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Abstract 

Globally, there are over one billion people infected with soil-transmitted helminths (STHs), 

mostly living in marginalised settings with inadequate sanitation in sub-Saharan Africa and 

Southeast Asia. The WHO recommends an integrated approach to STH morbidity control 

through improved access to sanitation and hygiene education, and the delivery of preventive 

chemotherapy (PC) to school age children delivered through schools . Progress of STH control 

programmes is currently estimated using a baseline (pre-PC) school-based prevalence survey and 

then monitored using periodical school-based prevalence surveys, known as Impact Assessment 

Surveys (IAS). We investigated whether integrating geostatistical methods with a Markov model 

or a mechanistic transmission model for projecting prevalence forward in time from baseline can 

improve IAS design strategies. To do this, we applied these two methods to prevalence data 

collected in Kenya, before evaluating and comparing their performance in accurately informing 

optimal survey design for a range of IAS sampling designs. We found that although both 

approaches performed well, the mechanistic method more accurately projected prevalence over 

time and provided more accurate information for guiding survey design. Both methods 

performed less well in areas with persistent STH hotspots where prevalence did not reduce 

despite multiple rounds of PC. Our findings show that these methods can be useful tools for 

more efficient and accurate targeting of PC. The general framework built in this paper can also 

be used for projecting prevalence and informing survey design for other NTDs. 
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Introduction 

Soil-transmitted helminths (STHs) are parasitic intestinal nematodes that are transmitted between 

humans through contaminated soil and are composed of Ascaris lumbricoides, Trichuris 

trichiura, and hookworm spp. (Ancylostoma duodenale and Necator americanus). These four 

species are considered together because of their similar transmission dynamics, diagnosis, 

control, and prevention measures. It is common for a single individual, particularly children in 

impoverished settings, to be chronically infected with more than one species at the same time 

(1,2). Globally, there are over one billion people infected with STHs, one of the most common 

neglected tropical diseases (NTDs) worldwide. The majority of cases are found in marginalised 

settings with inadequate sanitation in sub-Saharan Africa and Southeast Asia and present a major 

public health burden globally (3). 

 

The World Health Organization (WHO) recommends an integrated approach to STH morbidity 

control, through improved access to sanitation and hygiene education, and the school-based 

delivery of preventive chemotherapy (PC) with albendazole or mebendazole to school age 

children (SAC). It has set a target of reducing the prevalence of moderate and heavy intensity 

infections below 2% in SAC and pre-school age children (PSAC) by 2030 (4). Typically, STH 

prevalence is initially estimated using a baseline (pre-PC) school-based prevalence survey of 

SAC, conducted at a number of selected primary schools in endemic areas. STH control progress 

is then monitored using periodical school-based prevalence surveys, known as Impact 

Assessment Surveys (IAS). IAS are typically carried out after five years of PC and are used to 

estimate current STH prevalence at IU-level to inform decisions on the requirements for PC 

delivery with the aim of reaching elimination as a public health problem. When the prevalence of 

STH (any intensity) in the target population falls below 2%, the WHO recommends suspending 

PC (5).  

 

In the context of limited financial resources in STH endemic countries and the high cost 

associated with conducting prevalence surveys, there is a need for careful design of surveys to 

accurately and efficiently measure prevalence burden and capture geographical variation in 

prevalence. Our previous work applying model-based geostatistical methods to this problem has 
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demonstrated that they can significantly increase the precision of prevalence surveys relative to 

traditional survey design, thus reducing field-sampling effort while maintaining or improving 

precision (6,7). The aim of this study was to investigate whether integrating geostatistical 

methods with Markov or mechanistic models can accurately project prevalence forward in time 

and help improve IAS design. While this study focuses on STH impact surveys, the methodology 

and principles are applicable to post-baseline survey design for other NTDs. 

Methods 

Data 

STH prevalence and PC coverage data 

STH prevalence and PC coverage data were collected in 16 implementation units (IUs; districts, 

administrative level 2) in Kenya (see Figure 1A) to monitor the reduction in STH infection in 

response to annual PC for SAC during a national school-based deworming programme (NSBDP) 

between 2012 and 2017 (8). Estimated PC coverage in each round was based on pre-PC surveys 

carried out approximately one year after each previous PC round and 2-5 weeks before the start 

of the next PC round and were recorded for each IU (see Supplementary Figure 1). These data 

are publicly available via the Global Atlas of Helminth Infections 

(https://www.thiswormyworld.org/) and the ESPEN portal (https://espen.afro.who.int/). 

  

The NSBDP study design (described in more detail previously (8)) consisted of repeat cross-

sectional surveys in a representative, population-stratified random sample of 172 schools across 

the 16 IUs at three time points over a five-year period: baseline (pre-PC, 2012), midterm (after 

two rounds of PC, 2015) and impact (after four rounds of PC, 2017). During each survey, stool 

samples were collected from a randomly selected sample of approximately 100 school children 

at each school and tested for the presence of each STH species using the Kato-Katz thick smear 

technique.  
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Environmental and demographic data 

Environmental data for the study area were available from MODIS (9,10) and consisted of 

rasters at 5 km resolution for the following variables: elevation, Enhanced Vegetation Index 

(EVI), mean daytime land surface temperature (LST), mean night-time LST, Normalized 

Difference Vegetation Index (NDVI), soil acidity and soil moisture. Population density data at 

1km resolution was used from WorldPop (11). 

Overview of study analysis steps 

This study consisted of three main steps (see Supplementary Figure 2 for a diagram):  

Step 1. Geostatistical modelling of survey data 

First, we fitted independent binomial geostatistical models to baseline prevalence survey data for 

each of the three STH species (A. lumbricoides, T. trichiura and hookworm spp.) and used them 

to predict baseline prevalence at pixel level (5 km resolution). To improve model precision 

model we explored the use of a set of spatially varying environmental covariates that are known 

to be potential drivers of STH transmission and included EVI, mean daytime LST, mean night-

time LST and soil acidity in the model because they had an approximately linear relationship 

with prevalence for each of the three species on the log-odds scale (Supplementary Figures 3-

5). A detailed explanation of the geostatistical modelling process is provided in Supplementary 

Section 1 and model parameter estimates are shown in Supplementary Table 1, respectively. 

These true baseline species-specific prevalence surfaces were then used as the input for the two 

prevalence projecting methods in Step 2. 

 

To create a post-PC benchmark to evaluate the performance of the two projecting methods we 

followed the same methodology to fit binomial geostatistical models to actual observed post-PC 

prevalence impact survey data and predict species-specific prevalence surfaces which were then 

aggregated across species, assuming the risk of an individual contracting each was independent. 

IU-level prevalence was then classified into five endemicity classes (0-2%, 2-10%, 10-20%, 20-

50% and 50-100%), taking into account population density. Model covariate relationship plots 
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and model parameter estimates are included in Supplementary Figures 6-8 and Supplementary 

Table 2. These predicted outputs are what we try to reproduce using two methods in Step 2. 

Step 2. Projecting prevalence surface to impact 

In Step 2, we projected the baseline prevalence surfaces forward to the time of the proposed 

impact survey using two different approaches, a multi-state Markov model (12) and a 

mechanistic transmission model, WORMSIM (13). The mechanistic approach only used the 

baseline prevalence surface and PC coverage data to achieve this, whereas the Markov model 

also required midterm prevalence survey data (collected after two rounds of PC in 2015).  

Method 1: Multi-state Markov model  

This method followed a two-stage procedure, described in more detail previously (12). Firstly, 

we fitted a multi-state Markov model (for each species independently) to baseline and midterm 

school prevalence data that was grouped into five prevalence categories (0-2%, 2-10%, 10-20%, 

20-50% and 50-100%) to estimate regression coefficients for the effect of baseline-midterm PC 

history on the probability of transition in prevalence category at school-level. We then used these 

coefficients to predict the transition in endemicity class (also categorised as 0-2%, 2-10%, 10-

20%, 20-50% and 50-100%) for each IU between baseline and impact using baseline-impact PC 

history. Finally, to generate a projected impact prevalence surface we performed a local scaling 

of the predicted baseline prevalence surface such that the population-weighted mean prevalence 

of the surface is equal to the endemicity class estimated by the Markov model (on the log-odds 

scale) and then aggregate across species, assuming independence. 

Method 2: Mechanistic transmission modelling with WORMSIM 

WORMSIM is an established individual-based stochastic model for transmission and control of 

helminth infections in humans (13), which simulates the life histories of individual humans and 

individual worms within a closed human population. A formal description of WORMSIM with 

extensive technical details and mathematical formulae has been published previously (13,14); the 

main aspects are described in Supplementary Section 2. We used WORMSIM to simulate the 

impact of PC on STH prevalence among SAC in each of the 16 IUs within our study area, based 
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on IU-level baseline prevalence data and PC coverage levels (shown for each IU in 

Supplementary Figure 2). The projected impact prevalence surface was then generated using 

the same local scaling methodology previously described. 

Step 3. Simulation study to compare survey design performance 

Finally, we conducted a Monte Carlo simulation study to compare the performance of simulated 

survey designs based on three prevalence surfaces: the two projected impact prevalence surfaces 

(Step 2) and the benchmark impact surface (Step 1). We evaluated the performance of 24 survey 

design scenarios in terms of cost and accuracy in determining IU endemicity class (compared to 

the “true” benchmark prevalence surface at impact from Step 1). The candidate survey designs 

were created by varying the following: 1) the number of schools to sample - we sampled 20%, 

30%, 40%, 60%, 80% and 100% of the total 172 schools used in the original impact survey; 2) 

the number of children per school - we considered values of 30, 50, 70, and 100.  

 

We then followed the following simulation process. First, for a given design scenario and 

prevalence surface, the chosen number of schools were randomly sampled from 9,511 

georeferenced schools within the study area. Second, prevalence survey data for each STH 

species was simulated at each school as a realisation of a binomial random variable with 

probability equal to the predicted prevalence at the school’s location for the given surface and 

number of trials equal to the number of children per school. Third, three independent binomial 

geostatistical models were fitted to the simulated school data for each STH species with the same 

five covariates used in Step 1. Fourth, predicted prevalence surfaces were predicted from the 

fitted geostatistical models for each of the three species and then combined to create a joint 

population-weighted ‘any STH’ prevalence surface. Fifth, for each IU, we drew samples from 

the predictive distribution of the IU-wide population-weighted ‘any STH’ prevalence and 

calculated the predictive probability of belonging to each of the 5 endemicity classes. The 

endemicity class with the highest probability was then assigned to the IU. This was repeated 

1,000 times for each of the 24 survey designs for each of the three prevalence surfaces. 

 

We then evaluated the performance of each survey design by calculating the proportion of 

correctly classified IUs. The benchmark for performance for each of the three surfaces was the 
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IU-level endemicity class classified from each projected surface (from which the synthetic 

school prevalence data was simulated) using a probabilistic classification algorithm for IUs 

developed previously (6). 

Results 

Multi-state Markov predictions 

Prevalence predictions from the multi-state Markov model for each IU and STH species are 

plotted against the modelled prevalence at impact (our benchmark) in Supplementary Figure 9. 

The Markov model generally performed better for lower prevalence IUs, predicting Hookworm 

spp. and T. trichiura prevalence moderately well. For A. lumbricoides, however, it significantly 

underestimated prevalence for the majority of IUs, predicting values in the 0-2% prevalence 

category for IUs with prevalence rates in excess of 5%. 

WORMSIM predictions 

Four different models were developed for each of the species (see Supplementary Figures 10-

15) and the final models for each species were chosen based on simulated baseline prevalence 

and expected effectivity of school-based PC in SAC. The selected model for the different species 

is presented as model #1. For A. lumbricoides for IUs with higher baseline prevalence levels, the 

best fitting model generally predicted a lower impact prevalence than has been observed in the 

data, suggesting that PC was less effective for decreasing prevalence levels. For T. trichiura the 

predictions of the best fitting model were accurate, closely fitting values observed in the data at 

impact in 12 out of 16 IUs. For hookwork spp., the best fitting model was able to predict impact 

prevalence of hookworm spp. relatively accurately. However, the benchmark impact prevalence 

levels were always in the lower range of the predicted fluctuations in prevalence over time, the 

opposite of what would be expected (that impact prevalence would be on the higher ends of the 

ranges) due to sampling taking place directly before the next round of PC took place.  
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Projected prevalence surfaces at impact 

Projected prevalence surfaces for the Markov and mechanistic models were generated by scaling 

the baseline prevalence surface by each model’s IU-level prevalence predictions. The projected 

surfaces of A. lumbricoides prevalence at impact for both the Markov and mechanistic models 

(Supplementary Figure 16) failed to capture the hotspots above 10% prevalence in Nyanza and 

Rift Valley regions (see Figure 1A for study area map), although the mechanistic projected 

surface performed better in this area, predicting prevalence in the range of 5-10%. In contrast, 

the Markov projected surface consistently predicted prevalence in the range of 0-1% for this 

area. This is likely to be because prevalence in these areas did not decline significantly between 

baseline and impact, suggesting a limited impact of PC. The projected prevalence surfaces for 

both models capture the low prevalence areas (0-5%) well, but the mechanistic projected surface 

slightly overestimated prevalence in the very low (0-1%) prevalence Coast region. 

 

For T. trichiura, the Markov projected surface generally underestimated prevalence and missed 

the hotspots in the Nyanza and Rift Valley regions (Supplementary Figure 17). In contrast, the 

mechanistic projected surface captured hotspots but tended to overestimate prevalence in the 

lowest prevalence areas of the Rift Valley. Projected surfaces for both models overestimated 

prevalence in the Coast region where the predictions from the geostatistical model at impact 

indicated that prevalence had fallen to very low levels (0-1%). 

  

For hookworm spp., the projected surfaces for both models performed well, although the 

mechanistic projections overestimated prevalence in the Coast, Nyanza and Western regions 

(Supplementary Figure 18). The improved performance for the projected surfaces of both 

models for hookworm spp. relative to the other two species appeared to be driven by the 

consistent reduction in prevalence between baseline and impact across all IUs with an absence of 

any persistent hotspots. 

  

Both the Markov and mechanistic projected surfaces captured the reduction in STH prevalence 

in the three IUs in the Coast region, although they both slightly overestimated prevalence in the 

western IU in the region. The high prevalence area (20-60%) in the middle of the Nyanza and 

Rift valley regions was missed by both models, although the mechanistic projected surface 
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predicted slightly higher prevalence (10-30%) than the Markov surface (0-20%). The Markov

projected surface underestimated the prevalence in the Western region (2-5%), whereas the

mechanistic projections more accurately predicted the true prevalence in this area. 

 

Figure 1. Panel A: Study area in Southwest Kenya, consisting of 16 implementation units

(boundaries indicated by black lines) within four regions: Coast, Nyanza, Rift Valley and

Western; Panels B-C: STH prevalence in SAC as predicted by the geostatistical model fit to

baseline and impact prevalence survey data (the prediction surface at impact is used as our

benchmark); Panels D-E: STH prevalence projected at impact using the Markov and mechanistic

approaches. 

  

The Markov projected surface predicted A. lumbricoides and T. trichiura prevalence in the Coast

and Nyanza regions accurately (Figure 2A), but consistently predicted lower prevalence values

in the Rift Valley region and some areas of the Western region. For hookworm spp. the regional

differences were less profound with some areas of the Coast and Nyanza regions having lower

predicted values than the benchmark values. The mechanistic projected surface predicted A.
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lumbricoides and T. trichiura prevalence at impact more accurately at lower prevalence levels

(Figure 2B), but generally tended to underestimate prevalence at higher modelled prevalence

levels. However, in the Coast region the mechanistic projections overestimated T. trichuria

prevalence. For hookworm spp., the mechanistic projections consistently overestimated

prevalence, with this most pronounced in the Western region. 

  

Figure 2. Prevalence predictions at impact projected by the Markov (Panel A) and mechanistic

(Panel B) models compared to the benchmark values predicted by the geostatistical model fit to

impact survey data, shown for each STH species with geographic region depicted by point shape

(each point represents a pixel within the study area). 

Survey simulation results 

There was significant variation in the outcome across simulations for each survey design. Figure

3 shows how the proportion of IUs that were correctly classified in terms of endemicity class

increased with a higher number of children sampled in each school and a higher proportion of

schools sampled. Compared to the performance of simulated surveys based on the best available

information (i.e., the predicted surface from the geostatistical model fitted to the impact data),

surveys based on the mechanistic and Markov model projected surfaces generally performed

worse. The performance of surveys based on the Markov projected surface was consistently

between 10-20 percentage-points lower, while the performance of survey designs based on the

mechanistic model were similar to or at most 7 percentage-points lower than the benchmark. 
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Figure 3. Comparison of the performance (percentage of IUs with the endemicity level correctly

classified) of a range of survey designs (for varying values of the number of children per school

and proportion of schools sampled) for the benchmark geostatistical model predictions from the

impact survey data (i.e., the best available information), and the Markov and mechanistic

projected surfaces. 

Discussion 

In this study we compared two approaches for projecting STH prevalence at impact that integrate

model-based geostatistical predictions of baseline prevalence and model-based forward

predictions of prevalence using i) WORMSIM, a mechanistic transmission model, and ii) multi-

state Markov models for school-level prevalence categories. We then evaluated their

performance using STH prevalence data from Kenya. This is the first study to have directly
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compared a mechanistic and a more empirical Markov model for projecting prevalence during 

PC in the context of guiding decisions on IAS design. 

  

We found that while the Markov and mechanistic approaches both generally performed well for 

projecting STH prevalence at impact, prediction accuracy was lower in areas with persistent high 

prevalence hotspots that did not reduce significantly after PC; these were mostly concentrated in 

the Rift Valley. While the mechanistic approach was less prone to this than the Markov 

approach, both models underestimated prevalence in these areas because of the limited impact of 

PC on prevalence compared with the rest of the study area where PC was observed to 

significantly reduce prevalence. This observed variation in PC effectiveness within the study 

area may be a result of measurement error in the PC coverage data or in the baseline and impact 

prevalence survey data. Interestingly, this was not the case for hookworm spp., with prevalence 

consistently declining following PC in all IUs, and consequently both models predicted 

prevalence at impact accurately. The local scaling approach used to project proxy prevalence 

surfaces at impact by scaling baseline prevalence predictions from the geostatistical model by 

IU-level projections assumed that the spatial distribution of predictions at impact was conditional 

on the spatial distribution at baseline. We found that for our case study this was a good 

approximation, but in future applications it will perform less well in areas where there are abrupt 

changes in the spatial variation in prevalence within an IU between baseline and impact, e.g., due 

to high spatial variation in PC uptake. 

  

In the context of survey design, and in statistical design more generally, any sample size 

calculation must be made on the basis of assumptions that represent a best guess at the true state 

of the natural process under investigation. The better the guess, the more likely the chosen design 

will deliver the required precision whilst avoiding wasteful over-sampling, but this can never be 

guaranteed. Our projected prevalence surfaces at impact were reasonably well-calibrated against 

geostatistical predictions using the impact survey data, albeit with considerable uncertainty and 

with some exceptions, most notably with respect to some species in the Rift Valley region where 

the Markov approach performed particularly badly. Despite these challenges, our simulation 

study demonstrated that the projected surfaces from the mechanistic approach and, to a lesser 

degree, from the Markov approach, were highly informative for guiding survey design as 
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measured by the proportion of correctly classified IUs. Given the budget constraints that apply in 

regions where STH is prevalent, both the design of an IAS and the subsequent analysis of IAS 

data should be conducted as efficiently as possible. Our simulation study only considered 

spatially random sampling, but further improvements in the efficiency of a survey design can 

sometimes be achieved by spatially regulated sampling, as has been shown previously (6). 

  

For the design of future impact surveys in other geographical areas, the Markov model is limited 

by its reliance on midterm data to estimate the effect of PC. In the absence of midterm survey 

data, the Markov model could still be applied using parameters for PC efficacy estimated from 

this Kenya case study. However, in this case the mechanistic model, which does not require 

midterm data, is likely to perform better and therefore to be more generalisable to other 

geographical areas because it explicitly models the interaction between PC and STH 

transmission dynamics. 

  

This study demonstrated that the mechanistic approach more accurately projected prevalence at 

impact and provided more accurate information for guiding survey design. The usefulness of the 

two approaches for projecting and survey design considered in this study is not confined to STH. 

The Markov model is not disease-specific and can be applied directly to other NTDs that are 

controlled with PC. The mechanistic model used here is an STH-specific transmission model and 

would need to be replaced with a validated transmission model for any other NTD of interest. 

Our results suggest that if a validated transmission model is available, it should be used to guide 

survey design. For both approaches, environmental explanatory variables that are known to be 

predictors of prevalence for the NTD of interest should be included in the geostatistical models 

used for predicting prevalence at baseline.  
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Supplementary Section 1: Geostatistical modelling framework 

S1.1 The geostatistical model 

We denote by ���� the prevalence of STH at location �. Our model for the variation in 

���� throughout the region of interest is that  
 

   ��� � ����

�1������
� � ����′� � ���� � �.                   Eqn    (1) 

 

In Equation (1), ���� is a vector of covariates associated with regression coefficients β. This component 

of the model accounts for variation in prevalence that can be explained by measured characteristics of the 

location �; see Table S3. The terms ���� and � account for any remaining variation that cannot be 

explained by measured characteristics of �. The term ����is a spatially correlated Gaussian process with 

mean zero and covariance structure 
 

 ���	����,���′�� � �
2
���;��, 

 

where � � � � �′ is the Euclidean distance between  � and �′, �2 is the variance and 
 

 ���; �� ������� �� �

�
�  

 

is the correlation between ���� and ���′�. The term � in Equation (1) is a Normally distributed random 

variable with zero mean and variance �2 that varies independently between locations; it accounts for 

variation in unmeasured characteristics of the sampled individuals that affect their personal exposure to 

STH.  

  

We denote by �1, … ,�� the set of sampled locations. Conditional on ����
�, the numbers �� of 

individuals who test positive out of �� sampled individuals at �� are independent binomially distributed 

random variables, with binomial probabilities ����
� and denominators ��. 

 

S1.2 Parameter estimation 

We carry out parameter estimation using Monte Carlo Maximum Likelihood (MCML), implemented in 

PrevMap, an R package for analysing prevalence data, freely available from the Comprehensive R 

Archive Network (www.r-project.org). 

 

Let �� � ��� � ����

�1������
�.  The joint conditional density of � � �1, … ,��is 
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���|�� � ∏ ��
��	 ���|���. 

 

The likelihood function for the set of model parameters � is obtained by integrating out the random 

components����
�and�� from ��,  hence 

 

���� � � �
�
��|�� ���; ����                                                                  Eqn (2) 

 

where���;��is a multivariate Normal density.  

 

To approximate the integral in Equation 2 we use a Markov Chain Monte Carlo (MCMC) algorithm to 

generate a sample ��1� , . . . ,���� from the conditional distribution of � given � and approximate the 

likelihood as 

���� � ����� � 1
 

∑ �	����; ���
��	

�	����; �� , 
Where �0 is our best guess for the initial parameter values.  

 

S1.3 Prediction 

Here, we use plug-in prediction, meaning that we use the Monte Carlo maximum likelihood parameter 

estimate �^ in place of the unknown �. 

 

Our goal is to predict prevalence throughout the region of interest, �. We approximate this by a regular 

grid of points ���1, . . . ,����  that cover �. Our predictive target is the set of values 
 

���� � �������′� � �������                                                        Eqn (3) 
 

Note that Equation 3 excludes the term � in Equation 1, which relates to characteristics of the sampled 

individuals at a location rather than of the location itself.  

 

The predictive distribution of �� � ����1, . . . ,����� is its conditional distribution given �, 
 

����|�� � # �

�

���|�����|����, 

where we have used the fact that �� and � are conditionally independent given �. It follows that to 

generate a sample from the predictive distribution of �� we first sample from ���|�� and then 

from����|��. A sample from the joint predictive distribution of prevalence throughout � follows by 

direct transformation, using the formula 
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������� � �������1
� �

1 � �������1
� �. 

 

Our point prediction of prevalence at any location � is the mean of the sampled values of ����. The 

predictive probability that prevalence lies within any stated range, say � to �, is the proportion of 

sampled values that lie between � and �. The predictive distribution of prevalence at the implementation 

unit level, ���, is computed as a population-weighted average of the pixel level prevalence ����, hence 

  

$�� � � $ �%�&�%��%
� & �%��%  

 

where ���� is an estimate of the population at location � obtained from WorldPop 

(https://www.worldpop.org/) and the integral is over the whole of the IU.  
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Supplementary Section 2: Description of WORMSIM 

 

WORMSIM simulates the life histories of individual humans and individual worms within a closed

human population. The population-level age- and sex-distribution are based on pre-specified fertility rates

and life tables. A comparison of the population distribution for WORMSIM and the Kenyan population is

provided in (see Supplementary Figure 2.1 below).  

Supplementary Figure 2.1. Population age pyramid by sex for WORMSIM population and Kenyan 

population. 

 

 

The prevalence and intensity distribution of worm infections is determined by model parameters for the

transmission rate (overall rate and differences by age) and level of exposure heterogeneity within a

population. For this study, we assume standard level of exposure heterogeneity for each species (gamma

distribution with shape parameter k (13)), and we adapted the overall transmission rate for each IU to

replicate IU-level baseline prevalences of infection as estimated from the NSBDP data. The overall

transmission rate was calibrated following two different assumptions: transmission increasing with age

versus transmission being independent of age (13,15). However, in another widely applied individual-

based stochastic transmission model by Imperial College London (ICL) (15), the modellers assume that

age-dependent contribution to infection is proportional to age-dependent exposure.  
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For T. trichiura and A. lumbricoides, we explored two different values for (species-specific) exposure 

heterogeneity (= p1), to reflect different potential exposure and transmission dynamics. Simulating stable 

transmission dynamics with very low overall prevalence levels is known to be challenging with 

WORMSIM (13,16). Therefore, if baseline prevalence levels were lower than a certain value, we ran the 

model simulations for a higher cut-off prevalence value (for hookworm spp. 20%; for T. trichiura 30%; 

and for A. lumbricoides 25%) and scaled the predicted prevalence values back to the measured lower 

baseline prevalence. 

The IU-level baseline prevalences to which WORMSIM was calibrated were estimated for each IU by 

weighting the baseline geostatistical model prevalence prediction surface by population density and 

calculating two IU-level summary statistics: mean prevalence and prevalence tertiles. Prevalence tertiles 

were created by taking the grid-level population weighted-prevalence divided into three ordered groups. 

WORMSIM further simulates the impact of PC on STH infection levels, assuming that treatment kills a 

proportion of adult worms (efficacy varying by species and drug as in previous studies (13)) and 

accounting for the proportion of the population that takes up PC. For this study, we adopt coverage levels 

directly from the data, assuming mixed compliance. For simulating infection with hookworm spp., we 

explored two different functions for infection exposure by age, further illustrated in a previous 

comparison study (17). In WORMSIM we originally assume that the contribution and exposure to 

transmission increases with age up to the age of ten, after which the practice of defecation is assumed to 

remain similar regardless of age. A similar pattern is applied to T. trichiura and A. lumbricoides. 

 

For each species, we simulated different model scenarios for different levels of exposure heterogeneity, 

age-dependent exposure patterns and baseline (Supplementary Table 2.1 and Supplementary Figures 

9-11), and selected the most appropriate scenario based on the expected effectivity of school-based PC in 

SAC as reported in the scientific literature (16). For all three species, we simulated prevalence levels over 

time based on each of the aforementioned prevalence summary statistics i) IU-level mean population-

weighted prevalence and ii) IU-level population-weighted prevalence tertiles to account for real-life 

spatial heterogeneity in prevalence that might influence infection dynamics. 

To generate a proxy impact surface, local scaling of the predicted baseline prevalence surface was then 

conducted using the prevalence simulations at impact generated by WORMSIM for each IU following the 

methodology described in ‘Local scaling to generate a proxy impact surface’. 

The predicted A. lumbricoides prevalence using four different model scenarios is provided in 

Supplementary Figure 10. The predicted prevalence from the final model (model #1) and measured 

baseline and impact prevalence levels are displayed in Supplementary Figure 11. The predicted T. 
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trichiura prevalence using 4 different model scenarios is provided in Supplementary Figure 12. The 

predicted prevalence from the final model (model #1) and measured baseline and impact prevalence 

levels are displayed in Supplementary Figure 13. The predicted hookworm spp. prevalence using 

different model scenarios is provided in Supplementary Figure 14. The predicted prevalence from the 

final model (model #1) and measured baseline and impact prevalence levels are displayed in 

Supplementary Figure 15.  
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Supplementary Figures & Tables 

Supplementary Table 2.1. Overview of explored WORMSIM models shown for each STH species. 

  A. lumbricoides T. trichiura Hookworm spp. 

Model 1 

Exposure 

heterogeneity 

High exposure (p1 = 

0.8) 

High exposure (p1 = 

0.35) 

High exposure (p1 = 

0.35) 

Age-exposure function Assumption of 

transmission 

increasing with age 

(EMC model) 

Assumption of 

transmission 

increasing with age 

(EMC model) 

Assumption of 

transmission being 

independent of age 

(ICL model) 

Baseline prevalence Based on tertiles Based on tertiles Based on tertiles 

Model 2 

Exposure 

heterogeneity 

High exposure (p1 = 

0.8) 

High exposure (p1 = 

0.35) 

High exposure (p1 = 

0.35) 

Age-exposure function Assumption of 

transmission 

increasing with age 

(EMC model) 

Assumption of 

transmission 

increasing with age 

(EMC model) 

Assumption of 

transmission being 

independent of age 

(ICL model) 

Baseline prevalence Overall mean Overall mean Overall mean 

Model 3 

Exposure 

heterogeneity 

Low exposure (p1 = 

0.4) 

Low exposure (p1 = 

0.2) 

High exposure (p1 = 

0.35) 

Age-exposure function Assumption of 

transmission 

increasing with age 

(EMC model) 

Assumption of 

transmission 

increasing with age 

(EMC model) 

Assumption of 

transmission 

increasing with age 

(EMC model) 

Baseline prevalence Based on tertiles Based on tertiles Based on tertiles 

Model 4 

Exposure 

heterogeneity 

Low exposure (p1 = 

0.4) 

Low exposure (p1 = 

0.2) 

High exposure (p1 = 

0.35) 

Age-exposure function Assumption of 

transmission 

increasing with age 

(EMC model) 

Assumption of 

transmission 

increasing with age 

(EMC model) 

Assumption of 

transmission 

increasing with age 

(EMC model) 
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Baseline prevalence Overall mean Overall mean Overall mean 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 3, 2023. ; https://doi.org/10.1101/2023.10.02.23296429doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.02.23296429
http://creativecommons.org/licenses/by/4.0/


 
Supplementary Figure 1. Preventive chemotherapy (PC) coverage data between baseline and impact

surveys for the 16 IUs in Southwest Kenya. Data was obtained through Evidence Action. 

act 
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Supplementary Figure 2. Overview of the study modelling process 
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Supplementary Figure 3. Generalized Additive Model (GAM) and linear model dependence plots for

the log-odds of A. lumbricoides prevalence at baseline plotted against the continuous environmental

covariates considered in this analysis (data are plotted as points and shaded areas correspond to 95%

confidence intervals): EVI (Enhanced Vegetation Index), mean daytime LST (land surface temperature),

mean nighttime LST, soil acidity. 
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Supplementary Figure 4. Generalized Additive Model (GAM) and linear model dependence plots for

the log-odds of T. trichiura prevalence at baseline plotted against the continuous environmental covariates

considered in this analysis (shaded areas correspond to 95% confidence intervals): EVI (Enhanced

Vegetation Index), mean daytime LST (land surface temperature), mean nighttime LST, soil acidity. 
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Supplementary Figure 5. Generalized Additive Model (GAM) and linear model dependence plots for

the log-odds of hookworm spp. prevalence at baseline plotted against the continuous environmental

covariates considered in this analysis (shaded areas correspond to 95% confidence intervals): EVI

(Enhanced Vegetation Index), mean daytime LST (land surface temperature), mean nighttime LST, soil

acidity. 
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Supplementary Table 1. Monte Carlo maximum likelihood estimates and corresponding 95%

confidence intervals for the baseline geostatistical model (continuous covariates were standardised). 

 

  A. lumbricoides T. trichiura Hookworm spp. 

EVI 0.265 (-0.105, 0.635) 0.018 (-0.392, 0.428) 0.279 (-0.070, 0.628) 

LST (day) -0.101 (-0.502, 0.299) -0.161 (-0.683, 0.362) 0.360 (-0.070, 0.790) 

LST (night) -0.291 (-0.794, 0.213) 0.252 (-0.658, 1.162) 0.748 (0.126, 1.371) 

Soil acidity 0.013 (-0.401, 0.426) -0.049 (-0.589, 0.491 -0.286 (-0.717, 0.145 

Region - Coast (ref) - - - 

Region - Nyanza 2.346 (1.189, 3.502) -1.191 (-4.107, 1.726) 1.126 (-0.403, 2.656) 

Region - Rift valley 2.137 (0.800, 3.475) 1.446 (-1.312, 4.203) -0.435 (-2.090, 1.220) 

Region - Western 2.842 (1.755, 3.929) -0.561 (-3.165, 2.043) 1.462 (-0.042, 2.965) 

 0.726 (0.395, 1.333) 1.967 (0.742, 5.210) 0.865 (0.374, 1.998) 

 (km) 8.517 (3.598, 20.161) 53.296 (14.070, 201.885) 24.356 (6.167, 96.197) 

 0.372 (0.130, 2.024) 0.749 (0.120, 1.206) 0.550 (0.209, 1.936) 
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Supplementary Figure 6. Generalized Additive Model (GAM) and linear model dependence plots for

the log-odds of A. lumbricoides prevalence at impact plotted against the continuous environmental

covariates considered in this analysis (data are plotted as points and shaded areas correspond to 95%

confidence intervals): EVI (Enhanced Vegetation Index), mean daytime LST (land surface temperature),

mean nighttime LST, soil acidity. 
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Supplementary Figure 7. Generalized Additive Model (GAM) and linear model dependence plots for

the log-odds of T. trichiura prevalence at impact plotted against the continuous environmental covariates

considered in this analysis (data are plotted as points and shaded areas correspond to 95% confidence

intervals): EVI (Enhanced Vegetation Index), mean daytime LST (land surface temperature), mean

nighttime LST, soil acidity. 
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Supplementary Figure 8. Generalized Additive Model (GAM) and linear model dependence plots for

the log-odds of hookworm spp. prevalence at impact plotted against the continuous environmental

covariates considered in this analysis (data are plotted as points and shaded areas correspond to 95%

confidence intervals): EVI (Enhanced Vegetation Index), mean daytime LST (land surface temperature),

mean nighttime LST, soil acidity. 
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Supplementary Table 2. Monte Carlo maximum likelihood estimates and corresponding 95%

confidence intervals for the baseline geostatistical model (continuous covariates were standardised). 

  A. lumbricoides T. trichiura Hookworm spp. 

EVI 0.565 (0.158, 0.972) 
0.347 (-0.069, 0.763) 0.290 (0.046, 0.533) 

LST (day) -0.642 (-1.069, -0.215) -0.746 (-1.321, -0.172) 0.191 (-0.080, 0.463) 

LST (night) 0.386 (-0.132, 0.904) 
1.276 (0.363, 2.188) 1.328 (0.962, 1.693) 

Soil acidity -0.079 (-0.522, 0.364) 0.090 (-0.483, 0.662) -0.575 (-0.870, -0.279) 

Region - Coast (ref) - - - 

Region - Nyanza 5.003 (2.941, 7.064) 
1.005 (-1.941, 3.951) 1.158 (0.337, 1.979) 

Region - Rift valley 5.057 (2.971, 7.143) 
4.149 (1.384, 6.914) 0.750 (-0.240, 1.740) 

Region - Western 5.019 (3.029, 7.009) 
0.933 (-1.481, 3.346) 0.988 (0.268, 1.708) 

 0.903 (0.566, 1.439) 
1.708 (0.574, 5.086) 0.559 (0.389, 0.803) 

 (km) 6.530 (3.271, 13.040) 38.231 (8.182, 178.633) 8.518 (5.063, 14.329) 

 0.145 (0.022, 1.171) 
0.602 (0.089, 1.395) 0.041 (0.013, 0.422) 
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Supplementary Figure 9. Predicted prevalence for the Markov model for i) A. lumbricoides, ii)

Hookworm spp. And iii) T. trichiura among school-aged children (SAC) at 16 IUs in Southwest Kenya,

plotted against the benchmark prevalence from the impact survey. 

 

 

 

ii) 

ya, 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 3, 2023. ; https://doi.org/10.1101/2023.10.02.23296429doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.02.23296429
http://creativecommons.org/licenses/by/4.0/


Supplementary Figure 10. Predicted A. lumbricoides prevalence among school-aged children (SAC) at

16 IUs in Southwest Kenya over time, using 4 different modelling scenarios (described in Supplementary

Table 2) with WORMSIM. Overall, the models modestly underestimated endline prevalence for the

different UIs. 
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Supplementary Figure 11. Predicted A. lumbricoides prevalence among school-aged children (SAC) at

16 IUs in Southwest Kenya over time, using WORMSIM. Black points show the measured prevalence

levels among SAC at baseline and impact.  
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Supplementary Figure 12. Predicted T. Trichiura prevalence among school-aged children (SAC) at 16

IUs in Southwest Kenya over time, using 4 different modelling scenarios (described in Supplementary

Table 2) with WORMSIM.  

 

For T. trichiura, in contrast to the predictions for A. lumbricoides, the model underestimated the

prevalence reduction at impact in three IUs. 

 

 

16 

ry 

he 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 3, 2023. ; https://doi.org/10.1101/2023.10.02.23296429doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.02.23296429
http://creativecommons.org/licenses/by/4.0/


 

Supplementary Figure 13. Predicted T. trichiura prevalence among school-aged children (SAC) at 16 

IUs in Southwest Kenya over time, using WORMSIM. Black points show the measured prevalence levels 

among SAC at baseline and impact.  
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Supplementary Figure 14. Predicted hookworm spp. prevalence among school-aged children (SAC) at

16 IUs in Southwest Kenya over time, using 4 different modelling scenarios (described in Supplementary

Table 2) with WORMSIM.  

 

There were no large differences in the predicted impact prevalence based on model #1 and model #3, the

two scenarios assume different patterns of age-dependent exposure. Based on the predictions from model

#1 (i.e Erasmus MC exposure function), prevalence in SAC is observed to go up faster after PC. This is

due to larger exposure in adults compared to preSAC and SAC, creating a larger ‘pool’ of infected people

in older people and hence higher infection pressure, resulting in quicker bounce-backs of prevalence after

PC among SAC. 
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Supplementary Figure 15. Predicted hookworm spp. prevalence among school-aged children (SAC) at 

the 16 IUs in Southwest Kenya over time, using WORMSIM. Black points show the measured prevalence 

levels among SAC at baseline and impact. 
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Supplementary Figure 16. A. lumbricoides prevalence in SAC as predicted by the geostatistical model at

baseline and impact, and as projected at impact using the statistical and mechanistic approaches. 
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Supplementary Figure 17. T. trichiura prevalence in SAC as predicted by the geostatistical model at

baseline and impact, and as projected at impact using the statistical and mechanistic approaches. 
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Supplementary Figure 18. Hookworm spp. prevalence in SAC as predicted by the geostatistical model

at baseline and impact, and as projected at impact using the statistical and mechanistic approaches. 
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