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Abstract

Epilepsy remains a significant medical challenge, particularly in drug-resistant cases where sur-
gical intervention may be the only viable treatment option. Identifying the epileptogenic zone,
the brain region responsible for seizure initiation, is a critical step in surgical planning. Com-
bining dynamical system models and the neuroimaging data of epileptic patients in a Bayesian
framework has previously been shown to be a promising approach to identify the epileptogenic
zone. However, previous studies employed coupled neural mass models to describe the whole
brain seizure dynamics and hence could only provide a highly coarse spatially estimate of the
epileptogenic zone. In this study we propose an extension of the Bayesian virtual epileptic pa-
tient framework to a neural field model which could improve the spatial resolution by several
orders. Performing model inversion using neural field models is a challenging task since: (i) it is
computationally expensive to compute gradients over a neural field simulation and (ii) parameter
space can be very high dimensional. We demonstrate that using pseudo-spectral methods and
spherical harmonic transforms it is feasible to perform Bayesian model inversion on a neural field
extension of the reduced Epileptor model. We found that the neural field extension not only
improves the spatial resolution but also significantly reduces the number of false positives.
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Introduction

Treatment for focal drug resistant epilepsy typically involves surgical resection of brain regions,
called Epileptogenic Zone (EZ), which are hypothesized to be inducing seizures. However, in only
about 60% of the cases are the patients seizure free post surgery [1]. Recently, several studies
have proposed various methods to improve the presurgical estimation of EZ which could thereby
improve surgical outcomes.

Epileptogenicity Index (EI) [2] uses spectral and temporal information to define a quanti-
tative measure of the degree of epileptogenicity of brain regions recorded through stereotactic
EEG (SEEG). Epileptogenicity Maps (EM) [3] provide anatomical map of seizure onset and
propagation using spectral analysis of fast activity ranging from 60 to 100 Hz. Connectivity
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Epileptogenicity Index (cEI) [4] combines a directed connectivity based measure with EI to im-
prove EZ estimation in seizures with slow onset patterns. Epileptogenicity Rank (ER) [5] is a
modified EI measure which utilized temporal, spatial and energy ratio during ictal discharges to
estimate EZ. These methods are purely data driven i.e. the EZ is estimated based on quantitative
and/or statistical analysis of SEEG recordings of epileptic patients.

Alternatively, combining dynamical system models of epileptic seizures with Bayesian infer-
ence techniques has been demonstrated to be a promising approach to improve the presurgical
estimation of the EZ. Such approaches mainly involve (i) defining a probabilistic model of seizure
dynamics and (ii) inferring parameters of the dynamical model using a Bayesian framework. Dy-
namical causal modeling (DCM) [6] is a popular framework in Neuroscience that demonstrated
the usefulness of such an approach in understanding various cognitive processes such as vision
[7, 8], language [9, 10], decision making [11, 12] etc. In the context of epilepsy, DCM has been
used to study: seizure propagation pathways from simultaneous EEG-fMRI data [13], modula-
tions in synaptic efficacy between regions during seizure onset[14], concurrent changes in synaptic
coupling at macro and meso-scales from calcium imaging data in zebrafish [15].

DCM is primarily used to study the mechanisms of effective connectivity using biophysically
plausible neuronal models. Virtual epileptic patient (VEP) [16, 17] proposed a similar framework
to DCM but principally aimed towards building personalized epilepsy models using a phenomeno-
logical model of epileptic seizure dynamics. Following studies have demonstrated the efficacy of
VEP approach in identifying EZ using point estimates [18] and fully Bayesian posterior estimates
[19] on a retrospective patient cohort. In VEP, the seizure dynamics are described using a neural
mass model (NMM) called Epileptor [20, 21]. NMMs can describe the dynamics of the whole
brain by considering brain as a network of discrete interacting neuronal populations, where the
interactions are typically constrained by the structural connectome (SC) [22]. NMMs have been
extensively used to understand the macroscopic brain dynamics in healthy [23, 24, 25, 26, 27]
and disease conditions [28, 29, 30, 21]. One of the key limitations of the previous VEP studies
is the highly coarse spatial resolution owing to the use of neural mass model [31]. In order to
address this, here we propose a neural field extension of VEP. While NMMs describe dynamics
across time, neural field models (NFM) describe the dynamics across space and time, allowing for
infinite spatial resolution in theory. Moreover, compared to NMMs, NFMs were shown to better
explain empirically observed LFP data [32]. However, several challenges exist in performing
Bayesian model inversion of NFMs: (i) they are computationally very expensive to simulate at
the whole brain level, (ii) model inversion requires computing gradients which is computationally
much more intensive than the simulation and (iii) dimensionality of the parameter space scales
linearly with the spatial resolution.

Mapping the cortical surfaces onto a spherical surface and using a pseudo spectral approach
for numerical integration was recently shown to reduce the computational cost of neural field
simulations by several orders of magnitude [33, 34]. In this study, using the pseudo spectral
approach and reparameterizing the parameter space into spherical harmonic mode coefficients,
we first demonstrate the plausibility of Bayesian model inversion of a neural field extension of the
reduced Epileptor model. To our knowledge this is the first study to demonstrate model inversion
of a NFM at whole brain level. Using synthetic data, robustness of the inversion across different
resolutions and hyper-parameters is systematically tested. Finally, we study the accuracy of the
field extension of VEP in estimating EZ on a retrospective patient cohort and compare it with
the previous NMM variant of VEP.
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Methods

Patient data

To study the accuracy of the model, it is tested against a retrospective patient cohort of 12
patients. The dataset used in this study is the same as the one used in a previous VEP study
[18, 31, 19]. The dataset includes invasive and non-invasive multimodal neuroimaging data such
as T1-MRI, diffusion MRI and SEEG. For more details of the data acquisition process please
refer to [31]. Informed written consent was obtained for all patients in compliance with the
ethical requirements of the Declaration of Helsinki, and the study protocol was approved by the
ethics committee - Comité de Protection des Personnes sud Méditerranée 1. For each patient
with a known surgical outcome, a connectome is generated by running the reconstruction pipeline
at high spatial resolutions with brain surface modeled as a triangular mesh containing 327684
vertices. Some of the patients are excluded due to issues with running the reconstruction pipeline
at high spatial resolutions. Out of the 25 patients in the original dataset, the reconstruction
pipeline ran successfully for 12 patients at high spatial resolution. These 12 patients are used
for empirical validation in this study. Among the 12 patients, 7 are seizure free post surgery
with their surgical outcome rated as Engel score I. In the remaining 5 patients surgery failed
to achieve seizure freedom and their outcomes are classified as either Engel score II, III or IV.
More details of the patients such as age, gender, Engel scores and inclusion/exclusion criteria
are provided in Table 1. Patient IDs in Table 1 are not known to anyone outside the research
group and does not reveal the identity of the patient to anyone outside the research group.

Connectome

For each patient, using the reconstruction pipeline, a connectome is generated by parcellating
the brain according to VEP atlas [35] consisting of 162 regions with 72 cortical and 9 subcortical
regions per hemisphere. Similar to other whole brain studies using neural mass models [23, 25, 22],
the VEP framework [21, 16, 17] uses the connectome to define the long range influence between
brain regions. In NMM models of whole brain activity, the influence of one region on other is
constrained by scaling the activity of a region by the connectivity. However, in this study, since
a neural field model is used, long range coupling between two distinct regions is defined using
the average activity of all vertices in a region with the connectome constraining the influence of
that region on others.

Forward model

Neural activity at vertices is projected to the activity at the sensors using a so called Gain matrix
(G) [31, 18]. Assuming that the activity decays with square of distance from the source, the gain
coefficient mapping activity at source vertex i to sensor j is estimated as:

Gij =
ai
d2ij

(1)

where, ai is the area of vertex i obtained by summing up one-third of the area all neighboring
triangles. In this study, we use a pseudo-spectral method to compute numerical solutions of
the neural field model. The pseudo-spectral method entails mapping the inflated spherical pial
surfaces obtained from FreeSurfer [36, 37] to a regular grid on the spherical surface. The gain
matrix corresponding to the regular spherical grid is estimated as the sum of nearest vertices on
the irregular grid i.e.

Ĝij =
∑

k∈D(v̂i)

Gkj (2)
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where D(v̂i) represents all the vertices on the irregular spherical grid whose nearest neighbor is
the vertex v̂i on the regular spherical grid.

Resection Masks

Post surgical MRI is manually inspected to identify the brain regions in the VEP parcellation
that are resected by the surgery. A resection mask is created as a binary vector with as many
elements as the number of regions in the VEP parcellation. The resection mask (M) is defined
as:

Mi =

{
1, if region i is resected,

0, otherwise
(3)

where i ∈ (1, 162) indexes one of the brain regions of the parcellation.
Since a neural field model is used in this study, the model predicted EZ are described at a

high spatial resolution with 32776 vertices per hemisphere. For comparison with the empirical
outcomes, the resection masks at parcellation level (Eq. 3) are mapped to high resolution (MH)
as follows:

MH
i =

{
1, if MR(vi) is resected,

0, otherwise
(4)

where, i ∈ (1, 65554), vi represents vertex i and R(vi) represents the index of brain region in the
VEP parcellation that vertex vi belongs to.
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Table 1: Details of the retrospective patient dataset.
Abbreviations: AVM=arteriovenous malformation; FCD=focal cortical dysplasia; L=left; R=right

Patient
ID

Gender
Age at
epilepsy
onset (y)

Epilepsy
duration
(y)

Epilepsy type MRI Hemisphere
Engel
score

Inclusion

id001 F 31-40 3
Temporo-
insular

Normal R II Yes

id003 M 21-30 13 Temporo-frontal R temporo-occipital scar R I Yes

id004 F 21-30 3 Temporal R temporal mesial ganglioglioma R I Yes

id007 M 51-60 5 Temporal Normal R >L III Yes

id008 F 31-40 8 Temporal L amygdala enlargement L III Yes

id009 F 11-20 34
Bifocal: pari-
etal mesial and
temporo-basal

Unknown R parietal lesion R III No (Lesion)

id010 F 21-30 18 Temporal L hippocampal sclerosis L I Yes

id011 F 21-30 14 Frontal L frontal scar (abcess) L IV No (Lesion)

id013 M 1-10 17 Frontal Normal L I Yes

id014 F 1-10 18 Premotor Normal L I No (dwi/T1 co-registration failed)

id017 M 1-10 21 Temporal
L temporo-polar hypothrophy
and hippocampal sclerosis

L I Yes

id020 F 11-20 10 Temporal Normal R I No (dwi/T1 co-registration failed)

id021 F 11-20 14 Occipital Normal L II No (dwi/T1 co-registration failed)

id022 F 1-10 23 Parietal L parietal FCD L I Yes

id025 M 1-10 35 Insular Normal L I No (dwi/T1 co-registration failed)

id027 M 11-20 12 Frontal R prefrontal gliotic scar (AVM) R >L II No (Lesion)

id028 F 1-10 14 Temporo-frontal Anterior temporal necrosis R III No (Lesion)

id030 M 11-20 45 Temporo-frontal R Frontal FCD R I No (dwi/T1 co-registration failed)

id033 F 11-20 5
Temporo-
parieto-
opercular

Normal R IV No (dwi/T1 co-registration failed)

id036 F 1-10 13
Temporo-
insular

R temporal anterior resection
cavity

R IV No (Lesion)

id037 M 21-30 5 Temporal mesial
R temporo-polar & amygdala
FCD, L post-chiasmal pilocytic
astrocyrtoma

R III No (dwi/T1 co-registration failed)

id039 M 41-50 4 Temporo-frontal R fronto-temporal necrosis R I Yes

id040 F 11-20 19 Temporal mesial Hippocampal sclerosis L II Yes

id045 F 21-30 17 Temporal mesial Normal L IV Yes

id050 M 21-30 21 Motor-premotor L insulo-opercular necrosis L I No (Lesion)



Synthetic data

To study the accuracy of the EZ predictions by comparing them with ground truth two syn-
thetic datasets are generated using the connectome and gain matrices of the patients id004
and id022. EZ are defined by choosing regions close to the implanted electrodes. Specifically,
for the patient id004 EZ consisted of three regions: Right-Temporal-pole, Right-T2-posterior
and Right-Thalamus. EZ for id022 consisted of four regions: Left-Superior-parietal-lobule-P1,
Left-Intraparietal-sulcus, Left-Postcentral-gyrus, Left-Postcentral-sulcus. SEEG electrode im-
plantation, centers of the brain regions in EZ, structural connectome and gain matrix of patient
id004 and id022 are shown in supplementary Fig. 1 and supplementary Fig. 3 respectively. For
all the vertices belonging to regions in EZ the tissue excitability parameter (x0) is set to −1.8
and for the rest of the vertices x0 = −3.0. Source activity for this spatial map of excitability
is obtained by numerically solving the neural field extension of the 2D Epileptor model using a
pseudo spectral method. Initial values of the fast (x) and slow (z) variables are set to −2.0 and
5.0 respectively.

Feature extraction

The raw SEEG data is preprocessed to extract SEEG log power. Preprocessing involves high
pass filtering raw SEEG data from 10 Hz, computing the power over a sliding window, applying
a log transformation and finally a low pass filter of 0.05 Hz is applied for smoothing out any short
spikes in the data. In order to reduce the computational cost of fitting, the SEEG log power
time series is down sampled to 300 time points. Data augmentation is a technique in machine
learning to improve optimization when the observations are sparse. A common technique for
data augmentation is to increase the number of observations by adding noise to the observed
data. In this study, each time series is augmented by generating 50 more time series by adding
Gaussian noise with mean zero and standard deviation of 0.1.

Dynamical Model

Epileptor is a phenomenological model developed to describe the predominant dynamical charac-
teristics of focal epileptic seizures [20]. Later, studies have extended the Epileptor model to study
the mechanisms of seizure recruitment and propagation through neural mass models [21] and neu-
ral field models [38]. The Epileptor model consisted of five state variables with two variables
capturing fast discharges, two variables for spike and wave events and one variable accounting
for extracellular effects and governing autonomous evolution between interictal and ictal phases.
Taking advantage of time scale separation the Epileptor model could be reduced to two variables
with the one slow variable similar to the full model and one fast variable which could be inter-
preted as proxy to transients in power dynamics between interictal and ictal phases. Previously,
by embedding the 2D Epileptor neural mass model into a Bayesian framework [17, 18, 31, 19, 16]
it was demonstrated that model inversion could be performed to generate individualized models
of seizure recruitment and propagation which can improve presurgical identification of EZ. In
this study, we propose a neural field extension of the reduced Epileptor model aimed towards
improving the spatial resolution of the EZ predicted by the BVEP framework [17, 18]. The
dynamics of the two dimensional Epileptor neural field model at position y and time t is defined
as follows:
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∂tx(y, t) = 1− x3 − 2x2 − z + I (5)

∂tz(y, t) =
1

τ

4(x− x0)− z −G

N∑
j=1

Kij(xj − xi)− γw ∗ S(x, θ)

 (6)

where G represents the global coupling i.e. a scaling factor for long range connectivity K. The
indices i and j represent the index of the brain regions in VEP parcellation, with i indexing
the region at position y and j is a dummy index variable looping across all brain regions. xi
represents the average value of state variable x in region i. The term w ∗ S(x, θ) represents
the local or homogeneous coupling with the operator ∗ representing a spatial convolution. It is
defined as:

w ∗ S(x, θ) =
∫ ∞

−∞
w(d(y, ŷ))S(x, θ)dŷ (7)

where d(., .) is the distance along the surface between two points, S is a sigmoid function i.e.
S(q, θ) = 1/(1 + e−(q−θ)) and w is a short ranged function representing local connectivity kernel
typically defined as a Laplacian i.e. w(y) = e−|y|/2. In this study unless otherwise specified
γ = 1 and θ = −1. In computing numerical solutions of neural field models the homogeneous
connectivity was demonstrated to be a computational bottleneck [33]. Performing model in-
version entails computing gradients over the generated solutions. Typically these gradients are
computed using automatic differentiation [39] which builds a computational graph of all the
operations or transformations involved in mapping a particular parameter configuration of the
neural field model (Eq. 6) to the SEEG data features. Computationally intensive functions such
as the homogeneous connectivity term in Eq. 7 can lead to prohibitively high memory usage in
computing gradients. To avoid this, in this study, we use a pseudo-spectral method to estimate
the homogeneous connectivity.

Pseudo-spectral method

For the family of neural field equations that are generally described as:

ψ̇(y, t) + ϵψ(y, t)−N (ψ(y, t)) =∫
S

Whom(dg(y, y
∗))ψ(y∗, t− dg(y, y

∗)/c)dy∗+ (8)∫
S

Whet(y, y
∗)ψ(y∗, t− dt(y, y

∗)/v)dy∗

where, ψ represents the state vector, N is a function representing the non-linear contributions,
dg and dt represent distance along the surface between two points and length of the fiber tracts
connecting two points respectively. Whom and Whet are the homogeneous or short range and
heterogeneous or long range connectivity kernels. The parameters c and v denote transmission
speeds. It was shown that by mapping the high resolution inflated surfaces obtained from
FreeSurfer [36, 37] onto a unit sphere, neural field solutions can be obtained through a pseudo
spectral method [33] using mode decomposition on the spherical surface. Specifically, it was
demonstrated that when the homogeneous connectivity kernel is a Laplacian the homogeneous
connectivity could be approximated as:

Whom ∗ ψ ≃ Nψ + SHT−1(−Dl(l + 1)SHT (ψ)) (9)
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where N is a normalization coefficient, D is a diffusion coefficient and SHT indicates spherical
harmonics transform. In approximating the homogeneous connectivity as given in Eq. 9, using
the fact that the homogeneous kernel (Laplacian here) is a short ranged function, Daini and Jirsa
[33] found N and D to be:

N = r2
∫ 2π

0

∫ π

0

1

2
e−rθ̄sin(θ̄)dθ̄dϕ

D =
1

4
r2

∫ 2π

0

∫ π

0

θ̄2
1

2
e−rθ̄sin(θ̄)dθ̄dϕ

which for r = 100 mm are N ≃ 3.14128 and D ≃ 0.00047108. Computing the homogeneous
connectivity using Eq. 9 requires performing spherical harmonic transform, in this study, unless
otherwise specified the spherical harmonic mode coefficients are truncated up to a degree of 32.

Numerical Solution

To compute the trajectories of the neural field state variables governed by Eq. 6, we performed
numerical integration using Euler’s method with a time step of 0.05 seconds for a total of 600
steps. Since the SEEG data features are subsampled to contain 300 time points, the time series
of the state variables obtained from numerical integration is subsampled at every 0.1 second.

Model inversion

In the Bayesian VEP framework [17, 18, 31] model inversion can be performed using either
Maximum a posteriori (MAP), Variational inference or MCMC based sampling techniques over
a posterior distribution:

P (Θ|D) ≈ P (D|Θ)P (Θ) (10)

where, Θ is a vector containing parameters of interest and D is the observed data features
such as the SEEG log power. The parameter vector θ contains, initial values of the state vari-
ables (x(y, t0), z(y, t0)), spatial map of tissue excitability (x0(y)), global coupling (G), time scale
parameter τ , observation noise (ϵ) and two scalar auxiliary parameters amplitude (α) and offset
(β) defining a global linear transformation of the model predicted SEEG log power. In the spatial
domain, with a spatial discretization of 32768 vertices per cortical hemisphere, the dimensionality
of the parameter space would be 196667. In order to reduce the dimensionality of the parameter
space, all the spatial maps are parameterized using SHT up to a degree of Lmax. In this study we
used Lmax = 16, except while performing parameter sweep across Lmax for sensitivity analysis,
reducing the dimensionality of parameter space to 3527. The prior distributions over the above
parameters are defined as:
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P (x(yi, t0)) ∼ N (−3.0, 0.5)

P (z(yi, t0)) ∼ N (5.0, 0.5)

P (x0(yi)) ∼ N (−3.0, 0.5)

P (G) ∼ N (1.0, 5.0)

P (τ) ∼ U(20.0, 100.0)

P (ϵ) ∼ N (0.1, 0.1)

P (α) ∼ N (0.0, 1.0)

P (β) ∼ N (0.0, 1.0)

Taking advantage of prior knowledge of the parameter regimes of the dynamical model Eq.
6 for seizure recruitment and propagation all the priors with Normal distributions are bounded
above and below. The upper and lower bounds used in this study are provided in table 2.

Parameter Lower Bound Upper Bound
x(yi, t0) -5.0 -1.5
z(yi, t0) 4.0 6.0
x0(yi) -5.0 0.0
G 0.0 10.0
ϵ 0.0 1.0
α 0.0 10.0
β -10.0 10.0

Table 2: Upper and lower bounds for the inferred parameters.

In this study, model inversion is performed using MAP. Adam optimizer [40] is used to
perform optimization with a learning rate of 0.001 and 5000 steps as the termination criteria.
Sensitivity analysis across different parameter sweeps are performed on CSCS high performance
cluster where each node has the following configuraiton: Intel® Xeon® E5-2690 v3 @ 2.60GHz
(12 cores, 64GB RAM) and NVIDIA® Tesla® P100 with 16GB graphics memory. Rest of the
analysis is performed on a workstation with Intel® Core™ i9-10885H CPU @ 2.40GHz (16 cores,
64 GB RAM) and NVIDIA Quadro RTX 4000 GPU with 8GB graphics memory.

EZ Estimation

To identify the EZ from the inferred parameters, we used the seizure onset times similar to [18].
Onset times are estimated by finding the time instant where depolarization shift occurred in
the model predicted activity of the fast variable (x). Next, all regions with onset times within
a tolerance, tϵ, of the earliest onset time, tλ, are classified as EZ. All other regions with onset
times beyond tλ + tϵ are classified as PZ.
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Results

Validation on synthetic data

In order to compare the inferred EZ to the ground truth, first the inference accuracy is tested
against synthetic data. Fig. 1a shows the tissue excitability parameter (x0) in ground truth and
prediction while fitting against synthetic data described in methods. All three regions (Right-
Temporal-pole, Right-T2-posterior and Right-Thalamus) defined as part of EZ in the ground
truth are accurately inferred to have higher excitability. In addition to these three regions,
one other region (Right-T2-anterior) is inferred to have high excitability, even though, the fit to
observations is good as shown in Fig. 1b. However, as shown in Fig. 2 this region is not recruited
by the seizure. This demonstrates the structural degeneracy of the Epileptor model i.e. multiple
configurations of the Epileptor model parameters can lead to similar source state dynamics. But
this wouldn’t be a problem for the purpose of identifying EZ as it could be uniquely determined
given the trajectory of source states.
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Figure 1: Inference accuracy on a synthetic dataset. (a) Comparison of the tissue excitability
parameter (x0) between the ground truth i.e. synthetic data and the inferred values. (b) Good-
ness of fit between the observed and the predicted SEEG log power at 10 randomly chosen SEEG
sensors

11



Figure 2: Comparison of source activity between ground truth and predictions. (a) Latent
source activity obtained from the pseudo-spectral simulation of the neural field extension of 2D
Epileptor model (left) and source activity obtained from a simulation of the same model using
the model parameters estimated by performing model inversion using MAP (right). (b) inferred
source activity at three different time steps, shown by gray vertical lines in ”a”, illustrated on
the brain surface. Color map is the same as in the one shown in ”a”.

Next, we tested the robustness of the method to changes in spatial resolution, mode truncation
and observation noise. We found that the method is robust across different spatial resolutions but
sensitive to mode truncation and, as expected, to observation noise. As shown in Fig. 3a, both
precision and recall of the inferred EZ remained above 80% across different spatial resolutions,
ranging from 8192 vertices to 32,768 vertices. Accuracy of the inferred EZ is found to decrease
when higher spherical harmonic modes i.e. Lmax > 25 are used to represent the spatial maps
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of parameters (Fig. 3b). This could be because higher number of modes have higher expressive
power i.e produce many distinct spatial maps which in turn would lead more local optimum.
Interestingly, this would imply lower truncations not only help reduce the dimensionality of
parameter space but also reduce the structural degeneracy in Epileptor model by constraining the
spatial maps of parameters to those that have smooth spatial transitions. However, such smooth
spatial maps would have the trade off that size of the inferred EZ could be underestimated to
avoid false positives. To ensure that effect of hyperparameters and observation noise on accuracy
are not specific to the EZ hypothesis, the same parameter sweeps are performed using bad EZ
hypothesis. Their effects are found to be similar to the case with good EZ hypothesis (Fig. 3
d,e,f). Similar analysis performed on a different dataset is shown in supplementary Fig. 5.

Figure 3: Sensitivity analysis across different hyper-parameters of VEP with neural field model
(VEP-NFM) against synthetic data. (a) Precision and recall of VEP-NFM model across different
spatial resolutions with a good EZ hypothesis (b,c) Same as ”a” except across different mode
truncation parameters and signal to noise ratio in the observed SEEG. (d,e,f) Same as ”a,b,c”
except with a bad EZ hypothesis.

Validation on Empirical Data

Accuracy of the predicted EZ in empirical data is validated using a retrospective patient cohort
consisting of 12 patients (see table). Out of the 12 patients, 7 patients are seizure free post
surgery and the remaining 5 are not. Precision and recall of the predicted EZ compared to
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resection masks created from post surgical MRI is shown in Fig. 4. Precision/recall across
seizures in each patient is shown in Fig. 4a. In patients who are seizure free post surgery i.e.
Engel score I, on average, precision and recall are 0.85 and 0.25 respectively. In patients who
are not seizure free post surgery, average precision recall are 0.58 and 0.17 respectively. As
evident from the precision, in patients where surgery was successful in achieving seizure freedom,
the number of false positives are much less compared to patients who are not seizure free post
surgery. This would imply that the predicted EZ matches with the resected regions in patients
where the surgery was successful but showed a mismatch in patients where surgery failed.

Note that the low recall values does not necessarily imply that most of the resected regions are
predicted to be healthy. We hypothesize this could be because (i) some of the vertices classified as
EZ in resection could be predicted as PZ based on onset tolerance threshold and (ii) the resection
masks are created by mapping low resolution (163 nodes) parcellation masks to high resolution
(32768 vertices), but the predicted EZ, even if it includes all the distinct resected regions, it may
only include a fraction of the vertices from each region. To check the influence of onset tolerance
threshold, precision and recall are computed at different thresholds ranging from 5 seconds to 30
seconds. Average precision and recall, across seizures, of predicted EZ in each patient at different
thresholds is shown in Fig. 4b. Increasing the onset tolerance from 10 seconds to 30 seconds,
resulted in almost two fold increase in recall. Average recall, per group, increased from 0.25 to
0.39 and 0.17 to 0.34 in seizure free and non seizure free patients respectively. While, average
precision decreased slightly from 0.85 to 0.81 and 0.58 to 0.53 in seizure free and non seizure free
groups respectively. The effect of constructing high resolution resection masks, from information
at the parcellation level, on recall can be investigated by computing the recall at parcellation
level. Predicted EZ at high resolution are mapped to parcellation level by thresholding on the
percentage of vertices of a region in the predicted EZ. Accuracy of predicted EZ in each patient
when mapped to parcellation level is shown in Fig. 5. Considering regions with at least 20% of
its vertices to be part of EZ and at an onset tolerance of 30 seconds, average recall increased to
0.50 and 0.41 in seizure free and non-seizure free groups respectively. At the same thresholds,
precision at the parcellation level is found to be almost same as that observed at high resolution,
0.81 and 0.52 specifically. The results observed in 4b and 5 provide evidence to our hypothesis
that the low recall observed in 4 is a consequence of either thresholding or mapping information
at parcellation level to high resolutions. These effects are then summarized by performing a
parameter sweep over both the thresholds of onset tolerance and percentage of vertices. Average
precision and recall at the parcellation level across different thresholds is shown in Fig. 6. As
hypothesized, the recall increases as either onset tolerance is increased or by mapping EZ to
parcellation level with lower fractions of vertices as inclusion criteria for EZ.
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Figure 4: Analysis of accuracy of predicted EZ in a retrospective patient cohort.(a) Distributions
of precision and recall across seizures in each patient. Precision and recall are computed by
comparing the predicted EZ against EZ defined by post surgical MRI and setting the onset
tolerance threshold to 10 seconds. (b) Average precision and recall, averaged across seizures, in
each patient across different onset tolerance thresholds.
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Figure 5: Analysis of the effect of mapping resection mask from VEP parcellation level to high
resolution on inference accuracy, specifically on recall. Similar to Fig.4a, except precision/recall
are computed at parcellation level. Resection masks at high resolution are constructed from the
post surgical resection masks available at parcellation level. It’s effect on recall is studied by
mapping the predicted EZ to parcellation level and computing precision and recall by comparing
against resection masks at the parcellation level itself.
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Figure 6: Analysis of effect of various thresholds performed in mapping EZ to parcellation level
on prediction accuracy. Predicted EZ at high resolution is mapped to parcellation level by
thresholding on the minimum percentage of vertices in a region and the seizure onset time to be
considered as part of EZ. Average precision and recall, averaged across patients, across different
values of these thresholds in seizure free group (top) and non-seizure free group (bottom). Note
that in computing precision there can be no regions in the EZ for low values of onset tolerance
and high values of percentage of vertices. This can lead to division by zero errors, hence, if such
an error occurred for any of the patients at a particular threshold then the precision is set to
zero.

Identification of seizure onset zone using purely data driven signal analysis of SEEG time series
such as EI, EM and ER [2, 3, 5] are by construction spatially constrained to identify EZ within
the implanted regions. Similar to previous VEP studies [16, 18, 17, 31], the generative model used
in this study also includes a forward model, the so called the gain matrix, transforming latent
source activity to the SEEG time series. The forward model could account for seizure activity
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originating in regions beyond the implanted regions on the observed SEEG. The efficacy of the
forward model in discovering EZ beyond implanted regions is studied by analyzing the number
of regions in the predicted EZ that are beyond the implanted regions. Regions within a radius
of 3 mm of any sensor are considered to be implanted. The number of regions, averaged across
patients in each group, in the predicted EZ not part of the implantation is shown in Fig.7a. In
seizure free group 25% of the regions are found to be outside implantation while in the non-seizure
free group it is 38%. Previous results (Fig.4, 5) demonstrated that there are more false positives
in non-seizure free group compared to the seizure free group. Fig.7a also shows the percentage
of predicted regions in EZ that are outside implantation. Interestingly, among the false positives
the non-seizure free group showed much higher regions outside implantation compared to seizure
free group. Whereas, among the true positives the difference is much smaller. It is reasonable
to assume that among the non-seizure free patients the implantation missed some the EZ. These
findings provide confidence to that effect and demonstrates the efficacy of the proposed method in
identifying EZ beyond the implanted regions. However, under such rational, it is also reasonable
to hypothesize that: (i) among seizure free patients implantation should have covered the EZ and
(ii) the true positives should be covered by the implantation irrespective of the group. Fig.7b
shows the percentage of predicted EZ regions not implanted as the radius from sensor is increased
from 1 mm to 10 mm. As hypothesized, as the radius is increased, all the regions in predicted
EZ of seizure free patients are covered by the implantation and among the true positives the
percentage of regions outside implantation have reduced to less than 2% in both groups. The
distributions of percentage of predicted regions in EZ which are not implanted across all patients
and seizures are shown in Fig.7c.
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Figure 7: EZ discovery beyond implanted regions. (a) Comparison of percentage of regions,
averaged across patients, beyond the implanted regions in seizure free and non-seizure free groups.
The tolerance for considering a region as implanted is set to 3 mm, i.e. all regions within a radius
of 3 mm of any implanted sensor are considered to be part of implanted regions. (b) Percentage
of regions beyond implantation as the distance tolerance defining implantation is increased from
1 mm to 5 mm. (c) Distribution of percentage of regions not implanted across all patients and
seizures with implantation radius of 3 mm.
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Comparison to Neural Mass Models

Figure 8: Comparison of prediction accuracy of VEP with neural mass and neural fields model.
(a) Precision and recall of VEP with neural mass 2D Epileptor model (VEP-NMM) against
a retrospective dataset (b) Precision and recall of VEP with neural field 2D Epileptor model
(VEP-NFM) against the same retrospective dataset. (c,d) Precision and recall of VEP-NMM
and VEP-NFM across various onset tolerance thresholds.

Lastly, the accuracy of the neural field extension of the VEP (VEP-NFM) framework proposed
in this study is compared against the previous VEP approaches with neural mass model (VEP-
NMM) [18, 31] against the same retrospective dataset. In the seizure free group, at an onset
tolerance of 10 seconds, the number of false positives have drastically reduced as can be seen
from the precision in Fig.8a,b. A paired samples t-test was performed to compare precision and
recall between VEP-NMM and VEP-NFM. There is a statistically significant difference in preci-
sion between VEP-NFM (M=0.85, SD=0.21) and VEP-NMM (M=0.56, SD=0.34); t(28)=5.41,
p¡0.01. For recall, there is not a significant difference between VEP-NFM (M=0.25, SD=0.21)
and VEP-NMM (M=0.29, SD=0.27); t(28)=-1.48, p=0.15. In the non seizure free group, there
is not a statistically significant difference between VEP-NMM and VEP-NFM in either precision
or recall. At an onset tolerance of 30 seconds, precision is found to be statistically significant
in both seizure free and non-seizure groups, while, recall is not. Average precision and recall

20



in VEP-NMM and VEP-NFM across as the onset tolerance threshold is increased from 5 to 30
seconds is shown in Fig.8.

Discussion

In this study, we explored the development of personalized models for the identification of EZ
by extending the VEP approach [18, 17, 31] to a neural field model. Our primary objective was
to enhance the spatial resolution of the predicted EZ using a neural field model, which theoreti-
cally offer infinite spatial resolution. We employed a recently proposed pseudo spectral method
[33] to approximate solutions to the neural field equations, thereby avoiding the computational
challenges associated with simulation and model inversion of neural field models.

Our findings demonstrate the success of our approach in achieving improved spatial resolution
for EZ prediction. These findings could play a important role in the context of epilepsy research,
as the accurate localization of the EZ is critical for guiding surgical interventions and improving
patient outcomes. The use of neural field models proved to be a fruitful advancement, allowing
us to harness their potential for high spatial precision. The adoption of the pseudo spectral
method reduced the computational cost of model inversion, providing a practical solution to
overcome the computational hurdles that often accompany neural field models. This method
presents a promising avenue for future research and may find applications in other computational
neuroscience domains requiring model inversion.

Systematic testing against synthetic data revealed that the prediction accuracy of our model
remained robust against variations in spatial resolution, demonstrating its reliability in settings
where data quality and resolution may vary. However, we noted a degradation in accuracy with
higher degrees of spherical harmonics. This observation prompts further investigation into the
trade-offs between spatial resolution and computational efficiency in our approach. Strategies to
mitigate this effect could be explored in future work.

The validation against retrospective data yielded encouraging results. Our model predictions
exhibited a strong match with seizure-free patients, underscoring its potential as a tool for aiding
in the diagnosis and treatment planning for epilepsy patients. Conversely, a notable mismatch
was observed with non-seizure-free patients, highlighting the model’s potential for identifying
individuals at a higher risk of recurrent seizures. These clinical insights demonstrate the practical
applicability of our research and the potential for improved patient outcomes.

We acknowledge several limitations in our study. The retrospective dataset used for validation
is small and thereby validation against larger datasets is needed. Future research should consider
more comprehensive datasets to enhance confidence of the proposed approach. Model inversion
is performed using MAP which provides point estimates using an optimization algorithm. Hence
the drawbacks of an optimization algorithms such as getting stuck in a local minima also apply
to our results. One common technique to partially mitigate this challenge is to run multiple
optimizations with different initial conditions, which we did employ in this study. To address
issues with MAP, we are currently exploring variational inference using more sophisticated density
approximation methods such as Masked auto-regressive flows [41] and Free-form Jacobian of
reversible dynamics (FFJORD) [42].

Moving forward, our research paves the way for several promising directions. Clinical val-
idation through prospective studies is essential to further assess the reliability and real-world
applicability of our models. We also anticipate opportunities for algorithm refinement, focusing
on strategies to address the degradation in accuracy associated with higher degrees of spherical
harmonics. Finally, the integration of our approach with other computational neuroscience tech-
niques and complementary data sources could enhance the accuracy and clinical relevance of our
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personalized models.
In conclusion, our study advances the VEP framework by offering a novel approach to per-

sonalized models of epileptic seizure propagation. The use of neural field models and the pseudo
spectral method has shown promise in improving spatial resolution for EZ prediction, with clini-
cal implications for diagnosis and treatment planning. While challenges and limitations remain,
our research opens exciting avenues for future investigations.
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