots and

193 colocalization probabilit colocalized region as a posterior probability (PP) > 0.7. Regional association plots and

193 colocalization probability plots were generated with gassocplot (v0.14.0) R package, and LD

194 information was from 1KGP.
 Ge

colocalization probability plots were generated with gassocplot (v0.14.0) R package, and LD
194 information was from 1KGP.
195 **Genome-wide statistical fine-mapping**
196 To statistically infer genetic variants that are cau 194 information was from 1KGP.
195 **Genome-wide statistical fine**
196 To statistically infer g
197 disorders, we performed gen
198 using SuSiE (v0.12.27). We f **195 Genome-wide statistical fine-mapping**

196 To statistically infer genetic varia

197 disorders, we performed genome-wide s

198 using SuSiE (v0.12.27). We first defined

199 was determined as a region spanning 500 196 To statistically infer genetic variants that are causally associated with cPUFAs and brain
197 disorders, we performed genome-wide statistical fine-mapping with GWAS summary statistics
198 using SuSiE (v0.12.27). We f disorders, we performed genome-wide statistical fine-mapping with GWAS summary statistics
198 using SuSiE (v0.12.27). We first defined significant loci for each GWAS. Each significant locus
199 was determined as a region 198 using SuSiE (v0.12.27). We first defined significant loci for each GWAS. Each significant locus

199 was determined as a region spanning 500kb above and below a top significant SNP ($P < 5 \times 10^{-8}$).

200 After definin was determined as a region spanning 500kb above and below a top significant SNP ($P < 5 \times 10^{-8}$). was determined as a region spanning 500kb above and below a top significant SNP $(P < 5 \times 10^{-8})$.
200 After defining one locus, we eliminated this locus, searched for the most significant SNP in the
201 remaining dataset, a 200 After defining one locus, we eliminated this locus, searched for the most significant SNP in the remaining dataset, and defined the next locus. We iterated this process until no additional 10 201 remaining dataset, and defined the next locus. We iterated this process until no additional

significant locus was found. Note that some loci overlap with each other, and the inclusion of LD

203 information in the overlapped region is sometimes necessary for accurate fine-mapping. Since

204 samples of all cPUFA 203 information in the overlapped region is sometimes necessary for accurate fine-mapping. Since
204 samples of all cPUFA phenotypes and some brain disorders were obtained from UK Biobank, we
205 used LD matrices calculate 204 samples of all cPUFA phenotypes and some brain disorders were obtained from UK Biobank, we
205 used LD matrices calculated based on 337,000 British-ancestry individuals in UK Biobank
206 (UKBB-LD) [72]. All LD matrices used LD matrices calculated based on 337,000 British-ancestry individuals in UK Biobank

206 (UKBB-LD) [72]. All LD matrices files were downloaded from

207 https://labs.icahn.mssm.edu/minervalab/resources/data-ark/ukbb_ld 206 (UKBB-LD) [72]. All LD matrices files were downloaded from
207 https://labs.icahn.mssm.edu/minervalab/resources/data-ark/ukbb_ld/. We extracted pairwise
208 allelic LD correlations (r) for all SNPs in each defined locu 207 https://labs.icahn.mssm.edu/minervalab/resources/data-ark/ukbb_ld/. We extracted pairwise
208 allelic LD correlations (r) for all SNPs in each defined locus. We summarized and reported 95%
209 credible sets (CS) of all allelic LD correlations (r) for all SNPs in each defined locus. We summarized and reported 95% credible sets (CS) of all significant loci. Additionally, we identified SNPs within the CS of the cPUFAs and brain disorders da credible sets (CS) of all significant loci. Additionally, we identified SNPs within the CS of the

210 cPUFAs and brain disorders dataset, which exhibited a posterior probability greater than 0.5 in at

211 least one datas

cPUFAs and brain disorders dataset, which exhibited a posterior probability greater than 0.5 in at
211 least one dataset.
212 **Functional annotation and gene set enrichment analysis**
213 To assess the functional consequenc 211 least one dataset.

212 **Functional anno**

213 To assess

214 HyPrColoc and S

215 annotation, include **Functional annotation and gene set enrichment analysis**

213 To assess the functional consequences of the pote

214 HyPrColoc and SuSiE, we used the Ensembl Variant Effec

215 annotation, including their nearby genes, var 213 To assess the functional consequences of the potentially causal variants prioritized by
214 HyPrColoc and SuSiE, we used the Ensembl Variant Effect Predictor (VEP) [73] for functional
215 annotation, including their ne 214 HyPrColoc and SuSiE, we used the Ensembl Variant Effect Predictor (VEP) [73] for functional
215 annotation, including their nearby genes, variant type and consequence, allele frequency in the
216 IKGP European sample, 215 annotation, including their nearby genes, variant type and consequence, allele frequency in the
216 1KGP European sample, pathogenicity, and related phenotypes. Gene set enrichment analysis
217 was conducted for candid 216 IKGP European sample, pathogenicity, and related phenotypes. Gene set enrichment analysis
217 was conducted for candidate genes using the FUMA [74] GENE2FUNC module. GTEx v8
218 RNA-seq data [75] was used to examine ti was conducted for candidate genes using the FUMA [74] GENE2FUNC module. GTEx v8

218 RNA-seq data [75] was used to examine tissue-specific expression patterns of candidate genes.

219 Data and code availability

220 All GW

-
- 218 RNA-seq data [75] was used to examine tissue-specific expression patterns of candidate genes.
219 Data and code availability
220 All GWAS summary statistics are publicly available as described above. All the code f
221 219 **Data and code availability**
220 All GWAS summary
221 this study was uploaded to C 220 All GWAS summary statistics are publicly available as described above. All the code for this study was uploaded to GitHub for public access (https://github.com/Huifang-Xu/PUFA-BD). 221 this study was uploaded to GitHub for public access ($\frac{https://github.com/Huifang-Xu/PUFA-BD)}{https://github.com/Huifang-Xu/PUFA-BD)}$.

222 **Results**

223 Widespre

224 Ge

225 using LD

226 cPUFAs [223 **Widespread, moderate genetic correlations between cPUFAs and brain disorders**
224 Genetic correlations (r_g) between cPUFA phenotypes and brain disorders were
225 using LDSC. Consistent with previous studies, there w 224 Genetic correlations (r_g) between cPUFA phenotypes and brain disorders were estimated
225 using LDSC. Consistent with previous studies, there were strong genetic correlations between
226 cPUFAs [76] and between brai 225 using LDSC. Consistent with previous studies, there were strong genetic correlations between cPUFAs [76] and between brain disorders [77-80] (**Supplementary Figure S2**). Widespread and moderate genetic correlations we 226 cPUFAs [76] and between brain disorders [77-80] (**Supplementary Figure S2**). Widespread and
227 moderate genetic correlations were observed between 16 brain disorders and six cPUFA relative
228 measures, including PUF 227 moderate genetic correlations were observed between 16 brain disorders and six cPUFA relative

228 measures, including PUFA%, omega-6%, LA%, omega-3%, DHA% and the omega-6:omega-3

229 ratio (**Figure 1A, Supplementary** 228 measures, including PUFA%, omega-6%, LA%, omega-3%, DHA% and the omega-6:omega-3

229 ratio (**Figure 1A, Supplementary Figure S3 and Supplementary Table S3**). Out of the total

230 120 pairs, 77 pairs (64.2%) had $P <$ 229 ratio (**Figure 1A, Supplementary Figure S3 and Supplementary Table S3**). Out of the total
230 120 pairs, 77 pairs (64.2%) had $P < 0.05$ (average $|r_g| = 0.19$), 43 pairs (35.8%) had $P < 0.001$
231 (average $|r_g| = 0.23$), 230 120 pairs, 77 pairs (64.2%) had $P < 0.05$ (average $|r_g| = 0.19$), 43 pairs (35.8%) had $P < 0.001$

231 (average $|r_g| = 0.23$), and 34 pairs (28.3%) showed significant genetic correlations after

232 Bonferroni correctio 231 (average $|r_g| = 0.23$), and 34 pairs (28.3%) showed significant genetic correlations after

232 Bonferroni correction ($P < 4.17 \times 10^{-4}$, average $|r_g| = 0.22$). Over 60% of the significant pairs

233 (48/77 pairs with Bonferroni correction ($P < 4.17 \times 10^{-4}$, average $|r_g| = 0.22$). Over 60% of the significant pairs 232 Bonferroni correction ($P < 4.17 \times 10^{-4}$, average $|r_g| = 0.22$). Over 60% of the significant pairs (48/77 pairs with $P < 0.05$ and 22/34 pairs with $P < 4.17 \times 10^{-4}$) showed negative correlations between cPUFAs and bra (48/77 pairs with $P < 0.05$ and 22/34 pairs with $P < 4.17 \times 10^{-4}$) showed negative correlations 233 (48/77 pairs with $P < 0.05$ and 22/34 pairs with $P < 4.17 \times 10^{-4}$) showed negative correlations
234 between cPUFAs and brain disorders, suggesting that the shared genetic determinants are
235 associated with higher c 234 between cPUFAs and brain disorders, suggesting that the shared genetic determinants are

235 associated with higher cPUFA levels but with reduced risks of brain disorders, such as NE and

236 PUFA% (**Figure 1C**).

237

235 associated with higher cPUFA levels but with reduced risks of brain disorders, such as NE and

236 PUFA% (Figure 1C).

237 PUFA%, omega-6%, omega-3%, LA%, and DHA% have significant negative correlation

238 with the f 236 PUFA% (**Figure 1C**).

237 PUFA%, omeg

238 with the following bra:

239 0.40, $P < 0.05$; AD: r

240 ADHD (r_g = -0.22 ~ -237 PUFA%, omega-6%, omega-3%, LA%, and DHA% have significant negative correlation

238 with the following brain disorders, including the three substance use disorders (OD: $r_g = -0.23 \sim -0.40$, $P < 0.05$; AD: $r_g = -0.18 \sim -0.$ 238 with the following brain disorders, including the three substance use disorders (OD: $r_g = -0.23 \sim -0.40$, $P < 0.05$; AD: $r_g = -0.18 \sim -0.30$, $P < 0.05$; and CUD: $r_g = -0.20 \sim -0.27$, $P < 3 \times 10^{-4}$),

240 ADHD ($r_g = -0.22 \sim -$ 0.40, *P* < 0.05; AD: r_g = -0.18 ~ -0.30, *P* < 0.05; and CUD: r_g = -0.20 ~ -0.27, *P* < 3 × 10⁻⁴), 239 0.40, $P < 0.05$; AD: $r_g = -0.18 \sim -0.30$, $P < 0.05$; and CUD: $r_g = -0.20 \sim -0.27$, $P < 3 \times 10^{-4}$),

240 ADHD ($r_g = -0.22 \sim -0.33$, $P < 6.72 \times 10^{-6}$), PTSD ($r_g = -0.16 \sim -0.32$, $P < 0.05$), ANX ($r_g = -0.22$, $P < 0.05$), INS (ADHD (r_g = -0.22 ~ -0.33, *P* < 6.72 × 10⁻⁶ 240 ADHD (r_g = -0.22 ~ -0.33, *P* < 6.72 × 10⁻⁶), PTSD (r_g = -0.16 ~ -0.32, *P* < 0.05), ANX (r_g = -0.22, *P* < 0.05), INS (r_g = -0.12 ~ -0.20, *P* < 9 × 10⁻⁴), MDD (r_g = -0.10 ~ -0.19, *P* < 0.05), and NE (0.22, *P* < 0.05), INS (r_g = -0.12 ~ -0.20, *P* < 9 × 10⁻⁴), MDD (r_g = -0.10 ~ -0.19, *P* < 0.05), and 241 0.22, $P < 0.05$), INS ($r_g = -0.12 \sim -0.20$, $P < 9 \times 10^{-4}$), MDD ($r_g = -0.10 \sim -0.19$, $P < 0.05$), and
242 NE ($r_g = -0.08 \sim -0.14$, $P < 0.01$; **Figure 1A and Supplementary Table S3**). In contrast, these
243 cPUFA measures a 242 NE ($r_g = -0.08 \sim -0.14$, $P < 0.01$; **Figure 1A and Supplementary Table S3**). In contrast, these
243 cPUFA measures are positively correlated with two disorders with compulsive behaviors (OCD:
212 243 cPUFA measures are positively correlated with two disorders with compulsive behaviors (OCD:
12

 $r_g = 0.14 \sim 0.30$, $P < 0.05$; AN: $r_g = 0.16 \sim 0.27$, $P < 6.50 \times 10^{-5}$). We did not observe any 244 $r_g = 0.14 \approx 0.30$, $P \le 0.05$; AN: $r_g = 0.16 \approx 0.27$, $P \le 6.50 \times 10^{-5}$). We did not observe any significant genetic correlations between any cPUFAs and ALZ, MOOD, ASD, or TS, suggesting that they share only a small 245 significant genetic correlations between any cPUFAs and ALZ, MOOD, ASD, or TS, suggesting
246 that they share only a small proportion of common genetic components, or that the genetic
247 components they share have mi 246 that they share only a small proportion of common genetic components, or that the genetic

247 components they share have mixed effects on the two traits. It can also be partially explained by

248 insufficient statis 247 components they share have mixed effects on the two traits. It can also be partially explained by

248 insufficient statistical power due to small sample sizes of the GWAS of MOOD (N_{case} = 1,546)

249 and TS (N_{case}

248 insufficient statistical power due to small sample sizes of the GWAS of MOOD (N_{case} = 1,546)
249 and TS (N_{case} = 4,819).
250 **Widespread, moderate polygenic overlap between cPUFAs and brain disorders**
251 To quant 249 and TS ($N_{\text{case}} = 4,819$).

250 **Widespread, moderate**

251 To quantify the

252 disorders, we applied their GWAS summaries **250 Widespread, moderate polygenic overlap between cPUFAs and brain disorders**
251 To quantify the polygenicity of and polygenic overlap between cPUFA
252 disorders, we applied the MiXeR univariate and bivariate Gaussian 251 To quantify the polygenicity of and polygenic overlap between cPUFAs and brain
252 disorders, we applied the MiXeR univariate and bivariate Gaussian mixture models, respectively,
253 to their GWAS summary statistics. disorders, we applied the MiXeR univariate and bivariate Gaussian mixture models, respectively,

253 to their GWAS summary statistics. MiXeR statistically estimates the number of causal variants

254 needed to explain 90% 253 to their GWAS summary statistics. MiXeR statistically estimates the number of causal variants
254 needed to explain 90% of the SNP heritability of a trait without explicitly identifying the specific
255 variants. It a 254 needed to explain 90% of the SNP heritability of a trait without explicitly identifying the specific
255 variants. It also quantifies the number of shared causal variants between two traits (nc₁₂),
256 irrespective 255 variants. It also quantifies the number of shared causal variants between two traits (nc₁₂),

256 irrespective of their genetic correlation [59]. Five brain disorders (i.e., TS, OCD, ANX, OD and

257 AD) were not in

256 irrespective of their genetic correlation [59]. Five brain disorders (i.e., TS, OCD, ANX, OD and
257 AD) were not included in this analysis due to insufficient sample sizes.
258 All pairs of cPUFAs and brain disorders 257 AD) were not included in this analysis due to insufficient sample sizes.

258 All pairs of cPUFAs and brain disorders were statistically inferred

259 although the degrees of sharing differ (**Figure 1B, Suppleme**

260 258 All pairs of cPUFAs and brain disorders were statistically inferred to share causal variants,
259 although the degrees of sharing differ (**Figure 1B, Supplementary Figure S4 and**
260 **Supplementary Table S4**). They ra 259 although the degrees of sharing differ (**Figure 1B, Supplementary Figure S4 and Supplementary Table S4**). They ranged from five variants between omega-3% and ALZ to 361 between PUFA% and MDD. PUFA% shared the greatest **260 Supplementary Table S4**). They ranged from five variants between omega-3% and ALZ to 361 between PUFA% and MDD. PUFA% shared the greatest number of common variants (nc₁₂ = 37-
262 361) with brain disorders, while o 261 between PUFA% and MDD. PUFA% shared the greatest number of common variants (nc₁₂ = 37-
262 361) with brain disorders, while omega-3% shared the least number of common variants (nc₁₂ = 5-33). Consistent with the fi 262 361) with brain disorders, while omega-3% shared the least number of common variants (nc₁₂ = 5-33). Consistent with the findings of genetic correlation, 10 brain disorders (MDD, CUD, AN, ADHD, NE, INS, SCZ, PTSD, AU 263 5-33). Consistent with the findings of genetic correlation, 10 brain disorders (MDD, CUD, AN,

264 ADHD, NE, INS, SCZ, PTSD, AUDIT_C, and AUDIT_T) have strong polygenic overlaps with

265 multiple cPUFAs. For instance 264 ADHD, NE, INS, SCZ, PTSD, AUDIT_C, and AUDIT_T) have strong polygenic overlaps with
265 multiple cPUFAs. For instance, PUFA% and NE have a strong negative genetic correlation ($r_g = -0.13$, $P = 2.0 \times 10^{-4}$) and a high 265 multiple cPUFAs. For instance, PUFA% and NE have a strong negative genetic correlation (r_g = -
266 0.13, $P = 2.0 \times 10^{-4}$) and a high level of polygenic overlap (nc₁₂ = 348; **Figure 1C**), indicating
13 0.13, $P = 2.0 \times 10^{-4}$) and a high level of polygenic overlap ($nc_{12} = 348$; Figure 1C), indicating 266 0.13, $P = 2.0 \times 10^{-4}$) and a high level of polygenic overlap (nc₁₂ = 348; **Figure 1C**), indicating 13

267 that most of the common variants shared between PUFA% and NE have opposite effect signs.

268 ALZ and cPUFAs share very low numbers of common variants. Interestingly, for some pairs of

269 cPUFAs and brain disorders, 268 ALZ and cPUFAs share very low numbers of common variants. Interestingly, for some pairs of cPUFAs and brain disorders, we observed no significant genetic correlations; however, they have strong polygenic overlap, impl 270 cPUFAs and brain disorders, we observed no significant genetic correlations; however, they have
270 strong polygenic overlap, implying the presence of mixed effect directions among shared genetic
271 variants. For exa 270 strong polygenic overlap, implying the presence of mixed effect directions among shared genetic
271 variants. For example, LA% does not have significant genetic correlation with AUDIT_C (r_g = 0.05, P = 0.28), but 271 variants. For example, LA% does not have significant genetic correlation with AUDIT_C (r_g = 0.05, $P = 0.28$), but they shared a moderate number of common variants (nc_{12} = 131). In addition, we found that the gene 272 0.05, *P* = 0.28), but they shared a moderate number of common variants (nc₁₂ = 131). In addition,
273 we found that the genetic variants they share had mixed effects on the two traits (**Figure 1D**),
274 which expla we found that the genetic variants they share had mixed effects on the two traits (**Figure 1D**),
274 which explained why they had no significant genetic correlation but had strong polygenic
275 overlap.
276 The numbers of

274 which explained why they had no significant genetic correlation but had strong polygenic
275 overlap.
276 The numbers of shared variants between cPUFA levels and brain disorders are limited by
277 the number of varian 275 overlap.
276 T
277 the num
278 between
279 **Supplen** 276 The numbers of shared variants between cPUFA levels and brain disorders are limited by
277 the number of variants influencing cPUFAs. Compared with the strong polygenic overlap
278 between different brain disorders (m 277 the number of variants influencing cPUFAs. Compared with the strong polygenic overlap
278 between different brain disorders (mean $nc_{12} = 5,093$; **Supplementary Figure S5 and**
279 **Supplementary Table S5**), the averag 278 between different brain disorders (mean $nc_{12} = 5,093$; **Supplementary Figure S5 and**
279 **Supplementary Table S5**), the average number of shared variants between cPUFAs is 76
280 **(Supplementary Figure S5**). We found **Supplementary Table S5**), the average number of shared variants between cPUFAs is 76 (**Supplementary Figure S5**). We found that the number of shared variants is particularly limited by the number of variants underlying ea (**Supplementary Figure S5**). We found that the number of shared variants is particularly limited
281 by the number of variants underlying each specific cPUFA. The average number of common
282 variants associated with cPUFA by the number of variants underlying each specific cPUFA. The average number of common

variants associated with cPUFA levels is 139, compared with 10,359 in brain disorders, a

difference of two orders of magnitude (**Figu** variants associated with cPUFA levels is 139, compared with 10,359 in brain disorders, a
283 difference of two orders of magnitude (**Figure 1B; Supplementary Table S4**). Our polygenic
284 overlap analysis revealed relative 283 difference of two orders of magnitude (**Figure 1B; Supplementary Table S4**). Our polygenic
284 overlap analysis revealed relatively simple genetic architecture of cPUFAs, high polygenicity of
285 brain disorders, and w overlap analysis revealed relatively simple genetic architecture of cPUFAs, high polygenicity of
285 brain disorders, and widespread, moderate polygenic overlap between the two groups of traits.
286 **Statistical inference**

brain disorders, and widespread, moderate polygenic overlap between the two groups of traits.
 286 Statistical inference of causal associations between cPUFAs and brain disorders

287 To examine putative causal associa 286 **Statistical inference of causal associations between cPUFAs and brain disorders**
287 ^{To} examine putative causal associations between six cPUFAs and 17 brain d
288 conducted bidirectional MR analyses using GWAS summa 287 To examine putative causal associations between six cPUFAs and 17 brain disorders, we

288 conducted bidirectional MR analyses using GWAS summary statistics. Three brain disorders

28 288 conducted bidirectional MR analyses using GWAS summary statistics. Three brain disorders

289 (AD, ALZ, and OD) were not included in the MR analysis due to the absence of effect sizes and
290 standard errors in their GWAS summary statistics.
291 We identified nine pairs, for which genetically predicted cPUFAs 290 standard errors in their GWAS summary statistics.

291 We identified nine pairs, for which genetic

292 0.05) associated with increased risks of brain dise

293 predicted cPUFAs were associated with reduced

294 Supple 291 We identified nine pairs, for which genetically predicted cPUFAs were significantly (*P* < 0.05) associated with increased risks of brain disorders; and seven pairs, for which genetically predicted cPUFAs were associat 292 0.05) associated with increased risks of brain disorders; and seven pairs, for which genetically
293 predicted cPUFAs were associated with reduced risks of brain disorders (**Figure 2A-B and**
294 **Supplementary Table S7** predicted cPUFAs were associated with reduced risks of brain disorders (**Figure 2A-B and**
294 **Supplementary Table S7**). Among the 16 significant pairs identified in the forward MR analysis,
295 we did not detect any effec **Supplementary Table S7**). Among the 16 significant pairs identified in the forward MR analysis,

295 we did not detect any effect of brain disorders on cPUFA levels in our reverse MR analysis,

296 except for the pair of we did not detect any effect of brain disorders on cPUFA levels in our reverse MR analysis,
296 except for the pair of PUFA%-MDD (**Supplementary Figure S6 and Supplementary Table**
297 **S8**).
298 Among the 16 significant pa

except for the pair of PUFA%-MDD (**Supplementary Figure S6 and Supplementary Table**

297 **S8**).

298 Among the 16 significant pairs, nine pairs presented consistent and strong evidence for

299 potential causal effects of 297 **S8**).
298 poter
299 poter
300 corre
301 3%-l 298 Among the 16 significant pairs, nine pairs presented consistent and strong evidence for
299 potential causal effects of cPUFAs on brain disorders when considering results from both genetic
200 correlation and MR (**Figu** potential causal effects of cPUFAs on brain disorders when considering results from both genetic

correlation and MR (**Figure 1A and 2A**). Four pairs (omega-6%-CUD, PUFA%-MDD, omega-

396-MDD, and DHA%-MDD) showed consiste 300 correlation and MR (**Figure 1A and 2A**). Four pairs (omega-6%-CUD, PUFA%-MDD, omega-3%-MDD, and DHA%-MDD) showed consistent negative associations, implying potential protective effects of these cPUFAs against CUD and M 301 3%-MDD, and DHA%-MDD) showed consistent negative associations, implying potential
302 protective effects of these cPUFAs against CUD and MDD. In contrast, five pairs (PUFA%-AUDIT_C, omega-6%-AUDIT_C, PUFA%-AUDIT_T, ome 302 protective effects of these cPUFAs against CUD and MDD. In contrast, five pairs (PUFA%-AUDIT_C, omega-6%-AUDIT_C, PUFA%-AUDIT_T, omega-3%-AN, and omega-6:omega-3-ADHD) showed consistent positive associations, indicatin 303 AUDIT_C, omega-6%-AUDIT_C, PUFA%-AUDIT_T, omega-3%-AN, and omega-6:omega-3-
304 ADHD) showed consistent positive associations, indicating that these cPUFAs might increase the
305 risks of alcohol consumption, anorexia

304 ADHD) showed consistent positive associations, indicating that these cPUFAs might increase the
305 risks of alcohol consumption, anorexia nervosa and ADHD.
306 Omega-3% were genetically predicted to be associated with Trisks of alcohol consumption, anorexia nervosa and ADHD.
306 Omega-3% were genetically predicted to be associated one standard deviation (SD) increase in genetically predicted
308 BIP was 0.91 (95% CI = [0.83, 1.00]) usin 306 Omega-3% were genetically predicted to be associated with a reduced risk of BIP. For a
307 one standard deviation (SD) increase in genetically predicted omega-3%, the odds ratio (OR) for
308 BIP was 0.91 (95% CI = [0. 307 one standard deviation (SD) increase in genetically predicted omega-3%, the odds ratio (OR) for
308 BIP was 0.91 (95% CI = [0.83, 1.00]) using the IVW method (**Figure 2C and Supplementary**
309 **Table S7**). Although ho 308 BIP was 0.91 (95% CI = [0.83, 1.00]) using the IVW method (**Figure 2C and Supplementary**
309 **Table S7**). Although horizontal pleiotropy was detected in the intercept test ($P_{\text{intercept}} = 0.043$),
310 the result remained **Table S7**). Although horizontal pleiotropy was detected in the intercept test ($P_{\text{intercept}} = 0.043$), the result remained significant after correcting for possible pleiotropy with the MR-Egger approach (OR = 0.81, 95% CI = 310 the result remained significant after correcting for possible pleiotropy with the MR-Egger
311 approach (OR = 0.81 , 95% CI = $[0.70, 0.93]$). The finding was consistent across other MR
15 311 approach (OR = 0.81, 95% CI = [0.70, 0.93]). The finding was consistent across other MR 15

312 methods. In the reverse MR, there was no evidence supporting a causal effect of BIP on omega-3% ($\beta_{\text{IVW}} = -0.10$, 95% CI = [-0.33, 0.13]) (**Supplementary Table S8**).
314 **Prioritization of colocalized loci and share** 313 (β_{IVW} = -0.10, 95% CI = [-0.33, 0.13]) (**Supplementary Table S8**).
314 **Prioritization of colocalized loci and shared variants**
315 To statistically prioritize genomic loci and infer causal
316 cPUFA levels and **Prioritization of colocalized loci and shared variants**
315 To statistically prioritize genomic loci and in
316 cPUFA levels and brain disorders, we conducted pairw
317 fine-mapping. This analysis revealed 44 significant 315 To statistically prioritize genomic loci and infer causal variants responsible for both
316 cPUFA levels and brain disorders, we conducted pairwise colocalization analysis and statistical
317 fine-mapping. This analysi 316 cPUFA levels and brain disorders, we conducted pairwise colocalization analysis and statistical
317 fine-mapping. This analysis revealed 44 significant colocalized regions with a $PP > 0.7$ (**Figure**
318 **34 and Supplem** 317 fine-mapping. This analysis revealed 44 significant colocalized regions with a PP > 0.7 (**Figure**
318 **34 and Supplementary Table S9**). The 44 significant colocalized regions correspond to 13
319 unique regions. Furthe 318 **3A and Supplementary Table S9**). The 44 significant colocalized regions correspond to 13 unique regions. Furthermore, 22 unique SNPs were statistically inferred as potential causal variants shared between cPUFAs and b 319 unique regions. Furthermore, 22 unique SNPs were statistically inferred as potential causal
320 variants shared between cPUFAs and brain disorders, indicating that more than one variant
321 within these colocalized reg variants shared between cPUFAs and brain disorders, indicating that more than one variant
within these colocalized regions contribute to multiple trait pairs. Among the 22 unique SNPs, 14
were also included in 95% CSs defi within these colocalized regions contribute to multiple trait pairs. Among the 22 unique SNPs, 14
322 were also included in 95% CSs defined by SuSiE (**Supplementary Table S9**). We also
323 performed multi-trait colocalizat were also included in 95% CSs defined by SuSiE (**Supplementary Table S9**). We also performed multi-trait colocalization analysis combining all cPUFAs and brain disorders. We identified four candidate shared SNPs (**Suppleme**

323 performed multi-trait colocalization analysis combining all cPUFAs and brain disorders. We
324 identified four candidate shared SNPs (**Supplementary Table S9**).
325 To gain insights into the functional implications of identified four candidate shared SNPs (**Supplementary Table S9**).

325 To gain insights into the functional implications of the ide

326 annotated the nearest genes associated with the colocalized and f

(**Supplementary Ta** 325 To gain insights into the functional implications of the identified colocalized SNPs, we
326 annotated the nearest genes associated with the colocalized and fine-mapped SNPs using VEP
327 (**Supplementary Table S10**). 326 annotated the nearest genes associated with the colocalized and fine-mapped SNPs using VEP (Supplementary Table S10). Additionally, we performed gene set enrichment analysis using the FUMA GENE2FUNC function [74]. Thi **327** (**Supplementary Table S10**). Additionally, we performed gene set enrichment analysis using the FUMA GENE2FUNC function [74]. This analysis revealed that the 36 prioritized genes are significantly enriched in biologi 328 FUMA GENE2FUNC function [74]. This analysis revealed that the 36 prioritized genes are
329 significantly enriched in biological pathways related to lipid metabolism (FDR adjusted $P <$
330 0.05), providing further supp 329 significantly enriched in biological pathways related to lipid metabolism (FDR adjusted *P* < 0.05), providing further support for their potential biological relevance in the context of cPUFA levels and brain disorder

0.05), providing further support for their potential biological relevance in the context of cPUFA
levels and brain disorders (**Supplementary Table S11**).
332 We highlight here one example that provides insights into the ro Evels and brain disorders (**Supplementary Table S11**).
332 We highlight here one example that provides in
333 disorders. The example involves BIP and all six cPUF
334 which share a colocalized region at the *FADS* gene 332 We highlight here one example that provides insights into the role of PUFAs on brain
333 disorders. The example involves BIP and all six cPUFA measures (**Figure 3B and 3C**), all of
334 which share a colocalized region 333 disorders. The example involves BIP and all six cPUFA measures (**Figure 3B and 3C**), all of which share a colocalized region at the *FADS* gene cluster (chr11:58,780,549-62,223,771).
16 334 which share a colocalized region at the *FADS* gene cluster (chr11:58,780,549-62,223,771).
16

Within this region, three distinct shared SNPs (i.e., rs174564, rs174567, rs174528) were
336 identified (**Supplementary Table S9**). To further investigate this region, we performed statistical
337 fine-mapping analysis usi identified (**Supplementary Table S9**). To further investigate this region, we performed statistical

fine-mapping analysis using SuSiE, which supported the presence of multiple causal variants for

omega-3%, DHA%, PUFA% an fine-mapping analysis using SuSiE, which supported the presence of multiple causal variants for
338 omega-3%, DHA%, PUFA% and omega-6:omega-3 (**Supplementary Figure S7**). This analysis
339 provided additional evidence for omega-3%, DHA%, PUFA% and omega-6:omega-3 (**Supplementary Figure S7**). This analysis
339 provided additional evidence for the potential involvement of multiple causal variants within the
340 *FADS* region in modulating the provided additional evidence for the potential involvement of multiple causal variants within the
340 FADS region in modulating the circulating levels of omega-3%, DHA%, PUFA%, and omega-
341 6:omega-3.
342 We also perform

FADS region in modulating the circulating levels of omega-3%, DHA%, PUFA%, and omega-341 6:omega-3.
342 We also performed a multi-trait colocalization analysis combining these six cPUFA
343 phenotypes with BIP. The varia 341 6:omega-3.

342 We

343 phenotypes

344 (**Figure 3C**

345 SNP is an i 342 We also performed a multi-trait colocalization analysis combining these six cPUFA
343 phenotypes with BIP. The variant rs174564 (chr11:61588305A>G) had the highest PP of 0.95
344 **(Figure 3C)**, suggesting that it is l 343 phenotypes with BIP. The variant rs174564 (chr11:61588305A>G) had the highest PP of 0.95
344 (Figure 3C), suggesting that it is likely the shared causal variant between cPUFAs and BIP. The
345 SNP is an intronic varia 344 (**Figure 3C**), suggesting that it is likely the shared causal variant between cPUFAs and BIP. The
345 SNP is an intronic variant of the *FADS2* gene and is known to be associated with both cPUFA
346 levels and BIP. Th SNP is an intronic variant of the *FADS2* gene and is known to be associated with both cPUFA
levels and BIP. The A allele of rs174564 was associated with an increased level of DHA% (β =
0.28, SE = 0.004, $P < 1 \times 10^{-300}$ 346 levels and BIP. The A allele of rs174564 was associated with an increased level of DHA% (β = 0.28, SE = 0.004, $P < 1 \times 10^{-300}$) and omega-3% (β = 0.39, SE = 0.004, $P < 1 \times 10^{-300}$), while with a reduced risk of BIP 0.28, SE = 0.004, $P < 1 \times 10^{-300}$) and omega-3% ($\beta = 0.39$, SE = 0.004, $P < 1 \times 10^{-300}$ 347 0.28, SE = 0.004, $P < 1 \times 10^{-300}$) and omega-3% (β = 0.39, SE = 0.004, $P < 1 \times 10^{-300}$), while
348 with a reduced risk of BIP (OR = 0.93, 95% CI = [0.91, 0.95], $P = 6.24 \times 10^{-13}$). Furthermore,
349 MR analysis als with a reduced risk of BIP (OR = 0.93, 95% CI = [0.91, 0.95], $P = 6.24 \times 10^{-13}$). Furthermore, 348 with a reduced risk of BIP (OR = 0.93, 95% CI = [0.91, 0.95], $P = 6.24 \times 10^{-13}$). Furthermore,
349 MR analysis also revealed a negative association between omega-3% and BIP (**Figure 2A-C**).
350 Combining the results 349 MR analysis also revealed a negative association between omega-3% and BIP (**Figure 2A-C**).
350 Combining the results of MR and colocalization analysis, there is strong evidence supporting that
351 omega-3% has a protec

Combining the results of MR and colocalization analysis, there is strong evidence supporting that
351 onega-3% has a protective effect on bipolar disorder.
352 Potential causal relationships informed by shared genetic basi omega-3% has a protective effect on bipolar disorder.
 Potential causal relationships informed by shared g

To advance our understanding of the potentia

brain disorders, we compared and synthesized the f

evaluating sha **Potential causal relationships informed by shared genetic basis**
353 To advance our understanding of the potential causal relat
354 brain disorders, we compared and synthesized the findings acros
355 evaluating shared gen 353 To advance our understanding of the potential causal relationship between cPUFAs and
354 brain disorders, we compared and synthesized the findings across the multiple approaches of
355 evaluating shared genetic basis. 354 brain disorders, we compared and synthesized the findings across the multiple approaches of
355 evaluating shared genetic basis. We designated strong evidence supporting a potential causal
356 relationship when there 355 evaluating shared genetic basis. We designated strong evidence supporting a potential causal
356 relationship when there are statistically significant and directionally consistent results in genetic
357 correlation (356 relationship when there are statistically significant and directionally consistent results in genetic
357 correlation ($P < 0.05$), MR ($P < 0.05$), and colocalization ($PP > 0.7$). We did not include
357 17 357 correlation ($P < 0.05$), MR ($P < 0.05$), and colocalization ($PP > 0.7$). We did not include
17

358 polygenic overlap due to its ubiquity among all six cPUFA phenotypes and brain disorders. We
359 considered that there is suggestive evidence when there were statistically significant and
360 directionally consistent

359 considered that there is suggestive evidence when there were statistically significant and
360 directionally consistent results in genetic correlation ($P < 0.05$) and colocalization ($PP > 0.7$).
361 We identified four 360 directionally consistent results in genetic correlation ($P < 0.05$) and colocalization ($PP > 0.7$).
361 We identified four pairs with strong evidence supporting potential causal effects of
362 specific cPUFAs on the co 361 We identified four pairs with strong evidence supporting potential causal effects of the
362 specific cPUFAs on the corresponding brain disorders (**Table 1**). For example, PUFA% is likely
363 to have protective effect 362 specific cPUFAs on the corresponding brain disorders (**Table 1**). For example, PUFA% is likely
363 to have protective effect on MDD with support from the following evidence: 1) PUFA% showed
364 a negative genetic corr 363 to have protective effect on MDD with support from the following evidence: 1) PUFA% showed
364 a negative genetic correlation with MDD ($r_g = -0.19$, $P = 7.14 \times 10^{-16}$); 2) MR results suggest
365 that higher PUFA% is a a negative genetic correlation with MDD ($r_g = -0.19$, $P = 7.14 \times 10^{-16}$); 2) MR results suggest 364 a negative genetic correlation with MDD ($r_g = -0.19$, $P = 7.14 \times 10^{-16}$); 2) MR results suggest
365 that higher PUFA% is associated with a reduced risk of MDD (OR = 0.95, 95% CI = [0.92, 0.99],
366 $P = 5.76 \times 10^{-3}$); 365 that higher PUFA% is associated with a reduced risk of MDD (OR = 0.95, 95% CI = [0.92, 0.99],
366 $P = 5.76 \times 10^{-3}$; 3) Colocalization analysis identified a colocalized region at chr21q22.3
367 (chr21:46,177,105-47,49 $P = 5.76 \times 10^{-3}$; 3) Colocalization analysis identified a colocalized region at chr21q22.3 366 $P = 5.76 \times 10^{-3}$; 3) Colocalization analysis identified a colocalized region at chr21q22.3
367 (chr21:46,177,105-47,492,226; PP = 0.83) and a potential shared causal variant rs4818766
368 (chr21:46635351A>G), which i 367 (chr21:46,177,105-47,492,226; PP = 0.83) and a potential shared causal variant rs4818766
368 (chr21:46635351A>G), which is an intronic variant of gene *ADARB1*. SNP rs4818766 is known
369 to be associated with body fa (chr21:46635351A>G), which is an intronic variant of gene *ADARB1*. SNP rs4818766 is known
to be associated with body fat distribution [81]. *ADARB1* is highly expressed in the brain and
related to developmental and epilep 369 to be associated with body fat distribution [81]. *ADARB1* is highly expressed in the brain and related to developmental and epileptic encephalopathy [82] and psychiatric disorders [83, 84]. In addition to PUFA%, our 370 related to developmental and epileptic encephalopathy [82] and psychiatric disorders [83, 84]. In addition to PUFA%, our forward MR results also show that higher levels of omega-3% and DHA% were associated with a redu 371 addition to PUFA%, our forward MR results also show that higher levels of omega-3% and DHA% were associated with a reduced risk of MDD, in line with a recent finding [23]. Interestingly, our forward and reverse MR bot 372 were associated with a reduced risk of MDD, in line with a recent finding [23]. Interestingly, our

373 forward and reverse MR both showed negative associations between PUFA% and MDD

374 (forward MR: OR = 0.95, 95% C 373 forward and reverse MR both showed negative associations between PUFA% and MDD
374 (forward MR: OR = 0.95, 95% CI = [0.92, 0.99], $P = 5.76 \times 10^{-3}$; reverse MR: OR = 0.91, 95%
375 CI = [0.84, 0.99], $P = 0.013$), drive (forward MR: OR = 0.95, 95% CI = [0.92, 0.99], $P = 5.76 \times 10^{-3}$; reverse MR: OR = 0.91, 95% 374 (forward MR: OR = 0.95, 95% CI = [0.92, 0.99], $P = 5.76 \times 10^{-3}$; reverse MR: OR = 0.91, 95%

375 CI = [0.84, 0.99], $P = 0.013$), driven by different genetic variants (**Supplementary Figure S8**),

376 supporting a pot

375 CI = [0.84, 0.99], $P = 0.013$), driven by different genetic variants (**Supplementary Figure S8**),
376 supporting a potential bidirectional relationship.
377 We also found that lower omega-6% are related to lower alcoh 376 supporting a potential bidirectional relationship.
377 We also found that lower omega-6% are
378 Both genetic correlation ($r_g = 0.08$, $P = 0.036$; Fi
379 $P = 0.001$; Figure 4B) revealed a positive
380 consumption. In 377 We also found that lower omega-6% are related to lower alcohol consumption (**Table 1**).
378 Both genetic correlation ($r_g = 0.08$, $P = 0.036$; **Figure 4A**) and forward MR results ($\beta_{IVW} = 0.019$,
379 $P = 0.001$; **Figu** 378 Both genetic correlation (r_g = 0.08, *P* = 0.036; **Figure 4A**) and forward MR results (β_{IVW} = 0.019,
379 $P = 0.001$; **Figure 4B**) revealed a positive association between omega-6% and alcohol
380 consumption. In o $P = 0.001$; **Figure 4B**) revealed a positive association between omega-6% and alcohol
380 consumption. In our colocalization analysis (**Figure 4C and 4D**), we observed that genomic
18 380 consumption. In our colocalization analysis (**Figure 4C and 4D**), we observed that genomic

381 region 2p23.2-2p23.3 (chr2:26,894,985-28,598,777) exhibited colocalization signals among
382 three alcohol-intake phenotypes (AUDIT_C, AUDIT_T, AUDIT_P) and five cPUFA phenotypes
383 (omega-3%, omega-6%, LA%, PUFA% a 382 three alcohol-intake phenotypes (AUDIT_C, AUDIT_T, AUDIT_P) and five cPUFA phenotypes
383 (omega-3%, omega-6%, LA%, PUFA% and omega-6:omega-3). Within this region, SNP
384 rs1260326 (chr2:27730940T>C) was identified a 383 (omega-3%, omega-6%, LA%, PUFA% and omega-6:omega-3). Within this region, SNP

384 rs1260326 (chr2:27730940T>C) was identified as a potential shared causal variant (PP = 0.99).

385 Notably, the T allele of rs1260326 384 rs1260326 (chr2:27730940T>C) was identified as a potential shared causal variant (PP = 0.99).
385 Notably, the T allele of rs1260326 was associated with lower levels of omega-6% (β = -0.11, SE
386 = 0.004, $P = 7.0 \times$ 385 Notably, the T allele of rs1260326 was associated with lower levels of omega-6% (β = -0.11, SE

386 = 0.004, $P = 7.0 \times 10^{-159}$), LA% (β = -0.08, SE = 0.004, $P = 1.20 \times 10^{-87}$) and lower alcohol

387 consumption (AU $= 0.004$, $P = 7.0 \times 10^{-159}$), LA% ($\beta = -0.08$, SE = 0.004, $P = 1.20 \times 10^{-87}$) and lower alcohol 386 = 0.004, $P = 7.0 \times 10^{159}$), LA% ($\beta = -0.08$, SE = 0.004, $P = 1.20 \times 10^{-8}$) and lower alcohol
387 consumption (AUDIT_C: $\beta = -0.007$, SE = 0.001, $P = 5.47 \times 10^{-9}$; AUDIT_T: $\beta = -0.008$, SE =
388 0.001, $P = 2.11 \times 10$ consumption (AUDIT C: β = -0.007, SE = 0.001, *P* = 5.47 $\times 10^{-9}$; AUDIT T: β = -0.008, SE = 387 consumption (AUDIT_C: β = -0.007, SE = 0.001, $P = 5.47 \times 10^{-9}$; AUDIT_T: β = -0.008, SE = 0.001, $P = 2.11 \times 10^{-10}$; AUDIT_P: β = -0.005, SE = 0.001, $P = 6.7 \times 10^{-7}$). SNP rs1260326, a missense variant for gene *GC* 0.001, $P = 2.11 \times 10^{-10}$; AUDIT P: $\beta = -0.005$, SE = 0.001, $P = 6.7 \times 10^{-7}$). SNP rs1260326, a 388 0.001, $P = 2.11 \times 10^{-10}$; AUDIT_P: $\beta = -0.005$, SE = 0.001, $P = 6.7 \times 10^{-7}$). SNP rs1260326, a
389 missense variant for gene *GCKR*, is known to be associated with alcohol intake [85], type 2
390 diabetes [86], live missense variant for gene *GCKR*, is known to be associated with alcohol intake [85], type 2
390 diabetes [86], liver diseases [87, 88] and lipid levels such as triglyceride and cholesterol [89].
391 Taken together evidenc 390 diabetes [86], liver diseases [87, 88] and lipid levels such as triglyceride and cholesterol [89].
391 Taken together evidence from genetic correlation, MR and colocalization analysis, our findings
392 indicate that l

391 Taken together evidence from genetic correlation, MR and colocalization analysis, our findings
392 indicate that lower omega-6% may lower alcohol consumption.
393 We identified eight trait pairs that display suggestiv 392 indicate that lower omega-6% may lower alcohol consumption.
393 We identified eight trait pairs that display suggestive
394 relationship. Interestingly, our genetic correlation analysis
395 between ADHD and three cPUF 393 We identified eight trait pairs that display suggestive evidence for a potential causal
394 relationship. Interestingly, our genetic correlation analysis unveiled a negative correlation
395 between ADHD and three cPUF 394 relationship. Interestingly, our genetic correlation analysis unveiled a negative correlation
395 between ADHD and three cPUFA phenotypes: PUFA% ($r_g = -0.3$, $P = 2.51 \times 10^{-12}$), omega-6%
396 ($r_g = -0.25$, $P = 5.67 \times 10$ between ADHD and three cPUFA phenotypes: PUFA% (r_g = -0.3, *P* = 2.51 × 10⁻¹²), omega-6% 395 between ADHD and three cPUFA phenotypes: PUFA% ($r_g = -0.3$, $P = 2.51 \times 10^{-12}$), omega-6%
396 $(r_g = -0.25, P = 5.67 \times 10^{-8})$, and DHA% ($r_g = -0.32$, $P = 1.73 \times 10^{-10}$). Further colocalization
397 analysis identified a geno $(r_g = -0.25, P = 5.67 \times 10^{-8})$, and DHA% $(r_g = -0.32, P = 1.73 \times 10^{-10})$. Further colocalization 396 ($r_g = -0.25$, $P = 5.67 \times 10^{-8}$), and DHA% ($r_g = -0.32$, $P = 1.73 \times 10^{-10}$). Further colocalization
397 analysis identified a genomic locus chr9:85,440,801-86,938,196 shared among ADHD, PUFA%,
398 omega-6% and LA% (PP analysis identified a genomic locus chr9:85,440,801-86,938,196 shared among ADHD, PUFA%,
398 omega-6% and LA% (PP > 0.7; **Table 1**). Our forward MR did not reveal significant associations
399 between ADHD and the three cP 398 omega-6% and LA% (PP > 0.7; **Table 1**). Our forward MR did not reveal significant associations
399 between ADHD and the three cPUFAs. However, the reverse MR displayed significant negative
399 associations (PUFA%: β 399 between ADHD and the three cPUFAs. However, the reverse MR displayed significant negative

400 associations (PUFA%: $\beta_{\text{IVW}} = -0.07$, $P = 3.48 \times 10^{-3}$; omega-6%: $\beta_{\text{IVW}} = -0.05$, $P = 0.046$; and

401 DHA%: $\beta_{\text{$ associations (PUFA%: $\beta_{\text{IVW}} = -0.07$, $P = 3.48 \times 10^{-3}$; omega-6%: $\beta_{\text{IVW}} = -0.05$, $P = 0.046$; and 400 associations (PUFA%: β_{IVW} = -0.07, *P* = 3.48 × 10⁻³; omega-6%: β_{IVW} = -0.05, *P* = 0.046; and
401 DHA%: β_{IVW} = -0.08, *P* = 3.43 × 10⁻³; **Supplementary Table S8**), suggesting that the presence
402 of ADHD DHA%: $\beta_{\text{IVW}} = -0.08$, $P = 3.43 \times 10^{-3}$; **Supplementary Table S8**), suggesting that the presence **EXECUTE 1014** DHA%: β_{IVW} = -0.08, $P = 3.43 \times 10^{-3}$; **Supplementary Table S8**), suggesting that the presence of ADHD might contribute to decreased circulating PUFA levels. These findings align with previous research i 402 of ADHD might contribute to decreased circulating PUFA levels. These findings align with
403 previous research indicating that individuals with ADHD generally exhibit lower omega-3 PUFA
19 403 previous research indicating that individuals with ADHD generally exhibit lower omega-3 PUFA

- 404 levels compared to the control group [14]. This ADHD example provides clues for further studies
405 into the intricate relationship between ADHD and cPUFAs.
- 405 into the intricate relationship between ADHD and cPUFAs.

406 **Discussion**
407 By lev
408 we revealed a
409 found 16 pair
410 colocalization 407 By leveraging GWAS summary statistics of six cPUFA phenotypes and 20 brain disorders,
408 we revealed a widespread shared genetic basis between the two groups of traits. Our MR analysis
409 found 16 pairs of cPUFAs and we revealed a widespread shared genetic basis between the two groups of traits. Our MR analysis
409 found 16 pairs of cPUFAs and brain disorders that display potential causal associations. Further
410 colocalization and fi found 16 pairs of cPUFAs and brain disorders that display potential causal associations. Further

410 colocalization and fine-mapping analysis led to statistically inferred candidate shared causal

411 variants, such as rs colocalization and fine-mapping analysis led to statistically inferred candidate shared causal
411 variants, such as rs1260326 (*GCKR*), rs174564 (*FADS2*) and rs4818766 (*ADARB1*). We also
412 identified cPUFA-brain disor variants, such as rs1260326 (*GCKR*), rs174564 (*FADS2*) and rs4818766 (*ADARB1*). We also
identified cPUFA-brain disorder pairs with consistent results across various analysis approaches,
emphasizing a prominent role of c identified cPUFA-brain disorder pairs with consistent results across various analysis approaches,

413 emphasizing a prominent role of cPUFAs in brain disorders, especially MDD, BIP and alcohol

414 consumption-related phe emphasizing a prominent role of cPUFAs in brain disorders, especially MDD, BIP and alcohol

414 consumption-related phenotypes. Our discoveries provide novel insights into the intricate

415 relationships between cPUFAs an consumption-related phenotypes. Our discoveries provide novel insights into the intricate

415 relationships between cPUFAs and brain disorders, improving our knowledge in refining dietary

416 strategies for prevention an

relationships between cPUFAs and brain disorders, improving our knowledge in refining dietary
416 strategies for prevention and intervention.
417 The protective effect of PUFA% on MDD is strongly supported by various metho 416 strategies for prevention and intervention.
417 The protective effect of PUFA% or
418 different model assumptions, including ger
419 a putative shared variant rs4818766 and a
420 enzymes involved in the adenosine-to-in 417 The protective effect of PUFA% on MDD is strongly supported by various methods with
418 different model assumptions, including genetic correlation, MR and colocalization. We identified
419 a putative shared variant rs4 different model assumptions, including genetic correlation, MR and colocalization. We identified

419 a putative shared variant rs4818766 and a candidate gene *ADARB1*. *ADARB1* encodes one of the

420 enzymes involved in a putative shared variant rs4818766 and a candidate gene *ADARB1*. *ADARB1* encodes one of the
enzymes involved in the adenosine-to-inosine (A-to-I) RNA editing process known as Adenosine
Deaminases Acting on RNA (ADAR2) [enzymes involved in the adenosine-to-inosine (A-to-I) RNA editing process known as Adenosine

421 Deaminases Acting on RNA (ADAR2) [90]. One of the leading hypotheses regarding the

422 pathogenicity of MDD is the seroton 421 Deaminases Acting on RNA (ADAR2) [90]. One of the leading hypotheses regarding the
422 pathogenicity of MDD is the serotonin hypothesis, which suggests that depression may arise
423 from abnormalities in neurotransmit pathogenicity of MDD is the serotonin hypothesis, which suggests that depression may arise
from abnormalities in neurotransmitters, particularly serotonin [90, 91]. ADAR2 could edit
serotonin 2C receptor (5-HT_{2c}-R) at t 423 from abnormalities in neurotransmitters, particularly serotonin [90, 91]. ADAR2 could edit
424 serotonin 2C receptor (5-HT_{2c}-R) at the D site, which reduces G protein coupling and affinity for
425 serotonin [90]. No 424 serotonin 2C receptor (5-HT_{2c}-R) at the D site, which reduces G protein coupling and affinity for
425 serotonin [90]. Notably, prior research has shown that ADAR2 knock-out and mutant mice
426 lacking the deaminase 425 serotonin [90]. Notably, prior research has shown that ADAR2 knock-out and mutant mice
426 lacking the deaminase activity of ADAR2 exhibit elevated body fat and reduced ability to utilize
427 fatty acids [92, 93]. Anim lacking the deaminase activity of ADAR2 exhibit elevated body fat and reduced ability to utilize
fatty acids [92, 93]. Animal studies have also demonstrated that supplementing PUFAs in rats
21 427 fatty acids [92, 93]. Animal studies have also demonstrated that supplementing PUFAs in rats

leads to higher concentrations of serotonin in the brain [94]. Taken together, it is plausible that

429 PUFAs reduce the risk of MDD by modulating the serotonin transportation through ADAR2 [95].

430 Our study also suppo PUFAs reduce the risk of MDD by modulating the serotonin transportation through ADAR2 [95].

430 Our study also supports the protective effect of omega-3% on BIP. MR analysis showed

431 that higher omega-3% are associated 430 Our study also supports the protective effect of omega-3% on BIP. MR analysis showed
431 that higher omega-3% are associated with a reduced risk of bipolar disorder. Further
432 colocalization analysis identified a col that higher omega-3% are associated with a reduced risk of bipolar disorder. Further

432 colocalization analysis identified a colocalized region where the *FADS1* and *FADS2* genes are

433 located. Statistically inferred colocalization analysis identified a colocalized region where the *FADS1* and *FADS2* genes are
433 located. Statistically inferred shared causal variant rs174564 is an intronic variant of the *FADS2*
434 gene. SNPs in the 133 located. Statistically inferred shared causal variant rs174564 is an intronic variant of the *FADS2* gene. SNPs in the *FADS1/2* region have been reported to be associated with circulating PUFA levels and the risk of b gene. SNPs in the *FADS1/2* region have been reported to be associated with circulating PUFA

435 levels and the risk of bipolar disorder in different populations [28, 96, 97]. Significant changes in

436 the lipid profile levels and the risk of bipolar disorder in different populations [28, 96, 97]. Significant changes in

436 the lipid profiles of the plasma and brain, as well as behavioral changes (e.g., hyperactivity and

437 hypoactivit the lipid profiles of the plasma and brain, as well as behavioral changes (e.g., hyperactivity and

437 hypoactivity episodes), were observed in heterozygous *Fads1/2* knockout mice [24]. Moreover,

438 dietary DHA supplem hypoactivity episodes), were observed in heterozygous *Fads1/2* knockout mice [24]. Moreover,

438 dietary DHA supplementation reduced depressive episodes in the mutant mice, supporting the

439 protective role of omega-3%

dietary DHA supplementation reduced depressive episodes in the mutant mice, supporting the

439 protective role of omega-3% against BIP.

440 We show that lower levels of omega-6% are related to lower alcohol consumption. protective role of omega-3% against BIP.
440 We show that lower levels of om
441 statistically inferred a shared causal v
442 colocalized association signal between
443 encodes glucokinase regulatory protein t We show that lower levels of omega-6% are related to lower alcohol consumption. We
statistically inferred a shared causal variant rs1260326 (gene: *GCKR*), which explains a
colocalized association signal between omega-6% l statistically inferred a shared causal variant rs1260326 (gene: *GCKR*), which explains a
colocalized association signal between omega-6% levels and alcohol consumption. *GCKR*
encodes glucokinase regulatory protein that b colocalized association signal between omega-6% levels and alcohol consumption. *GCKR*
encodes glucokinase regulatory protein that binds to glucokinase. Compared to the C allele of
rs1260326, the T allele results in lower encodes glucokinase regulatory protein that binds to glucokinase. Compared to the C allele of

444 rs1260326, the T allele results in lower binding efficiency of glucokinase regulatory protein,

445 leading to increased to rs1260326, the T allele results in lower binding efficiency of glucokinase regulatory protein,

445 leading to increased total fatty acids formation, liver fat and triglyceride accumulation [98]. In

446 addition, the T al leading to increased total fatty acids formation, liver fat and triglyceride accumulation [98]. In
addition, the T allele is linked to a higher risk of liver diseases, including nonalcoholic fatty liver
disease (NAFLD) and addition, the T allele is linked to a higher risk of liver diseases, including nonalcoholic fatty liver
447 disease (NAFLD) and non-alcoholic steatohepatitis [99]. Lower serum levels of omega-6 fatty
448 acids and LA were disease (NAFLD) and non-alcoholic steatohepatitis [99]. Lower serum levels of omega-6 fatty

448 acids and LA were associated with a higher risk for NAFLD [100]. Taken together, it is possible

449 that individuals with lo acids and LA were associated with a higher risk for NAFLD [100]. Taken together, it is possible
that individuals with lower PUFA and omega-6 levels tend to have more liver problems (e.g.,
22 that individuals with lower PUFA and omega-6 levels tend to have more liver problems (e.g.,

22

accumulation of liver fat, elevated levels of triglyceride, and alanine aminotransferase), and thus

tend to drink less.

We note that disease status itself might influence cPUFA levels. Our reverse MR results

revealed a 451 tend to drink less.
452 We note th
453 revealed a signific
454 and LA%), sugges
455 ADHD. Further pa We note that disease status itself might influence cPUFA levels. Our reverse MR results

453 revealed a significant negative association between ADHD and three cPUFAs (PUFA%, omega-6%

454 and LA%), suggesting that altered revealed a significant negative association between ADHD and three cPUFAs (PUFA%, omega-6%
and LA%), suggesting that altered cPUFA levels may be one of the metabolic consequences of
ADHD. Further pairwise colocalization an and LA%), suggesting that altered cPUFA levels may be one of the metabolic consequences of
455 ADHD. Further pairwise colocalization analysis identified a region chr9:85,440,801-86,938,196
456 colocalized among ADHD, PUFA% 455 ADHD. Further pairwise colocalization analysis identified a region chr9:85,440,801-86,938,196
456 colocalized among ADHD, PUFA%, omega-6% and LA% (**Table 1** and **Supplementary Table**
457 **S9**). Three distinct SNPs (i. colocalized among ADHD, PUFA%, omega-6% and LA% (**Table 1** and **Supplementary Table**

457 **S9**). Three distinct SNPs (i.e., rs2576362, rs1982151, rs6559744) were statistically inferred as

458 putative causal variants that **457 S9**). Three distinct SNPs (i.e., rs2576362, rs1982151, rs6559744) were statistically inferred as putative causal variants that explain the shared association signal. However, none of the identified SNP has strong enou quared putative causal variants that explain the shared association signal. However, none of the identified SNP has strong enough evidence for causation (PP < 0.1), and further studies are needed to pinpoint shared caus

1459 identified SNP has strong enough evidence for causation (PP < 0.1), and further studies are

1460 needed to pinpoint shared causal variants and candidate genes in this region.

1461 The discrepancy between the geneti needed to pinpoint shared causal variants and candidate genes in this region.

461 The discrepancy between the genetic correlation and MR results could

462 differences in the sets of genetic variants analyzed in either ap The discrepancy between the genetic correlation and MR results could be attributed to the
462 differences in the sets of genetic variants analyzed in either approach and the existence of
463 discordant pleiotropy across va differences in the sets of genetic variants analyzed in either approach and the existence of discordant pleiotropy across variants. It also reflects the limitations of different methods as well as the complex genetic archi discordant pleiotropy across variants. It also reflects the limitations of different methods as well
as the complex genetic architecture of brain disorders [101]. Taking omega-3% and BIP as an
example, their positive genet as the complex genetic architecture of brain disorders [101]. Taking omega-3% and BIP as an
example, their positive genetic correlation suggests the presence of a substantial number of
common variants that exert small yet example, their positive genetic correlation suggests the presence of a substantial number of
466 common variants that exert small yet consistent effects on both phenotypes (**Supplementary**
Figure S9). However, the negati common variants that exert small yet consistent effects on both phenotypes (**Supplementary** Figure S9). However, the negative association observed in MR and colocalization analysis is driven by the *FADS* locus that exhibi Figure S9). However, the negative association observed in MR and colocalization analysis is
468 driven by the *FADS* locus that exhibited a relatively large effect but with opposite directions on
469 the two phenotypes (Su driven by the *FADS* locus that exhibited a relatively large effect but with opposite directions on
469 the two phenotypes (**Supplementary Figure S8 and Supplementary Table S12**). We highlight
470 the need to understand th the two phenotypes (**Supplementary Figure S8 and Supplementary Table S12**). We highlight
470 the need to understand the biological function of genetic variants in MR analysis, especially
471 when the trait of interest has 470 the need to understand the biological function of genetic variants in MR analysis, especially
471 when the trait of interest has complicated genetic architecture [101, 102]. 471 when the trait of interest has complicated genetic architecture [101, 102].

In our analysis, we focused on relative measures of cPUFAs. We found limited genetic

473 correlations or polygenic overlaps between the absolute measures of cPUFAs and brain disorders

474 (Supplementary Figure S3-S4 and correlations or polygenic overlaps between the absolute measures of cPUFAs and brain disorders
474 (Supplementary Figure S3-S4 and Table S3-S4). It is important to note that absolute and
475 relative measures of cPUFAs off (**Supplementary Figure S3-S4 and Table S3-S4**). It is important to note that absolute and
relative measures of cPUFAs offer distinct perspectives on fatty acid metabolism. Relative
measures are preferred in the majority of relative measures of cPUFAs offer distinct perspectives on fatty acid metabolism. Relative

476 measures are preferred in the majority of cases because PUFAs as well as saturated and

477 monounsaturated fatty acids are me measures are preferred in the majority of cases because PUFAs as well as saturated and
monounsaturated fatty acids are metabolized by the same enzymes derived from common genes
(e.g. *FADS1/FADS2*) [103]. They are also pre monounsaturated fatty acids are metabolized by the same enzymes derived from common genes

478 (e.g. *FADS1/FADS2*) [103]. They are also preferred because relative measures are more precise

479 (lower analytical SDs) sinc (e.g. *FADS1/FADS2*) [103]. They are also preferred because relative measures are more precise
(lower analytical SDs) since they are all referenced to one another and not to exogenously-added
internal standards. Absolute m (lower analytical SDs) since they are all referenced to one another and not to exogenously-added

480 internal standards. Absolute measures provide direct information about the quantities of cPUFAs

481 which become import internal standards. Absolute measures provide direct information about the quantities of cPUFAs

481 which become important when any particular fatty acid may become limiting for a particular

482 physiological requirement which become important when any particular fatty acid may become limiting for a particular

482 physiological requirement [104-106]. The different patterns with brain disorders are consistent

483 with the limited genetic physiological requirement [104-106]. The different patterns with brain disorders are consistent
with the limited genetic correlation between absolute and relative cPUFAs (Supplementary
Figure S2). They likely reflect diffe with the limited genetic correlation between absolute and relative cPUFAs (Supplementary

484 Figure S2). They likely reflect different aspects of lipid metabolism. Future studies are needed to

485 discern the exact mecha

Figure S2). They likely reflect different aspects of lipid metabolism. Future studies are needed to
discern the exact mechanisms.
Quare of the studies of the studies of the studies of the studies of and limitations of exam 485 discern the exact mechanisms.
486 Our study is not with
487 could lead to minor difference
488 applied (e.g., association metho
489 we analyzed multiple GWAS Our study is not without limitations. First, using different GWAS summary statistics

487 could lead to minor differences in the results since slightly different analytical strategies were

488 applied (e.g., association m could lead to minor differences in the results since slightly different analytical strategies were
488 applied (e.g., association methods, quality control criteria, and covariates). To address this issue,
489 we analyzed m applied (e.g., association methods, quality control criteria, and covariates). To address this issue,

489 we analyzed multiple GWAS of the same phenotype to evaluate robustness of our discoveries.

490 We observed consist we analyzed multiple GWAS of the same phenotype to evaluate robustness of our discoveries.

490 We observed consistent correlation patterns with different GWAS of the same traits

491 (Supplementary Figure S3 and Supplemen We observed consistent correlation patterns with different GWAS of the same traits

491 (Supplementary Figure S3 and Supplementary Table S3). Second, five brain disorders (i.e.,

492 ANX, OCD, OD, AD, and TS) had relativel 491 **(Supplementary Figure S3 and Supplementary Table S3**). Second, five brain disorders (i.e., ANX, OCD, OD, AD, and TS) had relatively small sample sizes that did not meet the requirement of MiXeR and were therefore excl 492 ANX, OCD, OD, AD, and TS) had relatively small sample sizes that did not meet the
1493 requirement of MiXeR and were therefore excluded from the estimation of polygenic overlap.
1494 Finally, our study focused only on 493 requirement of MiXeR and were therefore excluded from the estimation of polygenic overlap.
494 Finally, our study focused only on the European population. Genetic adaptation and variation of
24 494 Finally, our study focused only on the European population. Genetic adaptation and variation of

fatty acid composition have been demonstrated in the Inuit, African, South Asian, East Asian,

and European populations [23, 107-109]. Differences in prevalence [110, 111] and genetic risk

factors [89] of psychiatric diso and European populations [23, 107-109]. Differences in prevalence [110, 111] and genetic risk

497 factors [89] of psychiatric disorders were also demonstrated across ethnic groups. Therefore,

498 expanding our research t factors [89] of psychiatric disorders were also demonstrated across ethnic groups. Therefore,

498 expanding our research to other populations is necessary to gain a deeper understanding of the

499 shared genetic basis an expanding our research to other populations is necessary to gain a deeper understanding of the

499 shared genetic basis and genetic determinants between cPUFAs and brain disorders across

500 populations.

501 Our systemi

shared genetic basis and genetic determinants between cPUFAs and brain disorders across

soon populations.

Our systemic genetic analysis of six cPUFA traits and 20 brain disorders uncovered a

soon videspread shared genet 500 populations.
501 Our s
502 widespread s
503 variants and
504 brain disorde 501 Our systemic genetic analysis of six cPUFA traits and 20 brain disorders uncovered a
502 widespread shared genetic basis between the two groups. We pinpointed specific shared genetic
503 variants and provided evidence widespread shared genetic basis between the two groups. We pinpointed specific shared genetic
503 variants and provided evidence supporting the potential effects of certain cPUFAs on specific
504 brain disorders. Our findi variants and provided evidence supporting the potential effects of certain cPUFAs on specific
504 brain disorders. Our findings provide new insights into the shared genetic architecture underlying
505 these traits and have 504 brain disorders. Our findings provide new insights into the shared genetic architecture underlying
505 these traits and have implications for interventions and dietary recommendations of PUFAs in the
506 context of bra 505 these traits and have implications for interventions and dietary recommendations of PUFAs in the
506 context of brain disorders. 506 context of brain disorders.

Supplemental information description

508 Figure S1. Flowchart of the study

509 Figure S2. Pairwise genetic correlations A) betw

510 phenotypes.

511 Figure S3. Pairwise genetic correlations between

512 Figure S4. Pai

- 508 Figure S1. Flowchart of the study
509 Figure S2. Pairwise genetic correla
510 phenotypes.
511 Figure S3. Pairwise genetic correla
512 Figure S4. Pairwise polygenic ove
513 Figure S5. Pairwise polygenic ove
514 Figure S
-
-
-
-
- 509 Figure S2. Pairwise genetic correlations A) between brain disorders and B) between cPUFA

510 phenotypes.

511 Figure S3. Pairwise genetic correlations between cPUFAs and brain disorders

512 Figure S4. Pairwise polyge 510 phenotypes.
511 Figure S3. P.
512 Figure S4. P.
513 Figure S5. P.
514 Figure S6. R.
515 Figure S7. S.
516 omega-3%, J. 511 Figure S3. Pairwise genetic correlations between cPUFAs and brain disorders
512 Figure S4. Pairwise polygenic overlaps between cPUFAs and brain disorders
513 Figure S5. Pairwise polygenic overlaps A) between brain diso 512 Figure S4. Pairwise polygenic overlaps between cPUFAs and brain disorders
513 Figure S5. Pairwise polygenic overlaps A) between brain disorders and B) bet
514 Figure S6. Reverse MR results
515 Figure S7. Statistical fi
-
- Figure S7. Statistical fine-mapping posterior inclusion probability plots in 11q12.1-11q12.3 for A)

516 omega-3%, B) DHA%, C) PUFA% and D) omega-6:omega-3

517 Figure S8. Bidirectional association between PUFA% and MDD

5
- 514 Figure S6. Reverse MR results
515 Figure S7. Statistical fine-mapp
516 omega-3%, B) DHA%, C) PUF
517 Figure S8. Bidirectional associa
518 Figure S9. Differences in the SI
519 Table S1. Literature review on 1
520 Table
-
- Figure S5. Pairwise polygenic overlaps A) between brain disorders and B) between cPUFAs.

514 Figure S6. Reverse MR results

515 Figure S7. Statistical fine-mapping posterior inclusion probability plots in 11q12.1-11q12.3
-
-
-
- 516 omega-3%, B) DHA%, C) PUFA% and D) omega-6:omega-3
517 Figure S8. Bidirectional association between PUFA% and MD
518 Figure S9. Differences in the SNP sets in omega-3%-BIP gene
519 Table S1. Literature review on PUFA-b 517 Figure S8. Bidirectional association between PUFA% and MDD
518 Figure S9. Differences in the SNP sets in omega-3%-BIP genetic
519 Table S1. Literature review on PUFA-brain disorders Mendelian
520 Table S2. Dataset char 518 Figure S9. Differences in the SNP sets in omega-3%-BIP genetic correlation and MR analysis
519 Table S1. Literature review on PUFA-brain disorders Mendelian randomization studies
520 Table S2. Dataset characteristics
5 Table S1. Literature review on PUFA-brain disorders Mendelian randomization studies

520 Table S2. Dataset characteristics

521 Table S3. Pairwise genetic correlations between cPUFAs and brain disorders

522 Table S4. MiXe Table S2. Dataset characteristics

521 Table S3. Pairwise genetic correl

522 Table S4. MiXeR univariate est

524 Table S5. MiXeR bivariate estim

525 Table S6. MiXeR bivariate estim

526 Table S7. Forward MR results in 521 Table S3. Pairwise genetic correlations between cPUFAs and brain disorders
522 Table S4. MiXeR univariate estimates and bivariate estimates between
523 Table S5. MiXeR bivariate estimates between brain disorders
525 Ta Table S4. MiXeR univariate estimates and bivariate estimates between cPUFAs and brain

523 disorders

524 Table S5. MiXeR bivariate estimates between brain disorders

525 Table S6. MiXeR bivariate estimates between cPUFAs

-
-
-
- 523 disorders
524 Table S5.
525 Table S6.
526 Table S7.
527 Table S8.
528 Table S9.
529 Table S10 Table S5. MiXeR bivariate estimates between brain disorders

525 Table S6. MiXeR bivariate estimates between cPUFAs

526 Table S7. Forward MR results inferring the causal effect of cP

527 Table S8. Reverse MR results infe Table S6. MiXeR bivariate estimates between cPUFAs
526 Table S7. Forward MR results inferring the causal effec
527 Table S8. Reverse MR results inferring the causal effec
528 Table S9. Pairwise colocalization analysis and Table S7. Forward MR results inferring the causal effect of cPUFAs on brain disorders

Table S8. Reverse MR results inferring the causal effect of brain disorders on cPUFAs I

Table S9. Pairwise colocalization analysis and
- Table S8. Reverse MR results inferring the causal effect of brain disorders on cPUFAs levels

Table S9. Pairwise colocalization analysis and fine-mapping results

Table S10. Functional annotation of colocalized and fine-ma
-
-
- 530 Table S11. Gene-set enrichment analysis of 36 candidate genes using FUMA GENE2FUNC
531 Table S12. Genetic instruments included in the omega-3%-BIP MR analysis
531 Table S12. Genetic instruments included in the omega-3%
- 528 Table S9. Pairwise colocalization analysis and fine-mapping results
529 Table S10. Functional annotation of colocalized and fine-mapped S1
530 Table S11. Gene-set enrichment analysis of 36 candidate genes using
531 Tab 529 Table S10. Functional annotation of colocalized and fine-mapped SNPs by VEP
530 Table S11. Gene-set enrichment analysis of 36 candidate genes using FUMA GE
531 Table S12. Genetic instruments included in the omega-3%-BI 531 Table S12. Genetic instruments included in the omega-3%-BIP MR analysis

Table S12. Genetic instruments included in the omega-3%-BIP MR analysis

533

Acknowledgements

535 Research reported

536 Medical Sciences of the

537 content is solely the resp

538 views of the National Ins

539 providing access to genc

540 who provided DNA sam Research reported in this publication was supported by the National Institute Of General

536 Medical Sciences of the National Institutes of Health under Award Number R35GM143060. The

537 content is solely the responsibil Medical Sciences of the National Institutes of Health under Award Number R35GM143060. The
content is solely the responsibility of the authors and does not necessarily represent the official
views of the National Institutes content is solely the responsibility of the authors and does not necessarily represent the official
538 views of the National Institutes of Health. We thank the PGC, IEU Open GWAS, and CNCR for
539 providing access to geno views of the National Institutes of Health. We thank the PGC, IEU Open GWAS, and CNCR for providing access to genome-wide association study data. We also thank all research participants who provided DNA samples for these s 539 providing access to genome-wide association study data. We also thank all research participants
540 who provided DNA samples for these studies. We thank the UGA GACRC staff for facilitating
541 our data analysis.
542 540 who provided DNA samples for these studies. We thank the UGA GACRC staff for facilitating
541 our data analysis.
542 **Conflict of Interest**
544 The authors report no conflicts of interest.
545 **Author contributions** 541 our data analysis.
542 **Conflict of Internal S44** The author
545 **Author contril**
545 **Author contril**
547 K.Y. conce

543
544
545
546
547
548

Conflict of Interest

544 The authors repo

545 **Author contribution

547 K.Y. conceptuali

548 H.X. collected data. H.

549 N.T.R.M., and C.F.C.. H** 546
547
548
549
550

The authors report no conflicts of interest.

545

546 **Author contributions**

547 K.Y. conceptualized and supervised the stu

548 H.X. collected data. H.X. and Y.S. performed n

549 N.T.R.M., and C.F.C.. H.X., Y.S., K.Y., **4546 Author contributions**

547 K.Y. conceptualized

548 H.X. collected data. H.X.

549 N.T.R.M., and C.F.C.. H.X.

550 manuscript. All authors rev 547 K.Y. conceptualized and supervised the study. K.Y., H.X., and Y.S. designed the analysis.
548 H.X. collected data. H.X. and Y.S. performed most data analysis with assistance from M.F.,
549 N.T.R.M., and C.F.C.. H.X., Y 548 H.X. collected data. H.X. and Y.S. performed most data analysis with assistance from M.F.,

549 N.T.R.M., and C.F.C.. H.X., Y.S., K.Y., J.T.B., and C.W.K.C. interpreted the results and wrote the

550 manuscript. All au

549 N.T.R.M., and C.F.C.. H.X., Y.S., K.Y., J.T.B., and C.W.K.C. interpreted the results and wrote the manuscript. All authors reviewed, revised, and approved the manuscript.

550 manuscript. All authors reviewed, revised, and approved the manuscript.

-
- 551 **References**

552 1. Diseas

553 countr.

554 Diseas

555 2. Collabo

556 in 204

557 of Dise

558 3. Bradvil

559 15(9).

560 4. Sarris, 553

553 countries and territories, 1990-2019: a systematic analysis for the Global Burden c

554 Disease Study 2019. Lancet, 2020. 396(10258): p. 1204-1222.

555 2. Collaborators, G.B.D.M.D., *Global, regional, and nation* 554 Disease Study 2019. Lancet, 2020. **396**(10258): p. 1204-1222.

555 2. Collaborators, G.B.D.M.D., *Global, regional, and national burden of 12 mental disor*

in 204 countries and territories, 1990-2019: a systematic ana Example Back of the United, 2020. 396(10258): p. 1204-1222.

555 2. Collaborators, G.B.D.M.D., *Global, regional, and national burd*

in 204 countries and territories, 1990-2019: a systematic analy

of Disease Study 2019.
-
-
- 556 in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden

557 of Disease Study 2019. Lancet Psychiatry, 2022. 9(2): p. 137-150.

558 3. Bradvik, L., Suicide Risk and Mental Disorders. In 557 of Disease Study 2019. Lancet Psychiatry, 2022. 9(2): p. 137-150.

558 3. Bradvik, L., Suicide Risk and Mental Disorders. Int J Environ Res Public Health, 2018.

560 4. Sarris, J., et al., Nutritional medicine as mains 558 3. Bradvik, L., Suicide Risk and Mental Disorders. Int J Environ Res Pi
558 15(9).
560 4. Sarris, J., et al., Nutritional medicine as mainstream in psychiatry.
561 2015. 2(3): p. 271-274.
562 5. Firth, J., et al., The 559 15(9).

559 15(9).

558 15(9).

560 4. Sarris, J., et al., *Nutritional medicine as mainstream in psychiatry*. The Lancet Psychia

2015. 2(3): p. 271-274.

562 5. Firth, J., et al., *The efficacy and safety of nutrient* 559 4. Sarris,
560 4. Sarris,
562 5. Firth, J
563 *menta*
564 Psychia
565 6. Bazine
566 *functic*
567 7. Brenna
568 *polyun* 2015. 2(3): p. 271-274.

562 5. Firth, J., et al., *The efficacy and safety of nutrient supplements in the treatment of*

7656 563 *mental disorders: a meta-review of meta-analyses of randomized controlled trials.* World
 Solate and Evals. 2(3): p. 2/1-2/4.

562 5. Firth, J., et al., *The effice*

563 *mental disorders: a metral disorders: a metral disorders: a metral

564 Psychiatry, 2019. 18(3):

565 6. Bazinet, R.P. and S. Layé

566 <i>fun*
-
-
- mental disorders: a meta-review of meta-analyses of randomized controlled trials.

564 Psychiatry, 2019. 18(3): p. 308-324.

565 6. Bazinet, R.P. and S. Layé, *Polyunsaturated fatty acids and their metabolites in brait*

5 9564 Psychiatry, 2019. 18(3): p. 308-324.

565 6. Bazinet, R.P. and S. Layé, *Polyunsaturated fatty acids and their metabolites in brain*

566 *function and disease.* Nature Reviews Neuroscience, 2014. 15(12): p. 771-785.
 Fig. 18(3): p. 308-324.

565 6. Bazinet, R.P. and S. Layé, *Polyunsatu*

566 *function and disease*. Nature Review

567 7. Brenna, J.T., *Animal studies of the function and disease*. Nature Review

568 *polyunsaturated fat* 566 function and disease. Nature Reviews Neuroscience, 2014. 15(12): p. 771-785.

567 7. Brenna, J.T., Animal studies of the functional consequences of suboptimal

568 polyunsaturated fatty acid status during pregnancy, la 567 7. Brenna, J.T., Animal studies of the functional consequences of suboptimal
568 polyunsaturated fatty acid status during pregnancy, lactation and early post-no
569 Matern Child Nutr, 2011. **7 Suppl 2**(Suppl 2): p. 59-568 polyunsaturated fatty acid status during pregnancy, lactation and early polyunsaturated fatty acid status during pregnancy, lactation and early polyunsaturated fatty acid status during pregnancy, lactation and early po
-
-
-
- Matern Child Nutr, 2011. **7 Suppl 2**(Suppl 2): p. 59-79.

569 Matern Child Nutr, 2011. **7 Suppl 2**(Suppl 2): p. 59-79.

570 8. Melo, H.M., L.E. Santos, and S.T. Ferreira, *Diet-Derived Fatty Acids, Brain Inflammation,*

57 8. Melo, H.M., L.E. Santos, and S.T. Ferreira, *Diet-Derived*

570 8. Melo, H.M., L.E. Santos, and S.T. Ferreira, *Diet-Derived*

571 *and Mental Health.* Front Neurosci, 2019. **13**: p. 265.

573 *compositions in patients*
- 9. Mental Health. Front Neurosci, 2019. 13: p. 265.

19. Mental Health. Front Neurosci, 2019. 13: p. 265.

19. Menta-analytic review of polyunsaturated fatty acid

19. Liao, Y., et al., *Efficacy of omega-3 PUFAs in depres* 572 9. Lin, P.Y., S.Y. Huang, and K.P. Su, *A meta-analytic revieu*
573 compositions in patients with depression. Biol Psychia
574 10. Liao, Y., et al., *Efficacy of omega-3 PUFAs in depressio*
575 Psychiatry, 2019. 9(1): 573 compositions in patients with depression. Biol Psychiatry, 2010. 68(2): p. 140-7.

10. Liao, Y., et al., *Efficacy of omega-3 PUFAs in depression: A meta-analysis*. Transl

575 Psychiatry, 2019. 9(1): p. 190.

11. Thes 574 10. Liao, Y., et al., *Efficacy of omega-3 PUFAs in depression: A meta-analysis.* Transl
575 Psychiatry, 2019. 9(1): p. 190.
576 11. Thesing, C.S., et al., *Omega-3 and omega-6 fatty acid levels in depressive and an*
5 575 Psychiatry, 2019. 9(1): p. 190.

576 11. Thesing, C.S., et al., Omega-3 and omega-6 fatty acid levels in depressive and a.

577 disorders. Psychoneuroendocrinology, 2018. 87: p. 53-62.

578 12. Amminger, G.P., et al., 575 11. Thesing, C.S., et al., Omega-3

577 disorders. Psychoneuroendocr

578 12. Amminger, G.P., et al., Long-ch

579 psychotic disorders: a random

580 67(2): p. 146-54.

581 13. Amminger, G.P., et al., Longer-

582 the 577 disorders. Psychoneuroendocrinology, 2018. **87**: p. 53-62.

12. Amminger, G.P., et al., *Long-chain omega-3 fatty acids for indicated prevention of*

579 psychotic disorders: a randomized, placebo-controlled trial. Arc Example 12. Amminger, G.P., et al., *Long-chain omega-3 fatty acids for*

579 *psychotic disorders: a randomized, placebo-controlled tria*

580 **67**(2): p. 146-54.

581 13. Amminger, G.P., et al., *Longer-term outcome in t*
-
- 579 psychotic disorders: a randomized, placebo-controlled trial. Arch Gen Psychiatry, 2

580 67(2): p. 146-54.

581 13. Amminger, G.P., et al., Longer-term outcome in the prevention of psychotic disorde

582 the Vienna ome
- 5780 67(2): p. 146-54.

581 13. Amminger, G.P., et al., *Longer-term outcome in the prevention of psychotic disorders by*

5782 the Vienna omega-3 study. Nat Commun, 2015. 6: p. 7934.

583 14. Chang, J.P., et al., *Omega-3* 581 13. Amminger, G.P., e

581 13. Amminger, G.P., e

582 the Vienna omeg.

583 14. Chang, J.P., et al.,

584 Hyperactivity Dise

585 Biological Studies

585 Biological Studies

587 and autism spect.

589 16. Cederholm, T 582 the Vienna omega-3 study. Nat Commun, 2015. 6: p. 7934.

583 14. Chang, J.P., et al., Omega-3 Polyunsaturated Fatty Acids in Youths with Attention Deficit

584 Hyperactivity Disorder: a Systematic Review and Meta-Anal The Vienna omega-3 study. Nat Commun, 2015. 6: p. 7934.

583 14. Chang, J.P., et al., *Omega-3 Polyunsaturated Fatty Acids in Hyperactivity Disorder: a Systematic Review and Meta-Anal*

585 *Biological Studies.* Neurops 1584 Hyperactivity Disorder: a Systematic Review and Meta-Analysis of Clinical Trials and

585 Biological Studies. Neuropsychopharmacology, 2018. 43(3): p. 534-545.

586 Biological Studies. Neuropsychopharmacology, 2018. 4 585 Biological Studies. Neuropsychopharmacology, 2018. 43(3): p. 534-545.

586 15. Mazahery, H., et al., Relationship between long chain n-3 polyunsaturated fatty acid

587 and autism spectrum disorder: systematic review Example Biological Statists. Neuropsychopharmacology, 2018. 43(3): p. 334-345.

586 15. Mazahery, H., et al., Relationship between long chain n-3 polyunsaturated

587 and autism spectrum disorder: systematic review and met
-
- 587 and autism spectrum disorder: systematic review and meta-analysis of case-control and randomised controlled trials. Nutrients, 2017. 9(2): p. 155.

588 and autism spectrum disorder: systematic review and meta-analysis 588 and anisot controlled trials. Nutrients, 2017. 9(2): p. 155.

589 and omised controlled trials. Nutrients, 2017. 9(2): p. 155.

590 decline in humans. Advances in nutrition, 2013. 4(6): p. 672-676.

591 17. Deane, K.H 16. Cederholm, T., N. Salem Jr, and J. Palmblad, ω -3 fatty acids

589 16. Cederholm, T., N. Salem Jr, and J. Palmblad, ω -3 fatty acids

46. decline in humans. Advances in nutrition, 2013. 4(6): p. 672

591 17. Deane For the define in humans. Advances in nutrition, 2013. 4(6): p. 672-676.

17. Deane, K.H.O., et al., *Omega-3 and polyunsaturated fat for prevention of depression and*
 anxiety symptoms: systematic review and meta-analysi 590 decline in humans. Advances in nutrition, 2013. $\frac{1}{2}(6)$, p. 672-676.
591 17. Deane, K.H.O., et al., *Omega-3 and polyunsaturated fat for prevelanxiety symptoms: systematic review and meta-analysis of rando.*
593 P 592 anxiety symptoms: systematic review and meta-analysis of randomised trials. Br J
593 Psychiatry, 2021. **218**(3): p. 135-142.
30 593 Psychiatry, 2021. 218(3): p. 135-142. $\frac{1}{3}$ sychiatry, 2021. 218(3): p. 135-142.

594 18. Mazereeuw, G., et al., Effects of omega-3 fatty acids on cognitive performance: a meta-255 analysis. Neurobiol Aging, 2012. 33(7): p. 1482 e17-29.

596 19. McGorry, P.D., et al., *Effect of w-3 polyunsaturated fatty*

19. McGorry, P.D., et al., *Effect of w-3 polyunsaturated fatty*

598 psychiatry, 2017. **74** able 19. McCorry, N., et al., Effects of omega-3 polyunsaturated fatty acid supplementation
 598 psychiatry, 2017. **74**(1): p. 19-27.

599 20. Cheng, N., et al., *Effects of omega-3 polyunsaturated fatty acid supplementation on*

600 cognitive functioning in youth at ultra-high risk for psychosis: secondary analys 599 20. Cheng, N., et al., *Effects of omego*
600 *cognitive functioning in youth at t*
601 *NEURAPRO randomised controlle*
602 21. Ioannidis, J.P.A., *The Challenge of*
603 2018. **320**(10): p. 969-970.
604 22. van Rheenen 599 599 20. Consideration of Major Depressive Disorder Identifies (1991)

599 21. Cheng, N. The Challenge of Reforming Nutritional Epidemiologic Research. JAN

599 2018. 320(10): p. 969-970.

599 2018. 320(10): p. 969-970. 500 cognitive functioning in youth at ultra-high risk for psychosis: secondary analysis of the

591 NEURAPRO randomised controlled trial. BJPsych open, 2022. **8**(5): p. e165.

502 21. Ioannidis, J.P.A., The Challenge of Re 601 *NEURAPRO randomised controlled trial.* BJPsych open, 2022. **8**(5): p. e165.

602 21. Ioannidis, J.P.A., *The Challenge of Reforming Nutritional Epidemiologic Research.* JAMA,

2018. **320**(10): p. 969-970.

604 22. van 602 21. Ioannidis, J.P.A., *The Challenge of Reforming Nutritional Epidemiologic Rese*
603 2018. **320**(10): p. 969-970.
604 22. van Rheenen, W., et al., *Genetic correlations of polygenic disease traits: fro*
605 *practice* 2018. 320(10): p. 969-970.

22. van Rheenen, W., et al., *Genetic correlations of polygenic disease traits: from theory to*

22. van Rheenen, W., et al., *Genetic correlations of polygenic disease traits: from theory to*
 2018. 320(10): p. 909-970.

604 22. van Rheenen, W., et al., *Ge.*

605 *practice*. Nat Rev Genet, 20

606 23. Davyson, E., et al., *Metabol*

607 *Potentially Causal Associati*

608 24. Yamamoto, H., et al., *GWAS*

609 For practice. Nat Rev Genet, 2019. **20**(10): p. 567-581.

605 practice. Nat Rev Genet, 2019. **20**(10): p. 567-581.

606 23. Davyson, E., et al., *Metabolomic Investigation of Major Depressive Disorder Identifies a*
 Poten matrice. Nat Rev Genet, 2015. 20(10): p. 367-381.

606 23. Davyson, E., et al., *Metabolomic Investigation of M*

607 *Potentially Causal Association With Polyunsaturate*

608 24. Yamamoto, H., et al., *GWAS-identified bip* Form Potentially Causal Association With Polyunsaturated Fatty Acids. Biol Psychiatry, 2023.

608 24. Yamamoto, H., et al., GWAS-identified bipolar disorder risk allele in the FADS1/2 gene

609 region links mood episodes a 24. Yamamoto, H., et al., *GWAS-identified bipolar disorder risk allele in the FADS1/2 gene*

609 region links mood episodes and unsaturated fatty acid metabolism in mutant mice. Mo

610 Psychiatry, 2023.

611 25. Milanesc France of the Risk of Schizophrenia: A

609 region links mood episodes and unsaturated fatty acid metabolism in mutant mice. M

810 Psychiatry, 2023.

611 25. Milaneschi, Y., et al., A role for vitamin D and omega-3 fatty 810 Psychiatry, 2023.

611 25. Milaneschi, Y., et al., A role for vitamin D and omega-3 fatty acids in major depression?

812 An exploration using genomics. Transl Psychiatry, 2019. 9(1): p. 219.

813 26. Jones, H.J., et a 611 25. Milaneschi, Y., et

612 *An exploration us*

613 26. Jones, H.J., et al.,

614 *schizophrenia: a t*

615 2021. **8**(12): p. 10

616 27. Gao, Y., et al., *Ass*

617 *Cross-National St*

618 1195.

619 28. Zhao, L., e An exploration using genomics. Transl Psychiatry, 2019. 9(1): p. 219.

613 26. Jones, H.J., et al., Associations between plasma fatty acid concentrations and

614 schizophrenia: a two-sample Mendelian randomisation study. An exploration using genomics. Transl 1 sychiatry, 2019. 9(1): p. 215.

613 26. Jones, H.J., et al., Associations between plasma fatty acid concentrat

614 schizophrenia: a two-sample Mendelian randomisation study. The La
 614 schizophrenia: a two-sample Mendelian randomisation study. The Lancet Psyce

615 2021. 8(12): p. 1062-1070.

616 27. Gao, Y., et al., Association between Arachidonic Acid and the Risk of Schizophr

617 Cross-National S 615 2021. 8(12): p. 1062-1070.

615 2021. 8(12): p. 1062-1070.

616 27. Gao, Y., et al., Association between Arachidonic Acid and the Risk of Schizophrenia: A

617 Cross-National Study and Mendelian Randomization Analysis. 2021. **6**(12): p. 1002-1070.

616 27. Gao, Y., et al., Association b

617 Cross-National Study and N

618 1195.

620 13 with bipolar disorder in 621 270.

622 29. Schizophrenia Working Gro

623 108 schizophrenia-associatio Cross-National Study and Mendelian Randomization Analysis. Nutrients, 2023. 15(5):

195.

28. Zhao, L., et al., Replicated associations of FADS1, MAD111, and a rare variant at 10q2

28. Zhao, L., et al., Replicated associa 618 Cross-National Stady and Mendelian Randomization Analysis. National, 2023. 15(5): p.
618 28. 2hao, L., et al., *Replicated associations of FADS1*, *MAD1L1*, *and a rare variant at 10q26.*
620 13 with bipolar disorder i 619 28. Zhao,
620 13 wit
621 270.
622 29. Schizo
623 108 sc
624 30. Howai
625 *indepe*
625 *indepe*
627 31. Mullin 13 with bipolar disorder in Chinese population. Translational Psychiatry, 2018. 8(1): p.

621 270.

622 29. Schizophrenia Working Group of the Psychiatric Genomics, C., *Biological insights from*

108 schizophrenia-associa Example 13 with bipolar disorder in clinicse population. Translational Psychiatry, 2016. 0(1): p.

621 29. Schizophrenia-associated genetic loci. Nature, 2014. 511(7510): p. 421-7.

624 30. Howard, D.M., et al., Genome-wid 622 29. Schiz

623 108 5

624 30. How:

625 *inder*

626 Neur

626 Neur

628 case:

628 31. Mulli

630 32. Inter 108 schizophrenia-associated genetic loci. Nature, 2014. 511(7510): p. 421-7.

624 30. Howard, D.M., et al., Genome-wide meta-analysis of depression identifies 102

independent variants and highlights the importance of the 624 30. Howard, D.M., et al., *Genome-wide meta-analysis of depression identifies 102*
625 *independent variants and highlights the importance of the prefrontal brain reg*
626 Neurosci, 2019. **22**(3): p. 343-352.
627 31. M 625 *independent variants and highlights the importance of the prefrontal brain reg*
626 Neurosci, 2019. 22(3): p. 343-352.
627 31. Mullins, N., et al., *Genome-wide association study of more than 40,000 bipolar*
628 cases 626 Neurosci, 2019. 22(3): p. 343-352.

627 31. Mullins, N., et al., *Genome-wide association study of more than 40,000 bipolar disorder*

628 cases provides new insights into the underlying biology. Nature genetics, 2021. 627 31. Mullins, N., et al., *Genome-wide as*
628 *cases provides new insights into th*
629 817-829.
630 32. International Obsessive Compulsiv
631 Studies, *Revealing the complex ger*
632 *using meta-analysis.* Mol Psychia 628 cases provides new insights into the underlying biology. Nature genetics, 2021. 53(6): p.
629 817-829.
630 32. International Obsessive Compulsive Disorder Foundation Genetics, C. and O.C.D.C.G.A.
631 Studies, Revealing 629 cases provides new insights into the underlying biology. Nature genetics, 2021. 33(6): p.
629 a17-829.
630 32. International Obsessive Compulsive Disorder Foundation Genetics, C. and O.C.D.C.G.A.
631 Studies, Revealing 630 32. Internatic

631 Studies, *F*

632 *using met*

633 33. Otowa, T.

634 Mol Psych

635 34. Nievergel

636 *studies id*

637 4558. 531 Studies, *Revealing the complex genetic architecture of obsessive-compulsive disorder*

532 *using meta-analysis.* Mol Psychiatry, 2018. 23(5): p. 1181-1188.

533 33. Otowa, T., et al., *Meta-analysis of genome-wide as* 632 *using meta-analysis.* Mol Psychiatry, 2018. 23(5): p. 1181-1188.
633 33. Otowa, T., et al., *Meta-analysis of genome-wide association studies of anxiety disorde*
634 Mol Psychiatry, 2016. 21(10): p. 1485.
635 34. Niev 632 using meta-analysis. Mol Psychiatry, 2016. 23(5): p. 1161 1166.
633 33. Otowa, T., et al., *Meta-analysis of genome-wide association studes*
634 Mol Psychiatry, 2016. 21(10): p. 1485.
635 34. Nievergelt, C.M., et al., 634 Mol Psychiatry, 2016. 21(10): p. 1485.
635 34. Nievergelt, C.M., et al., International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nat Commun, 2019. 10 634 Mol Psychiatry, 2010. 21(10): p. 1485.
635 34. Nievergelt, C.M., et al., *International n*
636 *studies identifies sex- and ancestry-spe*
637 4558. 636 $\n 535 \n 4558.\n\n 4558.$ $\frac{1}{637}$ studies identifies sex- and ancestry-specific genetic risk loci. Nat Commun, 2019. 10(1): p.
637 $\frac{1}{31}$

1 **Table 1. Evidence supporting the potential role of cPUFAs in brain disorders**

2 Note: r_g, genetic correlation; β_{IVW}, estimated effects of trait 1 on trait 2 using IVW method; PP, posterior probability. A1, effect allele; A2, reference allele. β1, SE1 and β2, SE2 are 3 genetic effects and standard errors of A1 on trait 1 and trait 2, respectively. *P1* and *P2* are *P* values for trait 1 and trait 2 extracted from GWAS summary statistics, respectively. 4 The reverse MR of the two PUFA-ADHD pairs showed significant results ($(P_{\text{IVW}} \leq 0.05)$.

⁸³⁵**Figures**

836
837 ⁸³⁷**Figure 1: Widespread, moderate genetic basis shared between cPUFAs and brain disorders. rs.** 838 **A**) Pairwise genetic correlations between six cPUFAs and 20 brain disorders. P-value cutoffs of 839 0.05, 0.001, 4.17×10^{-4} are used to represent increasing levels of statistical significance; colors are 840 used to represent degree of genetic correlation (r_g) between two traits. **B**) Pairwise polygenic 841 overlaps between six cPUFAs and 15 brain disorders. The color and number of each box indicate 842 the degree of polygenic overlap and number of causally associated SNPs shared between 843 cPUFAs and brain disorders (nc_{12}) . Bar plots on the top and left indicate the number of cPUFAs-844 and brain disorders- associated variants, respectively, which explain 90% of SNP-based 845 heritability. Two cPUFA-brain disorder pairs highlighted in the red boxes correspond to panels C) 846 and D). **C**) Genetic effects of genome-wide SNPs on PUFA% (x axis) and NE (y axis). **D**)
847 Genetic effects of genome-wide SNPs on LA% (x axis) and AUDIT C (y axis). Each dot 847 Genetic effects of genome-wide SNPs on LA% (x axis) and AUDIT_C (y axis). Each dot 848 represents a genetic variant; colors indicate variant density.

849
850 850 Figure 2. Statistical inference of causal relationship between cPUFAs and brain disorders. 851 **A**) A heatmap summarizing the effects of six cPUFAs on 17 brain disorders. IVW p-value of 0.05 852 is used to represent statistical significance. Colors represent the effects (β_{IVW}) of cPUFAs on 853 brain disorders. The pair of omega-3% and BIP highlighted in the red box corresponds to panel 854 C). **B**) MR results showing a significant association between cPUFAs and brain disorders. Beta 855 and OR estimated using IVW method are used to represent the effects of cPUFAs on continuous 856 and binary outcomes, respectively. **C**) MR estimated effects of omega-3% (x axis) on BIP (y 857 axis). Effects estimated by the four models are shown by fitted lines; slopes of these lines 858 indicate the effect sizes.

859
860 ⁸⁶⁰**Figure 3. Colocalization analysis detects genomic loci shared between cPUFAs and brain in** 861 **disorders.** A) A heatmap summarizing pairwise colocalization between six cPUFAs and 17 brain 862 disorders. The color and number of each box indicate the number of significant colocalized 863 regions between cPUFAs and brain disorders ($PP > 0.7$). Bar plots on the top and left indicate the 864 numbers of unique colocalized SNPs (black) and loci (grey, $PP > 0.7$) for cPUFAs and brain 865 disorders, respectively. **B**) Regional association plots of six cPUFA phenotypes and BIP in 866 chr11:61,520,000-61,660,000. Variant positions are shown on x axis, $-log_{10}P$ on the left y axis, 867 recombination rate on the right y axis; variant rs174564 is marked as the lead SNP; genes located 868 in the region are shown in the bottom. LD r^2 values are indicated by colors, and recombination

869 rates by curves. C) Multi-trait colocalization analysis combing six cPUFA phenotypes and BIP 870 identified a putative shared causal variant rs174564 (PP = 0.95). PP values are shown on y axis.

871
872 872 Figure 4. Evidence supporting the effect of omega-6% on alcohol consumption. A) Genetic 873 effects of genome-wide SNPs on omega-6% (x axis) and AUDIT_C (y axis). Each dot represents 874 a genetic variant; colors indicate the variant density. **B**) MR estimated effects of omega-6% (x 875 axis) on AUDIT_C (y axis). Effects estimated by the four models are shown by fitted lines;

876 slopes of these lines indicate the effect sizes. **C**) Regional association plots of five cPUFA
877 phenotypes and three alcohol consumption phenotypes in chr2:276,000,000-27,900,000. Variant 877 phenotypes and three alcohol consumption phenotypes in chr2:276,000,000-27,900,000. Variant
878 positions are shown on x axis, -log₁₀P on the left y axis, recombination rate on the right y axis; 878 positions are shown on x axis, $-\log_{10}P$ on the left y axis, recombination rate on the right y axis;
879 variant rs1260326 is marked as the lead SNP; genes located in the region are shown in the 879 variant rs1260326 is marked as the lead SNP; genes located in the region are shown in the bottom. LD r^2 values are indicated by colors, and recombination rates by curves. **D**) Multi-trait bottom. LD r^2 values are indicated by colors, and recombination rates by curves. **D**) Multi-trait colocalization analysis combing five cPUFA phenotypes and three alcohol consumption 881 colocalization analysis combing five cPUFA phenotypes and three alcohol consumption
882 phenotypes identified a shared putative causal variant $rs1260326$ (PP = 0.99). PP values are 882 phenotypes identified a shared putative causal variant rs1260326 (PP = 0.99). PP values are
883 shown on y axis. shown on y axis.