
Refuting Causal Relations in Epidemiological Time Series
Yair Daon1,2,3*, Kris V Parag4, Amit Huppert2,5,Y, Uri Obolski2,3,Y

1 Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
2 Department of Epidemiology and Preventive Medicine, School of Public Health,
Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
3 Department of Environmental Studies, Porter School of the Environment and Earth
Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
4 MRC Centre for Global Infectious Disease Analysis, Imperial College London, London,
UK
5 The Bio-statistical and Bio-mathematical Unit, The Gertner Institute for
Epidemiology & Health Policy Research, Sheba Medical Center, Ramat Gan, Israel

YThese authors contributed equally to this work.
*Correspondence to: yair.daon@gmail.com

Abstract
Causal detection is an important problem in epidemiology. Specifically in infectious
disease epidemiology, knowledge of causal relations facilitates identification of the
underlying factors driving outbreak dynamics, re-emergence, and influencing immunity
patterns. Moreover, knowledge of causal relations can help to direct and target
interventions, aimed at mitigating outbreaks. Infectious diseases are commonly
presented as time series arising from nonlinear dynamical systems. However, tools
aiming to detect the direction of causality from such systems often suffer from high
false-detection rates. To address this challenge, we propose BCAD (Bootstrap
Comparison of Attractor Dimensions), a novel method that focuses on refuting false
causal relations using a dimensionality-based criterion, with accompanying
bootstrap-based uncertainty quantification. We test the performance of BCAD,
demonstrating its efficacy in correctly refuting false causal relations on two datasets: a
model system that consists of two strains of a pathogen driven by a common
environmental factor, and a real-world pneumonia and influenza incidence time series
from the United States. We compare BCAD to Convergent Cross Mapping (CCM), a
prominent method of causal detection in nonlinear systems. In both datasets,
BCAD correctly refutes the vast majority of spurious causal relations which CCM
falsely detects as causal. The utility of BCAD is emphasized by the fact that our
models and data displayed synchrony, a situation known to challenge other causal
detection methods. In conclusion, we demonstrate that BCAD is a useful tool for
refuting false causal relations in nonlinear dynamical systems of infectious diseases. By
leveraging the theory of dynamical systems, BCAD offers a transparent and flexible
approach for discerning true causal relations from false ones in epidemiology and may
also find applicability beyond infectious disease epidemiology.

Author summary
In our study, we address the issue of detecting causal relations in infectious disease
epidemiology, which plays a key role in understanding disease outbreaks and
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reemergence. Having a clear understanding of causal relations can help us devise
effective interventions like vaccination policies and containment measures. We propose a
novel method which we term BCAD to improve the accuracy of causal detection in
epidemiological settings, specifically for time series data. BCAD focuses on refuting
false causal relations using a dimensionality-based criterion, providing reliable and
transparent uncertainty quantification via bootstrapping.

We demonstrate BCAD’s effectiveness by comparing it with a prevailing causal
detection benchmark, on two datasets: one involving two strains of a pathogen in a
model system, and another with real-world pneumonia and influenza incidence data
from the United States. BCAD considerably improves on the benchmark’s performance,
in both simulations and on real-world data.

In summary, BCAD provides a transparent and adaptable method for discerning
genuine causal relations from spurious ones within systems governed by nearly
deterministic laws, a scenario commonly encountered in infectious disease epidemiology.
Our results indicate that BCAD holds the potential to be a valuable instrument in
evaluating causal links, extending its utility to diverse domains. This research
contributes to the continual endeavors aimed at improving understanding of the drivers
of disease dynamics.

1 Introduction
Revealing causal relations, known as causal discovery, is at the heart of the scientific
investigation process. This problem has been tackled by many means, ranging from
heuristic approaches based on scientific reasoning, such as Koch’s postulates and their
extensions [1], to algorithmic approaches based on graphical models [2]. The first
principled approach to causal discovery from observational time series data was
presented by Granger [3]. Granger’s investigation focused on stochastic systems and,
crucially, required separability in the system, i.e. that information of the cause is
removed by excluding it from the analysis. Sugihara et al. [4] then suggested a
complementary approach, tailored for nonlinear dynamical systems, where such
separability does not hold: Convergent Cross Mapping (CCM). Initially, CCM was
applied to ecological systems, but its use quickly extended to other fields,
e.g. neuroscience [5], geoscience [6], and infectious disease epidemiology [7]. The latter
field has particularly grown in interest since the COVID-19 pandemic, as understanding
causal relations during outbreaks may facilitate implementations of interventions such
as vaccination [8–11], concentrated testing efforts [12–16] and other non-pharmaceutical
interventions [17].

In the field of epidemiology, CCM has been employed to seek a ”unified explanation
for environmental drivers of influenza that applies globally” [7]. However, the same
methodology employed to arrive at this conclusion presented an unexpected and
implausible causal link, suggesting that influenza might actually influence environmental
drivers [18]. In response to this, the authors of the former study suggested that the
authors of the latter may have misinterpreted the results generated by CCM, mistaking
synchrony for causation [19].

Furthermore, another investigation applied CCM to a model involving the evolution
of two strains of a pathogen within a population, which yielded notably high
false-detection rates [20]. Both studies [18, 20] criticized CCM for exhibiting an elevated
false-detection rate when identifying causal relations, and suggested it may not possess
the level of robustness required for applications in epidemiology.

One approach to causal detection in time series that has recently gained popularity
is PCMCI (Peter-Clark Momentary Conditional Independence) [21–24]. While PCMCI
demonstrates success in diverse applications, its appropriateness diminishes when
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applied to the specific challenges common in infectious disease epidemiology. PCMCI
adopts a graphical model framework for causal detection [2,25,26], which does not allow
it to discern the direction of causality between just two observables (e.g. two pathogens,
or a pathogen and an environmental driver). This limitation stems from the
fundamental principles of graphical models, and cannot be overcome by providing more
data. Thus, the suitability of PCMCI wanes when confronted with the specific
challenges present in infectious disease epidemiology.

To facilitate causal discovery in epidemiological settings, we present BCAD:
Bootstrap Comparison of Attractor Dimensions. BCAD utilizes the notion of intrinsic
dimension, similarly to previous studies [27–29]. In contrast to previous approaches,
BCAD focuses on refuting causal relations, rather than asserting them [2,25].
Furthermore, while uncertainty quantification in other dimensionality based
methods [29] relies on Bayesian priors and other parametric assumptions,
BCAD employs a hypothesis testing scheme based simply on the bootstrap. To
demonstrate BCAD’s performance, we first test BCAD on simulations of a model with
two strains [20,30], where the direction of causality is known. Then, we demonstrate
BCAD ’s performance on real-world data of pneumonia and influenza incidence [31] and
environmental drivers [32] for the 48 contiguous US states. We show that for both
datasets, BCAD has high success rates in refuting false causal relations, while
maintaining low rates of refuting true causal relations. We also apply CCM to both
datasets and show that CCM has high false-detection rates, as suggested by previous
studies [18, 20]. Applying BCAD in conjunction with CCM resolves the vast majority of
these false-detection events, while not interfering with CCM’s high rates of correct
identification of true causal relations [4, 19].

2 Materials and methods
2.1 Causality in dynamical systems
Consider X a compact manifold and φ : X → X a diffeomorphism. We call (X, φ) a
dynamical system. A state of the system is ω ∈ X, and thus we refer to X as the
system’s state-space. We call a smooth random variable X : X → R an observable. If the
current state is ω, the next state would be φ(ω); and if the current observation is
Xt = X(ω), then the next observation would be Xt+1 = X(φ(ω)). A time series of an
observable is thus

(Xt)T
t=1 =

(
X(ω), . . . , X ◦ φT−1(ω)

)
. (1)

We focus our attention to systems whose states are past the initial transient phase of
their dynamics. In this case X, the state-space we consider, is an attractor [33], and
every neighbourhood of every state is repeatedly visited.

Causality in dynamical systems is defined as follows [4]: Consider systems (X, φ) and
(Y, ψ), and a projection π such that π(Y) = X and φ ◦ π = π ◦ ψ (see Supporting
Information for details). We identify X as embedded in Y and write X ↪→ Y. This
setup reveals an asymmetry of separability, i.e. that information of X is encoded in Y,
but not vice versa. In this case, (X, φ) is known as a factor of (Y, ψ). For observables
X : X → R and Y : Y :→ R, we say that X causes Y and write X → Y. Thus, a factor of
a system is its (non unique) cause.

For example, let us examine the relationship between absolute humidity (the pressure
of water vapor in the air) and the incidence of influenza. Research has demonstrated
that absolute humidity plays a role in modulating influenza transmission [34,35]. This
interaction reveals a lack of separability in the combined influenza-absolute humidity
system. While the time evolution of absolute humidity can be considered irrespective of
the time evolution of influenza (absolute humidity existed even before the first influenza
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virus emerged), the opposite does not hold: the time evolution of influenza cannot be
separated from the time evolution of absolute humidity. Here, absolute humidity is a
factor of a larger system that encompasses both influenza and absolute humidity, and
states of the larger system contain information on both influenza and absolute humidity.

2.2 State-space reconstruction
In an application, we may only record time series of a single observable (Xt)T

t=1.
State-space reconstruction is the process of reconstructing the state space X of a
dynamical system from a finite time series of a single observable (Xt)T

t=1. The basis to
state-space reconstruction is a theorem of Takens [36] (see Supporting Information for
statement). Takens’ Theorem provides a way to recover the hidden dynamics from such
observed data: Generically, the state-space X can be reconstructed from vectors of
time-lagged observations LX,E(t) := (Xt, . . . , Xt−E+1), for some embedding dimension E.
According to Takens’ Theorem, these lagged vectors form the reconstructed state-space{

LX,E(t) : E ≤ t ≤ T
}
=: X̂, (2)

and are equivalent to states of the system. In light of Takens’ Theorem, we view the
reconstructed state-space X̂ as a representative sample of the system’s state-space X.
The elements within X̂ are to be regarded as authentic states of the system, comparable
to states ω ∈ X. Consequently, going forward, we treat X̂ solely as a subsample
extracted from X, denoting X̂ ⊆ X.

It is important to emphasize that, as mentioned above, the conclusion of Takens’
Theorem holds only generically. Here, ”generically” means that the conclusion holds on
an open and dense set of X and φ. For example, state-space reconstruction is not
possible when X is a constant observable; The reconstructed state-space X̂ under a
constant observable is a single point, even if the state-space X is larger.

Takens’ Theorem was generalized to fractal state-spaces [37], noisy observations [38],
and to deterministically [39] and stochastically forced [40] systems. We refer to such a
system as a random dynamical system, as its time evolution, although governed by a
deterministic law, may include a stochastic component.

According to Takens’ Theorem, it is sufficient to set the embedding dimension as
E = 2 dim(X) + 1. However, in practical scenarios, the value of dim(X) is not known
beforehand. Additionally, considering the curse of dimensionality, it is essential to select
the smallest possible value for E. To address these challenges, we empirically determine
the appropriate embedding dimension E using the False Nearest-Neighbors method [41].

Another factor that influences the reconstruction of elements in X̂ is the choice of a
time lag denoted as τ > 0. Consequently, the elements in X̂ differ slightly from those
described in Eq. (2). Specifically, we represent these elements as:(

Xt, Xt−τ, . . . , Xt−τ(E−1)
)
.

In this particular study, we opt for τ = 12 weeks, aligning with previous suggestions for
annually forced epidemiological time series [42].

2.3 Estimating the Intrinsic Dimension
To estimate dim(X) from the reconstructed state-space X̂ ⊆ X, we introduce the concept
of the intrinsic dimension of X̂, denoted as dim(X̂). The intrinsic dimension serves as an
estimation for the dimensionality of the underlying manifold or fractal X.

The task of estimating the dimension of a manifold or fractal from a finite sample
has been extensively studied, and various algorithms have been proposed and
implemented for this purpose in the scikit-dimension package [43] which we employ. In
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our approach, we adopt the averaging of four such estimators to obtain an estimate of
the intrinsic dimension. Further details on these estimators can be found in the
Supporting Information.

2.4 Refuting causal relations with BCAD
As previously mentioned, we seek to refute false causal relations between observables of
random dynamical systems. For this goal, we present BCAD: Bootstrap Comparison of
Attractor Dimensions.

Consider a postulated causal relation X → Y between two observables. If this
relation holds, there are two state-spaces such that X ↪→ Y and X : X → R,Y : Y → R.
We therefore define a null hypothesis H0 : dim(Y) ≥ dim(X). The corresponding
alternative hypothesis we pose is H1 : dim(Y) < dim(X). To conduct hypothesis testing
on H0 vs. H1, we first replace X,Y with their corresponding reconstructed state-spaces
X̂, Ŷ. Our test statistic is dim(Ŷ) − dim(X̂), and intrinsic dimensions are calculated as
described in the previous section. We quantify uncertainty in dim(Ŷ) − dim(X̂) with a
one-sided, bootstrap-based confidence interval, as we explain below.

To generate a single bootstrapped state space from the time series (Xt)T
t=1, we first

reconstruct the state space X̂, and then sample |X̂| states with replacement [20, 44]. We
repeat this process B times (we take B = 200 throughout this study) for both time series
(Xt)T

t=1, (Yt)T
t=1. After B iterations, we have X̂∗b, Ŷ

∗
b, b = 1, . . . , B bootstrap state-spaces,

sampled from X̂, Ŷ, respectively. Let

θ : = dim(Y) − dim(X)

θ∗b : = dim(Ŷ∗b) − dim(X̂∗b),

and let θ̄∗, σ̂2 bootstrap mean and standard deviation, respectively. We construct a
one-sided confidence interval for θ using the first-order normal approximation (the
empirical bootstrap confidence interval yields nearly identical results). Since H1 is not
symmetric, we find a one-sided confidence interval for θ at level α (we take α = 0.05
throughout this study). The rightmost edge of said confidence interval is

θ̄∗ + σ̂Φ−1(1 − α), (3)

where Φ is the inverse normal CDF. Thus, we reject H0 at significance level α if

θ̄∗ + σ̂Φ−1(1 − α) < 0. (4)

Once H0 : dim(Y) ≥ dim(X) is rejected, BCAD has refuted X → Y.

2.5 Convergent cross mapping
Here we give a short overview of how CCM [4] tests X → Y, following CCM’s
implementation in the package pyEDM [44], which we utilize in our experiments.

CCM is based on two components, namely cross-mapping and convergence. We start
by reviewing cross-mapping, i.e. predicting one observable (e.g. X) from another (e.g. Y).
We first reconstruct Ŷ as previously described. Then, we predict observed values of X
using Simplex Projection [45] on Ŷ as follows: we employ a lagged vector LY,E(t?),
representing unobserved data. Initially, we identify E + 1 lagged vectors
LY,E(ti) ∈ Ŷ, i = 0, . . . , E, which are nearest-neighbours of LY,E(t?) in Ŷ in terms of
Euclidean distance. We predict Xt? via a weighted average of Xti , i = 0, . . . , E, where the
weight of Xti in the prediction is exponentially decreasing in the distance
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‖LY,E(t?) −LY,E(ti)‖2. When we conduct such prediction procedure, we say that ”Y
cross-maps X”, or Y xmaps X.

The second component of CCM involves testing for convergence, i.e. testing if the
prediction skill for Y xmap X improves with increasing amount of data. To establish
convergence, we record the prediction skill of Y xmap X using all available data as ρmax.
Then, we set Lmin := E + 2, as the smallest possible number of vectors required for
prediction via Simplex Projection [45]. We generate B bootstrapped state-spaces, where
we sample Lmin states from Ŷ to generate each state-space. For each generated
state-space, we record the prediction skill of Y xmap X using that state-space as ρmin. If
ρmax > ρmin with statistical significance, we conclude that cross map skill has converged.
We establish statistical significance when F̂(0) < α [7, 20], where F̂ is the cumulative
bootstrap distribution of ρmax − ρmin, and α is the predetermined significance threshold,
for which we take α = 0.05. For visualization purposes, in our results we present the
one-sided confidence interval for ρmax − ρmin, i.e.

(
F̂−1(α), F̂−1(1)

)
.

2.6 Two-strain model

Environmental driver

Strain 1 Strain 2

transmission ratetransmission rate

cross-immunization σ12

S i Ii Riβi(t)Ii νi

σi jβ j(t)I j

µ

µ µ µ

Figure 1. Illustration of the two-strain model. Top: a causal diagram describing how an
environmental driver modulates the transmission of strains 1 and 2. Infection with
strain 2 may confer cross-immunization to strain 1, but not vice-versa. Bottom: A
graphical representation of the deterministic two-strain epidemic model. Rates of change
are described by the quantities on top of the arrows, multiplied by the arrows’ source.

We use a previously published model as the data generating mechanism for our
simulations [20]. In this model, two strains of a pathogen spread simultaneously in a
population, and their transmission rate is modulated by an environmental driver. This
two-strain model is a stochastic compartmental model that generalizes the Susceptible,
Infected, Recovered (SIR) model of infectious disease epidemiology. Two main
differences between the standard SIR model and the two-strain model include βi(t) the
seasonally forced transmission rate and σi j the level of cross-immunity conferred to
strain i by infection with strain j. The time-evolution equations of the two-strain model
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are the following SDEs in Itô form:

dS i = (µ − µS i) dt − S i

(
βi(t)Ii + β j(t)σi jI j

) (
dt + ηdW (i)

t

)
dIi = βi(t)S iIi

(
dt + ηdW (i)

t

)
− (νi + µ)Iidt

βi(t) = βi (1 + ε cos(2πt))

S i + Ii + Ri = 1, i = 1, 2.

(5)

Descriptions and values of the parameters of the model are summarized in Table 1. Our
choice of parameters mimics chaotic measles dynamics [30], since the parameters of the
original model [20] did not display chaotic behavior (see Supporting Information for
further discussion of this issue).

Table 1. Parameters for the two-strain model

Description Notation Value(s)

Birth and death rate µ 1
50 year−1

Recovery rate from strain i νi 66 year−1

Transmission rate of strain i βi 1600 year−1

Strength of driver ε 0.18

Cross-immunity level 1→ 2 σ21 0

Cross-immunity level 2→ 1 σ12 see text

Sampling interval ∆t 7 days

Integration time step δt 0.1 days

Process noise amplitude η see text

Simulation run time 200 years

Time to pass transient phase 2000 years

We solve Eqs (5) with the Euler-Maruyama method with step size δt = 0.1 days,
which is small enough to give visually satisfactory accuracy. Observation of the time
series corresponding to strain i at some arbitrary time t is the cumulative incidence
(incidence, henceforth) over the time interval (t − ∆t, t]:∫ t

t−∆t
βi(s)S i(s)Ii(s)

(
ds + ηdW (i)

s

)
.

We simulate > 100 realizations for each choice of parameters with random initial
conditions, and vary the process noise amplitude η ∈ {0, 10−6, . . . , 10−2} and the level of
cross-immunization σ12 ∈ {0, 0.1, . . . , 0.9} (we noted that σ12 = 1 often results in
extinction of strain 1), while keeping σ21 fixed at zero. Thus, unless σ12 = 0, strain 2
confers some degree of cross-immunity to strain 1, but not vice-versa. Consequently, the
time evolution of strain 2 is a factor of the time evolution of strain 1, i.e.: 2→ 1, but
19 2.

2.7 Pneumonia and influenza incidence data
To examine the performance of BCAD on a real-world dataset, we used US pneumonia
and influenza incidence (P&I henceforth) data, which serves as an indicator of influenza
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incidence [31]. Absolute humidity (the water vapor pressure in the air, AH henceforth)
is known to modulate influenza transmission [34,35], and we investigated its causal
relations to P&I. We also investigated causal relations between P&I and three other
environmental factors: temperature, dew-point temperature and absolute humidity (T,
DP, and AH respectively). We retrieved spatio-temporal data on T and DP [32] for the
relevant dates when P&I data was available, and used that to calculated AH [46, Eq.
(20)].

2.8 Preprocessing
2.8.1 Transformation of Rypdal and Sugihara

We transform epidemiological time series according to a transformation suggested by
Rypdal and Sugihara [47]. This transformation is known to improve outbreak prediction
when utilized within a framework of state-space reconstruction [47,48]. For a time series
of cumulative weekly incidence of an infectious disease (Xt)T

t=1, the transformation of
Rypdal and Sugihara estimates the corresponding pathogen’s reproduction number RX

t
via linear regression over a running window of size w. Specifically:

RX
t := arg min

λ
‖λLX,w(t) −LX,w(t + 1)‖2.

A window size of w = 12 weeks is a robust choice [47], and we adhere to this choice here.
We transform incidence of both strains in the two-strain model, as well as P&I values.

2.8.2 Filtering

Because of the detrimental effect observation noise has on intrinsic dimension calculation
(the intrinsic dimension of iid noise is infinite), we filtered time series of P&I, AH, DP,
and T. We did not filter simulations of the two-strain model, since those only contained
process noise. We chose Singular Spectrum Analysis; a filtering method that is
appropriate for filtering data arising from a random dynamical system [49,50]. Singular
Spectrum Analysis requires a threshold for removing components of the time series that
correspond to observation noise, and we employ the optimal hard threshold for singular
values [51] for this task. Importantly, our filtering scheme is parameter free, except for a
time window required for Singular Spectrum Analysis, which we take to be 3 years — a
small integer multiple of the dynamics cycle, which is a common choice [52].

3 Results
3.1 Two-strain model
First, we evaluated BCAD on synthetic data generated by the two-strain model. In
Fig 2 we present ”raw” incidence and corresponding estimated reproduction number for
both strains and varying process noise levels η ∈ {0, 10−4, 10−3, 10−2}. As process noise
levels increase to η = 10−2, it becomes increasingly hard to distinguish dynamics from
noise and hence to infer anything meaningful about the structure of causal relationships.
Moreover, high levels of process noise (η ≥ 10−2) are qualitatively and visually different
from moderate (η ≈ 10−3) and small (η ≤ 10−4) process noise levels.

As mentioned earlier, BCAD aims to refute causal relations, in contrast to CCM,
which aims to discover causal relations. Since BCAD can only refute causal relations
that have been posited as true by other methods, our next objective was to assess
BCAD’s effectiveness when used alongside CCM—a benchmark method. Comparing the
performance of BCAD and CCM is not straightforward: CCM’s null hypothesis is that
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Figure 2. Representative time series of the two-strain model for various process noise
levels. Colors represent different strains. Cross-immunization level is set to σ12 = 0.2.
Each row represents a different level of process noise η, from no process noise (η = 0,
top) to a high level of process noise (η = 0.01, bottom). Left: incidence during the
sampling interval ∆t = 7 days. Right: Reproduction numbers for the incidence time
series presented in the left panels. Note that even though the weekly incidences on the
left seem constant occasionally, their underlying dynamics are revealed when we inspect
the time series of their reproduction number. Furthermore, note that time series
simulated with low process noise levels (η ≤ 10−4) are visually indistinguishable from
time series simulated without process noise (η = 0).

no causal relation holds, i.e. X 9 Y. A significant increase in cross-map prediction skill
implies this null hypothesis can be rejected, i.e. X → Y. In contrast, BCAD’s null
hypothesis is that a causal relation holds, i.e. X → Y. A significantly negative
dim(Ŷ) − dim(X̂) is taken as evidence to reject this hypothesis so that X 9 Y. Thus,
special care has to be taken when comparing BCAD and CCM.

We simulated data, across a range of parameters with random initial conditions,
from the two-strain model and tested BCAD and CCM on two causal relations: the
false relation 1→ 2 and the true relation 2→ 1 (top and bottom panels of Fig 3,
respectively). We present the rejection levels of both methods, where a rejection for
CCM implies that it did not identify the tested relation as causal, i.e. CCM did not
reject its null hypothesis.

When cross-immunity was present (0 < σ12 < 1) and process noise was at most
moderate (η ≤ 10−3), BCAD rejected the false relation 1→ 2 at rates very close to 100%
(Fig 3A), whereas CCM’s rejection rates varied substantially, ranging from 0 − 74%
(Fig 3B). When examining the true causal relation 2→ 1, both BCAD and CCM had
rejection rates close to 0% (Fig 3C and Fig 3D). Sufficiently high levels of process noise
(η = 0.01) deteriorated performance for both methods, as is reasonable to expect, given
the erratic behavior of time series in the lower panels of Fig 2.
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Figure 3. Rejection rates of BCAD (A,C) and CCM (B,D) for the two-strain model. In
each panel, the X-axis represents process noise η, whereas the Y-axis represents the
cross immunization level σ12 that strain 2 confers to strain 1 . The top panels present a
relation that does not hold (1→ 2, A and B), and rejection rates should be high; the
bottom panels present a relation that holds (2→ 1, C and D), and rejection rates
should be low. Each entry is an average of > 100 simulations. High process noise levels
(η = 10−2) deteriorated the performance of both methods, so in this caption we describe
results for low to moderate process noise levels η ≤ 10−3. A: BCAD correctly rejected
the false relation 1→ 2 at a rate close to 100%. B: CCM rejection rates for the false
relation 1→ 2 were at most 74%. Thus, CCM often did not reject the false relation
1→ 2. C, D: Both methods rejected the true relation 2→ 1 at rates close to 0%.

In the edge case when no interaction between the strains is present (σ12 = σ21 = 0),
both methods provided mediocre results. In this scenario, BCAD’s rejection rates should
ideally be 0%, because the state-spaces corresponding to both strains are identical, so
neither state-space will have a dimension significantly larger than the other. However, in
this scenario of zero cross-immunization, BCAD refuted the false relation 2→ 1 at rates
as high as 33%, see Supporting Information. In contrast to BCAD, CCM’s rejection
rates for the zero cross-immunization scenario should ideally be 100%, since the systems
corresponding to the two pathogens are independent, and convergence of cross-map skill
is not expected. However, in this scenario, CCM rejection rates were only as high as
25%, for low to moderate process noise levels (η ≤ 10−3), see Supporting Information.

It is important to note that when BCAD is applied to raw incidence time series, its
accuracy significantly decreases; in Fig 3, BCAD has almost perfect accuracy when
σ12 > 0 and η ≤ 10−3. Performance for raw weekly incidence time series are considerably
worse, see Discussion for details.

3.2 US pneumonia and influenza incidence
Next, we applied BCAD to a real-world dataset of weekly pneumonia and influenza
incidence (P&I) and weekly averaged absolute humidity (AH), dew-point temperature
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(DP) and temperature (T) time series, where causal relations are known. Below, we
considered the false relation that P&I incidence causes absolute humidity P&I→ AH.
Complementary results for the converse relation AH→ P&I, as well as results for the
relations DP→ P&I, P&I→ DP, T→ P&I and P&I→ T, are provided in the
Supporting Information. We focused on AH→ P&I since AH is a major driver of
influenza transmission [34,35]. Accurately refuting P&I→ AH is important as it
indicates that the method under study does not incorrectly identify a reverse causal
relation as valid. We have found that CCM was frequently susceptible to this issue (see
the top right panel of Fig. 3 and the right panel of Fig. 4).

Contrary to the previous section, where we presented rejection rates for BCAD, in
this section we present BCAD confidence intervals for dim(AH) − dim(P&I).
BCAD refuted P&I→ AH at a 5% significance level when the 95% one-sided confidence
interval of Eq (3) for dim(AH) − dim(P&I) was completely below zero. We present
two-sided 90% confidence intervals for dim(AH) − dim(P&I) for aesthetic reasons and to
gauge the overall precision of our estimate. However, since P&I9 AH, a correct
inference using BCAD at a 5% significance level still corresponds to having the
two-sided 90% confidence interval for dim(AH) − dim(P&I) completely below zero.

BCAD correctly refuted the relation P&I→ AH for all but two states (CA and NV).
Even in those two states, the CIs were close to the null (see Fig. 4). This produced a
rejection rate of 46/48 = 95.8%, which is reasonable to expect with our chosen
significance threshold of 5%. Furthermore, BCAD only refuted the true relation
AH→ P&I for NV (see Supporting Information).

Contrary to the previous section, where we presented rejection rates for CCM, in
this section we present CCM confidence intervals for the cross-map skill of AH xmaps
P&I. CCM asserted P&I→ AH if cross-map skill of AH xmaps P&I was significantly
positive. We computed one-sided 95% confidence intervals for ρmax − ρmin. Recall that if
ρmax − ρmin was significantly positive, then CCM concluded that P&I→ AH. Thus, a
success for CCM required showing that the left edge of the corresponding confidence
interval is below zero.

While CCM correctly identified the true causal relation AH→ P&I for all states (see
Supporting Information), CCM incorrectly inferred P&I→ AH in 10 of the 48 states
(AZ, GA, ID, LA, NM, NV, OH, OR, TX and UT; see Fig 4). Thus, the false-detection
rate of CCM when applied to this dataset was 10/48 ≈ 21%.

4 Discussion
In this study, we introduced BCAD: Bootstrap Comparison of Attractor Dimensions, a
novel approach to refute causal relations by comparing intrinsic dimensions of
reconstructed state-spaces. The key requirement of BCAD is for the observed time
series to be governed by an underlying random dynamical system whose states have
already converged to an attractor. As long as these assumptions hold (hence, Takens’
Theorem applies), BCAD can complement any causal detection scheme.

We evaluated the performance of BCAD alongside CCM — a well-known method for
causal detection — to assess their respective abilities in distinguishing false and true
causal relations. Our evaluation involved both simulated time series from a two-strain
epidemiological model and real-world P&I time series from the US. Our results showed
that BCAD correctly refuted the majority of false relations CCM mistakenly identified
as true. Hence, BCAD could also be used alongside other causal detection methods,
such as CCM, to avoid spurious causal discoveries.

We also noted the important role of noise filtering in causal detection for time series.
Applying Singular Spectrum Analysis with a parameter-free choice of threshold was an
important step in obtaining our results. Although the importance of filtering was
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Figure 4. BCAD and CCM confidence intervals for the 48 contiguous states. Left:
BCAD point estimates (red dots) and 90% confidence intervals (blue) for
dim(AH) − dim(P&I). BCAD confidence intervals for dim(AH) − dim(P&I) were below
zero for all states except for CA and NV (red). Thus, BCAD successfully refuted the
false relation P&I→ AH for all but two states. We draw two-sided 90% confidence
intervals for sake of presentation, even though BCAD utilizes one-sided 95% confidence
intervals. Right: CCM confidence intervals for ρmax − ρmin when AH xmaps P&I.
Confidence intervals were completely above zero for 10 states, and CCM identified the
false relation P&I→ AH as true in these 10 states. Shown are 95% one-sided confidence
intervals. P&I: pneumonia and influenza incidence. AH: absolute humidity.
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previously mentioned [28,29], a generic, parameter-free filtering method was not utilized.
Our choice of filtering scheme reduced the possibility of cherry-picking and overfitting
results by selecting from a variety of filtering parameters.

Like any method, ours is not without limitations. First, BCAD relies on time series
data that is assumed to originate from observations of a random dynamical system.
Additionally, BCAD assumes that the systems studied have moved past their initial
transient phase; i.e. the data is expected to represent system states that are confined to
the system’s attractor. When these assumptions are not met, we do not anticipate
BCAD to perform effectively. Specifically, it is inadvisable to apply BCAD to scenarios
where the system might have not converged to an attractor yet; e.g. incidence data
related to COVID-19 during the year 2020. It is also inadvisable to apply BCAD to
data of sporadic infections, since we expect the state-space of the corresponding system
to be degenerate. A degenerate state-space does not allow to sensibly compare
dimensionalities. Furthermore, applying BCAD to discrete data is also not advisable
since state-space reconstruction is not possible for such observables, as previously
explained.

Second, as with many other causal detection methods, employing BCAD may
require domain knowledge. For example, when BCAD was directly applied to incidence
time series from the two-strain model, its accuracy significantly decreased; long
stretches of (close to) zero incidence biased dimensionality estimates. However, focusing
on reproduction numbers [47,48] extracted non-stationary features of the data (Fig. 2).
Analogous issues may arise when applying BCAD to domains outside of infectious
disease epidemiology, and they should be handled with relevant, domain-specific
solutions.

Third, our bootstrapping scheme may have flaws that lead to erroneous inference.
We conduct hypothesis testing by resampling from a reconstructed state-space, similarly
to previous applications with CCM [20,44]. Such a procedure is a hybrid between the
nonparametric bootstrap (since we sample reconstructed system states with
replacement) and the parametric bootstrap (since we fix a reconstructed state-space).
Regardless of these considerations, we note that (a) the use of similar bootstrap schemes
in CCM is widely accepted [20,44]; (b) alternative methods for quantifying uncertainty,
such as the Bayesian approach of Benkő [29] necessitate other, unverifiable underlying
assumptions with their own challenges; and (c) most importantly, our method has
demonstrated its efficacy on simulations and real-world data of infectious diseases time
series.

By contrasting BCAD with CCM, we have demonstrated that BCAD effectively
refutes causal relations falsely identified by CCM. Thus, if BCAD is used in conjunction
with CCM, BCAD can increase CCM’s accuracy. Furthermore, our comparison
employed epidemiological time series, akin to those for which several authors have
previously reported CCM’s shortcomings [18, 20]. These time series present a significant
challenge in causal detection within random dynamical systems, as the true causal
relations are obscured by synchrony to a common environmental driver [19]. Synchrony
is pervasive in infectious disease epidemiology, and BCAD allows us to correctly
eliminate many of the false-detection events that CCM generates in the difficult
scenarios where synchrony is present.

The success of BCAD in correctly refuting false causal relations in the presence of
synchrony underscores its potential to significantly enhance the accuracy of causal
detection. Further research may extend this improvement across various methodologies
and fields of research.
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