Abstract
Genome-wide association studies (GWASs) have achieved remarkable success in associating thousands of genetic variants with complex traits. However, the presence of linkage disequilibrium (LD) makes it challenging to identify the causal variants. To address this critical gap from association to causation, many fine mapping methods have been proposed to assign well-calibrated probabilities of causality to candidate variants, taking into account the underlying LD pattern. In this manuscript, we introduce a statistical framework that incorporates expression quantitative trait locus (eQTL) information to fine mapping, built on the sum of single-effects (SuSiE) regression model. Our new method, SuSiE2, connects two SuSiE models, one for eQTL analysis and one for genetic fine mapping. This is achieved by first computing the posterior inclusion probabilities (PIPs) from an eQTL-based SuSiE model with the expression level of the candidate gene as the phenotype. These calculated PIPs are then utilized as prior inclusion probabilities for risk variants in another SuSiE model for the trait of interest. By leveraging eQTL information, SuSiE2 enhances the power of detecting causal SNPs while reducing false positives and the average size of credible sets by prioritizing functional variants within the candidate region. The advantages of SuSiE2 over SuSiE are demonstrated by simulations and an application to a single-cell epigenomic study for Alzheimer’s disease. We also demonstrate that eQTL information can be used by SuSiE2 to compensate for the power loss because of an inaccurate LD matrix.
Author summary Genome-wide association studies (GWASs) have proven powerful in detecting genetic variants associated with complex traits. However, there are challenges in distinguishing the causal variants from other variants strongly correlated with them. To better identify causal SNPs, many fine mapping methods have been proposed to assign well-calibrated probabilities of causality to candidate variants. We introduce a statistical framework that incorporates expression quantitative trait locus (eQTL) information to fine mapping, which can improve the accuracy and efficiency of association studies by prioritizing functional variants within the risk genes before evaluating the causation. Our new fine mapping framework, SuSiE2, connects two sum of single-effects (SuSiE) models, one for eQTL analysis and one for genetic fine mapping. The posterior inclusion probabilities from an eQTL-based SuSiE model are utilized as prior inclusion probabilities for risk variants in another SuSiE model for the trait of interest. Through simulations and a real data analysis focused on Alzheimer’s disease, we demonstrate that SuSiE2 improves fine mapping results by simultaneously increasing statistical power, controlling the type I error rate, and reducing the average size of credible sets.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported in part by the National Institutes of Health [R01 GM134005, U24 HG012108] and the National Science Foundation grant [DMS1902903]. We thank the participants of the UK Biobank and conducted the research using the UKBB resource under approved data request (access ref: 29900).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The North West Multi-Centre Research Ethics Committee (MREC) of UK Biobank gave ethical approval for this work. (ref: 29900)
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
Ref number corrected.
Data Availability
We used the UK Biobank genotype data (https://www.ukbiobank.ac.uk/) and conducted the research using the UKBB resource under approved data request (access ref: 29900). Moreover, the following data used in the real data analysis are publicly available: The Alzheimer's Disease summary statistics: https://ctg.cncr.nl/software/summary_statistics ROSMAP Gene Expression data: https://www.synapse.org/#!Synapse:syn17008934 The validation data of functional SNPs for AD was available in Supplementary Table 2 from https://doi.org/10.1038/s41588-020-00721-x