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ABSTRACT 

INTRODUCTION 

Smart devices are widely available and capable of quickly recording and uploading speech segments 

for health-related analysis. The switch from laboratory recordings with professional-grade 

microphone set ups to remote, smart device-based recordings offers immense potential for the 

scalability of voice assessment. Yet, a growing body of literature points to a wide heterogeneity 

among acoustic metrics for their robustness to variation in recording devices. The addition of 

consumer-grade plug-and-play microphones has been proposed as a possible solution. The aim of 

our study was to assess if the addition of consumer-grade plug-and-play microphones  increases the 

acoustic measurement agreement between ultra-portable devices  and a reference microphone.  

METHODS 

Speech was simultaneously recorded by a reference high-quality microphone commonly used in 

research, and by two configurations with plug-and-play microphones. Twelve speech-acoustic 

features were calculated using recordings from each microphone to determine the agreement 

intervals in measurements between microphones. Agreement intervals were then compared to 

expected deviations in speech in various neurological conditions. Additionally, each microphone’s 

response to speech and to silence were characterized through acoustic analysis to explore possible 

reasons for differences in acoustic measurements between microphones. Lastly, the statistical 

differentiation of two groups, neurotypical and people with Multiple Sclerosis, using metrics from 

each tested microphone was compared to that of the reference microphone. 

RESULTS 

The two consumer-grade plug-and-play microphones favoured high frequencies (mean centre of 

gravity difference ≥ +175.3Hz) and recorded more noise (mean difference in signal-to-noise ≤ -4.2dB) 

when compared to the reference microphone. Between consumer-grade microphones, differences 

in relative noise were closely related to distance between the microphone and the speaker’s mouth. 
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Agreement intervals between the reference and consumer-grade microphones remained under 

disease-expected deviations only for fundamental frequency (f0, agreement interval ≤0.06Hz), f0 

instability (f0 CoV, agreement interval ≤0.05%) and for tracking of second formant movement 

(agreement interval ≤1.4Hz/millisecond). Agreement between microphones was poor for other 

metrics, particularly for fine timing metrics (mean pause length and pause length variability for 

various tasks). The statistical difference between the two groups of speakers was smaller with the 

plug-and-play than with the reference microphone.  

CONCLUSION 

Measurement of f0 and F2 slope were robust to variation in recording equipment while other 

acoustic metrics were not. Thus, the tested plug-and-play microphones should not be used 

interchangeably with professional-grade microphones for speech analysis. Plug-and-play 

microphones may assist in equipment standardization within speech studies, including remote or 

self-recording, possibly with small loss in accuracy and statistical power as observed in the current 

study.  

INTRODUCTION 

Acoustic analysis forms one of the pillars in the assessment of voice quality (1). In addition, speech 

analysis can provide useful insights into the diagnosis and progression of various neurological 

conditions. Some acoustic metrics of speech are related to the severity of neurological impairment 

or may assist in distinguishing between healthy subjects (HS) and people with diseases such as 

depression (2), Multiple Sclerosis (3, 4), Parkinson’s disease (5) and others (6-10). Moreover, the 

acquisition of speech recordings for health-related analysis has become increasingly accessible 

through the use of mobile devices, both in research and clinical settings, offering potential scalability 

and continued care through telehealth when access becomes restricted (11). 

The reliability of speech metrics from mobile device recordings remains disputed. Several studies 

found that some speech measurements related to mean spectral and cepstral frequencies (e.g., 

mean fundamental frequency, F0) were comparable between professional-level and consumer-
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grade recording equipment while measures of perturbation (e.g., shimmer) presented much more 

variation in agreement between recording equipment (12-21). To that effect, Daudet et al. (2017) (6) 

argued that the in-built microphones of mobile devices were insufficient to filter out noise and that a 

high-quality microphone coupled to a mobile device was necessary to achieve the high accuracy for 

detecting traumatic brain injury in out-of-lab conditions. Conversely, Rusz et al. (2018) (15) found 

that speech metrics from smartphone recordings were almost as sensitive as the professional grade 

microphone in capturing (previously studied) key abnormalities in speech of people at high risk of 

developing or already diagnosed with Parkinson’s disease. 

Various factors may account for the variability in speech metrics’ results. In contrast to research 

experiments, clinical practice and self-recording often introduce uncontrolled variables such as 

background noise, variation in the distance and direction between microphone and sound source, 

and differences in microphones’ properties. To quantify the influence of some of these variables on 

measurements’ results, Titze and Winholtz varied the distance between professional-grade 

microphones and a synthesized voice source from 4cm to 30cm to 1m. They observed that the 

recorded amount of false signal perturbation (i.e., noise or aperiodicity) progressively increased by 

almost one order of magnitude at each distance-step, for both frequency and amplitude. Similarly, 

the use of consumer-grade microphones resulted in greater false perturbations and less 

responsiveness to true perturbations, particularly to increased aperiodicity, when compared to 

professional-grade microphones at a fixed distance. These findings were associated with the 

microphone’s sensitivity at 200Hz, which is close to the fundamental frequency of human voice (22). 

A greater sensitivity to frequencies occupied by voice improves the signal-to-noise ratio (SNR). The 

same logic applies for the positioning of microphones where proximity to sound source results in a 

greater target signal magnitude while keeping constant the recorded amplitude of background 

noise, i.e., higher SNR and consequently smaller relative noise. Relative noise, in turn, would 

interfere with various acoustic measurements related to variation and periodicity (12, 23) (e.g., f0 
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standard deviation, harmonics-to-noise ratio, cepstral peak prominence - CPP) which are commonly 

used for voice analysis.  

Microphones’ sensitivity varies across frequencies. The distribution of sensitivity along the frequency 

spectrum is referred to as frequency response, which often influences the recorded signal in a 

predicable manner (i.e., systematic deviations). The importance of accounting for the microphone’s 

frequency response was highlighted in an experiment by Parsa et al. (2001) (24). The authors used 

loudspeaker playback of human voices to compare four professional-grade microphones and found 

that systematic divergencies in microphones’ frequency responses accounted for small distortions in 

acoustic analysis, but which were sufficient to decrease the accuracy in discriminating between 

normal and pathological voices. Because of the largely systematic nature of the differences, a post-

recording mathematical correction accounting for the microphone’s frequency response improved 

the accuracy for discriminating between healthy and pathological voices. In a recent study, Awan et 

al compared playback speech recorded by four modern smartphones, which had similar frequency 

responses, and a reference microphone and observed a correlational equivalence in measured CPP 

but a large device-effect on measured spectral tilt (25). In a similar study testing consumer and 

professional-grade head-worn microphones, this time with different frequency response curves, 

Awan et al highlighted that differences in measured CPP were not correlated to frequency response 

or to microphone’s sensitivity around 100-200Hz (26) in contrast to earlier assumptions (22). Thus, 

frequency response alone seems insufficient to predict the accuracy of perturbation measurements. 

 

While recording variables responsible for variation in measured speech acoustics (e.g., distance to 

microphone, frequency response curve) remain under investigation, a pragmatic approach may 

benefit the scalability in speech research. In that sense, agreement intervals, random and systematic 

errors are reliability statistics may be compared to accuracy requirements to inform the 

appropriateness of a certain equipment. With exception of Jannets et al (16), studies did not report 

random error or agreement intervals between microphones, and none directly compared random 
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measurement error to expected disease or treatment effects, i.e., clinical significance of 

measurement error. In the current pilot experiment, we aimed to test if from the addition of 

portable and affordable consumer-grade microphones increased measurement agreement against a 

typical reference equipment.  We tested two mount-on microphones for mobile devices, which 

could be used in conjunction with “bring your own” iOS or Android device in studies. We extracted 

intensity-related, frequency-related, and periodicity metrics from simultaneous recordings and 

calculated differences, agreement intervals, and correlation coefficients between microphones. 

Based on previous findings, we hypothesize that agreement intervals between microphone set ups 

would be smaller than the expected clinical effect (thus acceptable) for f0 and for intensity-related 

timing measurements but not for metrics of perturbation-periodicity or other frequency-related 

measurements (16-18, 25, 26). Finally, we hypothesize that despite possible differences in 

measurements, the consistent use any of the tested microphones would yield a similar 

differentiation between a group of dysarthric (mild and sub-clinical) and non-dysarthric speakers. 

 

METHODS  

The study was reviewed and approved by the Melbourne Health Ethics Committee (approval 

number 2015.069). All participants were informed of the purpose of the study as well as their right 

to withdraw at any point, and signed consent was obtained.  

Materials 

We selected a high-quality configuration previously used in speech research as the reference 

microphone, consisting of an AKG C520 head-worn cardioid condenser microphone coupled to a 

Roland Duo Capture EX USB Audio Interface and connected to a laptop. Characteristics of this 

microphone include a sensitivity of 5mV/Pa, a near flat tonal frequency response, a condenser 

transducer type , cardioid pattern,  and mount positioning close to sound source, which are 

considered adequate for recording speech for acoustic analysis according to various reference 

authors (22, 26-28). Consumer grade microphones included three configurations of the 6th 
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generation iPod Touch: (1) the in-built iPod Touch microphone (in-built); (2) Rode IXY-L mobile-

mount cardioid condenser microphone (directional, sensitivity of 8.5mV/Pa); and (3) Sennheiser 

ClipMic Digital lapel omnidirectional condenser microphone (lapel, sensitivity of 5mV/Pa). 

Participants 

In addition to people with normal voice and speech, we purposefully recruited people with 

dysarthria to increase the spread of each acoustic metric, which assists in gauging the dependency 

between inter-microphone differences (bias and random error) and the magnitude of the 

measurement. Checking for such dependency is one of the steps in measuring agreement intervals 

through the elected method further described under statistical analysis. In total, eighteen people (10 

females) aged between 18 and 59 years participated in the study and were included in the analysis. 

Inclusion of people with dysarthria was achieved through five participants with Multiple Sclerosis 

(pwMS), which included two people with mild dysarthria and three people with clinically normal 

speech, all of whom were included in the analysis.  

For simplicity, we excluded recordings of sustained vowel from one female HS who produced 

intermittent but frequent vocal fry, which caused extraneous variation (halving) in f0 measurements. 

Additionally, recordings of two people with MS were summarily terminated by the device connected 

to the directional microphone (corrupted data) and thus unsuitable for acoustic analysis. 

 

Tasks 

We used four increasingly demanding speech tasks to elicit increasing complexity in acoustics.  These 

tasks included (1) sustaining the vowel /a/ for ten seconds; (2) repeating /pa/ta/ka/ as fast as 

possible for ten seconds (speech diadochokinesis task, DDK); (3) reading a phonetically and 

linguistically balanced text, the grandfather passage; and (4) a one-minute monologue consisting of 

recounting a pleasant memory (free speech).  These tasks are designed to test specific aspects of 

speech and are commonly used in voice and speech research (12, 13, 18, 29-37).  
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Recording protocol 

Recordings occurred simultaneously through the four sets of equipment in a hospital outpatient 

clinic room in a quiet corridor away from main thoroughfare and reception areas.  

The design and build of a microphone determine its fixed properties (e.g., self-generated noise, 

sensitivity, frequency response) but also its typical positioning in relation to sound source (e.g., 

table-top microphone, hand-held, head-mount, lapel-clip). Thus, to emulate their use by a 

hypothetical consumer (patient or clinician), each microphone was positioned according to its 

commercial design as follows. The reference microphone was positioned at an angle of 45 degrees 

laterally to the sagittal plane, axially at the level of the mouth, at approximately 8cm from the 

participants’ mouths, and supported by a back-of-head and around-ears adjustable arch. The in-built 

and the directional microphones were kept on top of a table directly in front of participants, 80 cm 

above the floor level, and approximately 50cm away from the participants’ mouths. To ensure 

proper orientation of the directional microphone towards the participants’ mouths, its respective 

iPod was secured in place with a Joby Grip Tight Pro Mount tripod which elevated the device about 

10cm from the tabletop. The lapel microphone was secured to the participants’ clothes (e.g., shirt) 

over the anterior thorax in a position that would not cause friction or inadvertent motion artifact, at 

approximately 20cm from their mouth. Those fixed microphone positions were used to record each 

participant. Unless otherwise specified, these exact recording configurations (microphone + 

iPod/laptop + positioning) will be referred to as simply ‘microphones’ (or their specific designation, 

e.g., ‘lapel’) from this point forward. Recording and pre-analyses procedures are further detailed in 

supplementary methods. 

 

Acoustic analyses  

Acoustic analysis was performed in the open-source software Praat (38). Two groups of speech 

features were analysed, the first of which aimed at determining agreement between measurements 

taken by different microphones (main study aim). We determined the inter-microphone limits of 
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agreement(39) separately for twelve acoustic measurements (Table 1). Methodological details on 

acoustic analysis, limits of agreement and statistical analysis are included in supplementary 

methods. 

To assist in descriptively exploring variables responsible for possible low agreements between 

microphones, we further analysed each microphone’s responsiveness to speech and silence. We 

characterized microphones’ responsiveness to speech frequencies instead of pure tones. Pure tone 

responsiveness curves are available online for the reference and directional microphones. 

Responsiveness to speech accounts for possible interactions between components of the complex 

voice waveform as well as to voiceless transitions and silence-speech boundaries and does not 

require extra data collection. Frequency responsiveness was characterized by power spectral density 

(PSD, Figure 1) and its weighted average, centre-of-gravity (CoG). Additionally, SNR was determined 

for each participant’s microphone and reported as average and confidence interval per microphone. 

PSD, CoG, and SNR were determined over synchronized recordings of the reading passage while all 

frequency and periodicity metrics were derived from the sustained vowel. Lastly,  

[FIGURE 1 ABOUT HERE] 

Limits of agreement and confidence intervals alone are insufficient to determine whether devices 

can be used interchangeably in research and clinical settings. Agreement intervals between 

measurements must be examined in relation to the expected differences between conditions of 

interest (e.g., affected people vs HS, dysarthric vs non-dysarthric). For an overview of the clinical 

relevance of our findings, we reproduced differences between clinical conditions found in previous 

studies. In general, if the coefficient of agreement for a pair of microphones is greater than the 

expected difference between clinical conditions, there would be insufficient reliability for using 

those microphones interchangeably to measure differences between conditions.    

Lastly, we explored how metrics from each microphone would differentiate two groups of speakers. 

In a previous work (40), we have modelled an acoustic composite score to reflect general 

neurological disability in pwMS consisting of pause percentage in the monologue, DDK rate, and f0 
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CoV in the sustained vowel. Via Spearman’s and Pearson’s correlation coefficients, we first 

compared rank and linear classification of speech between microphones for each component in the 

acoustic composite score. We also calculated the acoustic composite score separately for each 

microphone’s recordings and plotted the results for comparison. The neurological score of 

participants with MS was determined by a neurologist through the Expanded Disability Status Scale 

(EDSS) score (41). Given the limited number of pwMS, comparing graphs between microphones for 

this simulated neurological classification is merely exploratory. Finally, we report how the acoustic 

scores from each microphone would differentiate the groups of neurotypical and pwMS.   

[TABLE 1 ABOUT HERE] 

 

RESULTS 

Microphone characteristics 

The intensity of recorded signal during speech intervals (i.e., noise during silence) was greater for the 

in-built microphone relative to the reference microphone (intensity floor, Table 2). Higher relative 

noise for the in-built microphone can also be observed during phonation and in more detail on 

curves of power spectral density (PSD, Figure 2) where the 25dB gap in responsiveness to f0 

between reference and in-built (first marker in each curve, under 0.3kHz) disappear for frequencies 

commonly populated by noise (>5kHz). While the three consumer-grade microphones were 

proportionally more sensitive to higher frequencies in comparison to the reference microphone 

(higher CoG, Table 2), that difference was more associated with responsiveness to the f0 and less 

with noise for both lapel and directional microphones (Table 2 and Figure 2).  

[TABLE 2 ABOUT HERE] 

[FIGURE 2 ABOUT HERE] 

Agreement coefficients   

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 2, 2023. ; https://doi.org/10.1101/2023.09.30.23296391doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.30.23296391
http://creativecommons.org/licenses/by-nd/4.0/


12 
 

 12

Agreement between microphones was highest for f0 measurements (Tables 2 and 3, Figure 3). 

Coefficients of agreement and 95%CIAs remained under 0.1Hz for mean f0and under 0.05% for f0 

CoV. Measurements of average formant frequency, HNR and CPP diverged 10% to 25% between 

microphones. All three formants’ SD presented the largest 95% CIA, up to ten times as wide as the 

formant’s average SD, i.e., 1000% divergence in measurements.   

Among timing measurements (Table 3), utterance sum for the reading and free speech tasks 

presented the most agreement between microphones (5% to 7.5% as measured by 95% CIA) 

followed by pause length SD in the same tasks and pause percentage in all tasks (20% to 30%, Figure 

4). Other measurements had 95% CIAs wider than 30% of the mean for that measurement.  

Limits of agreement between the directional and reference microphones for DDK mean syllable 

period could not be calculated as differences were not normally distributed. Similarly, raw and log 

transformed differences between microphones for the acoustic composite score were not normally 

distributed, thus not suitable for calculation of agreement intervals through the elected method. 

[TABLE 3 ABOUT HERE] 

[TABLE 4 ABOUT HERE]  

Classificatory comparison between microphones 

Rank classification and linear values of speech acoustic metrics were compared between each pair of 

microphones. Both Spearman’s rank and Pearson’s linear correlation coefficients between any pair 

of microphones were r >0.86 (p<0.001) for pause percentage in free speech, r >0.80 (p <0.001) for 

mean DDK rate, r >0.99 (p <0.001) for f0 CoV and r>0.79 (p <0.001) for the acoustic composite score. 

 

Group comparison for the acoustic composite scores between HS and MS yielded Mann-Whitney 

asymptomatic significance values of p=0.015 for the reference, p=0.04 for lapel and p=0.08 for the 

in-built microphone. Spearman’s correlation coefficient between EDSS and the acoustic composite 

score was the same, r =0.84 (p=0.04), regardless of microphone considered. The scoring of speech 
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from dysarthric and non-dysarthric subjects was also similar between microphones as visualized in 

Figure 5.  

[FIGURE 5 ABOUT HERE] 

DISCUSSION 

We found that measurements of f0 were robust to variation in recording device sets, which is 

consistent with previous findings comparing various mobile recording devices to a high-quality 

studio microphone in both vocally healthy adults and subjects with voice disorders (16, 17, 42, 43). 

In addition, F2 slope values had agreement intervals marginally smaller than clinical effect sizes. 

Other measurements, including all timing metrics, were largely influenced by the recording device 

type, which does not support our initial hypothesis. In partial contrast to previous findings (15), 

differentiation between neurotypical and pwMS decreased slightly with the use of the consumer-

grade microphones despite the high correlation of measurements between reference and tested 

microphones. 

Previous studies also found that jitter and shimmer, which are short-term perturbation metrics of 

the f0 (of its period and intensity, respectively) were reasonably consistent across different 

recording devices (20, 43) and ambient noise (19). The following characteristics of the f0 allow it to 

be estimated through simple methods, which might explain its robustness observed in the current 

and previous studies. The quasi-periodic vibration of the vocal folds (glottis) during phonation is 

responsible for the f0, which is theoretically the lowest periodic frequency in the voice waveform. 

Because this glottal sound is the major energy source for production of other sounds in voice, its 

energy relative to the total voice energy is great enough to be detected through direct analysis of 

the raw (unprocessed, untransformed) recorded signal. By default, the f0 is determined by the auto-

correlation method in Praat, which consists of simply making an identical copy of the signal and then 

calculating the correlation coefficient between original and copy each time the copy is slid forward 

by a chosen amount in the time domain. The predominantly periodic nature of voice means that the 

sound wave “repeats itself” at almost fixed intervals, at least in short time windows. Thus, sliding the 
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copy by exactly one such “repeating interval” will yield a very high correlation coefficient between 

copy and original. The amount of displacement of the copy for which the highest correlation 

coefficient is found defines the size of the repeating interval, called fundamental period. The f0, in 

turn, refers to the number of periods that occur per time (per second, in case of Hertz). Because the 

auto-correlation method examines the whole waveform, it might be susceptible to inaccuracy in 

determination of the f0 when other components of the waveform (i.e., formants) change 

frequencies within the analysis window. This occurs, for example, during production of more than 

one phonetic vowel within one utterance in naturalistic speech. Yet, that would not necessarily 

affect agreement between microphones, i.e., estimations would be “equally wrong” across 

microphones.  

Other frequency-related measurements depend on decomposition of the recorded signal to produce 

estimates. The sound energy of higher frequencies is often many times smaller than that of the f0 in 

quiet (conversational level) utterances. In the current experiment, tracking of F2 movement (i.e., F2 

slope) was less affected by different microphones than steady state mean estimates (i.e., F2 in the 

sustained vowel). Except for the lapel microphone, the average bias for mean F2 was similar to that 

found by two other recent studies for desktop computer recordings (17) and for Android and iPhone 

smartphones (21), while the present bias for F3 with add-on microphones was smaller than the 

desktop computer but larger than the hand-held smartphones (17). Determining the location of 

formants, such as mean F2, depends on the prominence of the signal above noise plus nearby 

average spectral power . Separation between formant and harmonic frequencies determines a 

certain degree of distortion in the estimation of the former while the distance threshold for various 

degrees of distortion is influenced by spectral tilt (44). Thus, both microphone’s frequency response 

curve and noise levels may affect the estimation of the formant’s location. Estimates of a formant’s 

location might diverge between microphones more than estimates of that formant’s movement, 

e.g., F2 slope, if those estimates move in parallel between microphones (i.e., highly correlated 

measurements despite difference in absolute value).  
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We found that timing results, e.g., pause percentage, varied widely between recordings from 

different microphones despite no differences in sampling rate or time between events given that 

recordings were synchronous. The timing analysis method in the current experiment is based on 

sound intensity in the time domain. The threshold for separating silence and speech is determined in 

relation to the maximum sound pressure level which likely interacted with different SNRs between 

microphones to result in poor agreement as discussed below.  

In our view, there are several microphone attributes that could have caused lack of agreement for 

measurement of timing and/or high frequencies. These include transient responses, i.e. the speed of 

microphones to respond to an abrupt sound (45). Different transient responses affect the onset time 

and onset slope of speech. As transient responses are very short by definition, they would affect 

more the measurement of precise (time-wise short) speech events, as consonant duration for 

example, and only discretely the measurement of long speech events such as utterance duration, 

which comprises the bulk of timing metrics analysed in the current study.  

Secondly, microphone positioning might greatly affect speech measurements. Increasing the 

distance between sound source and microphone makes the signal more susceptible to non-free field 

influences (e.g. reflection and refraction of sound in out-of-lab environments) (46), which inflates 

measurements related to noise and perturbation or distortion (22). As expected, the decrement in 

SNR was proportional to the distance between microphone and mouth (source). The same 

decrement could be observed for clinical measurements that involve ratios between periodicity and 

noise, namely HNR, CPP and CPPS. The consequence of decreased SNR for timing analyses is briefly 

discussed below. The angle of placement in relation to the sound source can also influence 

measurements to a smaller degree (22) while the relation between the microphone and body parts 

can cause frequency-dependent distortions (47).  

The third possible cause for disagreement between microphones concerns frequency 

responsiveness. In this study, the reference microphone’s response favoured low frequencies in 

comparison to the other microphones, as shown by PSD curves and the lower CoG. A microphone’s 
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responsiveness to frequencies that naturally have higher speech energy density, particularly the f0 in 

vowels, will largely influence the overall measured sound intensity. This overall intensity is the basis 

for determining the silence-speech threshold used in timing analyses. However, the onset and offset 

of syllables are not necessarily populated by low frequency energy dense speech, which creates a 

mismatch between the automatically determined threshold and the actual amplitude of 

onset/offset. Thus, optimizing the silence-speech threshold for the reference microphone causes it 

to be sub-optimal for another microphone and vice-versa. Frequency responsiveness further varies 

in relation to distance to sound source depending on the polar pattern of microphones. A noticeable 

boost in low frequencies is observed for cardioid microphones (e.g. the reference and the 

directional) when that distance is shortened, known as proximity effect (48).  

Fourth, differences in relative noise level likely have also influenced timing measurements. 

Microphones vary in self-generated noise (45), electrical insulation and filtering of background noise. 

The polar pattern of microphones (directionality) also affects the amount of background noise 

captured (49). In our experiment, after discounting the theoretical loss in signal intensity due to the 

distance between microphone and mouth (source), a residual decrease in SNR of about 4dB 

remained for the three consumer-grade microphones relative to the reference microphone. That 

could be due to both reduced microphone sensitivity and increased recorded noise. The effect of 

SNR on HNR, CPP and CPPS was discussed above. In the current experiment, decrease in SNR means 

a reduced difference between speech intensity and “silence” intensity (i.e., background noise). That 

difference between intensities is the window for silence/speech detection. A smaller SNR means 

greater chance of misclassifying speech or silence for analysis based on intensity. Thus, even if the 

silence-speech threshold (timing analysis) was optimized individually for each microphone, its 

accuracy would be worse for the three consumer-grade microphones, or any microphone in 

conditions of excessive noise.  

Those four interrelated differences were present between the tested microphone settings in the 

current experiment and might explain, at least in part, the lack of agreement between them. 
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Importantly, these discussed differences may be compounded by other commonly unaccounted 

variables in clinical settings, such as wide variations in recording environment, bodily movements 

and differences in algorithms (software) used for analyses, which introduce multiple and interrelated 

confounders when comparing acoustic results from multiple recording protocols (50).  

Limitations of the current study include low speech sample size, which increased the probability of 

non-normal distribution of measurements and large confidence intervals. We contacted the 

manufacturer (Apple Inc) asking whether the same in-built microphone sensor was present across 

other mobile devices (e.g., iPhones, iPads) but are yet to receive a response. Thus, although other 

mobile devices may produce similar agreement limits due to inherit constraints in size and power 

consumption, the specific agreement intervals and biases reported here relate to only the tested 

microphones and cannot be generalized.  

In our opinion, speech research must be designed to mitigate the effect of common confounders 

related to hardware use. The only immediate and certain way to eliminate confounders is to 

standardize the speech assessment protocol within each study, which has been advocated for many 

years (51, 52). That includes the use of the same equipment between participants and across time in 

a study, fixing the distance between microphone and participant, and avoidance of noise among 

others. The equipment standardization between studies may be less practical in the short-term, and 

impossible across time given the rapid changes in technology. Accordingly, there is a trade-off 

between the number of confounders that are controlled in this way and the flexibility in data 

acquisition, which translates into a trade-off between precision and clinical scalability. Another 

concurrent path relates to the development of robust methods of signal analyses, which include 

numerous recent efforts showing variable progress. The ideal outcome is to increase robustness 

without compromising validity, precision, and accuracy. CPPS, for example, could be considered such 

an improvement over the original CPP for the estimation of dysphonia (53). In the current 

experiment, we observed an increased stability in measurement between different microphones for 

CPPS in comparison to CPP at the cost of a smaller average measurement, which is consistent with 
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previous results (16, 19). A third path for optimizing reproducibility could be the use of combined 

measurements to gauge the desired outcome. Examples include principal component analysis, 

machine learning models or multiple regression models, such as the acoustic composite score used 

in the current study. Composite scores mitigate, in general, the effect of random error of its 

components once errors in opposite directions cancel one another. Such stabilizing effects might, 

however, also decrease the responsiveness of composite scores, which must be tested and weighted 

against its gain in reproducibility. The multiplicity of measurements used as predictors is not 

confined to their instantaneous qualities but could also include temporal patterns (in repeated 

measurement conditions). In general, the main requirements for such models are computational 

power (increasingly available and inexpensive) and large datasets. To produce high quality research, 

we must consider the variations in signal acquisition highlighted in this study and develop strategies 

to overcome these where possible.           

 

CONCLUSION 

Measurement of f0 of speech and F2 slope were robust to variation in recording equipment while 

other acoustic metrics were not. Most of the gain in signal-to-noise ratio for plug-and-play 

microphones could be explained by the microphone’s proximity to the source (i.e., to the speaker) 

which, however, was not proportional to the agreement in acoustic metrics when compared to the 

reference microphone. Metrics from plug-and-play microphones were highly correlated to the 

reference microphone but resulted in loss of statistical power when differentiating between 

neurotypical and people with MS.  While we may conclude that the standardization of recording 

equipment is necessary for the reliable comparison of most acoustic features in repeated measure 

(within participants) or between participants, more research is needed to find the optimal solution.  
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Tables’ legends  

Table 1. Summary list of speech measurements tested for agreement. 

Table 2. Comparative response characteristics of microphones for the same sound stimulus. CI = 

confidence interval; dB = decibel; Hz = Hertz. a Paired t-test. b Near-normal distribution. c Wilcoxon 

rank test. 
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Table 3. Bias and 95% confidence interval of agreement between reference and tested microphones 

for frequency-dependent measurements. CIA = 95% confidence interval of agreement; CPP(S) = 

cepstral peak prominence (smoothed); dB = decibel; f0 = fundamental frequency; F(1-3) = formants; 

HNR = harmonics-to-noise ratio; Hz = Hertz; ms = milliseconds. 

Table 4. Bias and 95% confidence interval of agreement between reference and tested microphones 

for timing measurements. CIA = 95% confidence interval of agreement; ms = milliseconds; s = 

seconds; syl = syllables. 

 

Figures’ legends 

Figure 1. Power spectral density levels for mid-vowel /a/, participant 3 (female without MS). The first 

peak represents the f0 followed by peaks of other harmonics. Frequencies above 2kHz have low 

power peaks whereas no distinct peaks are observable above 5kHz.   

Figure 2. Average power spectral density (PSD) levels (re 10-5 Pa) for voices of males and females, by 

microphone. The first marker on each line represents the power in f0 whereas shaded areas 

highlight sound power for formant frequencies (as determined by analysis of recordings by the 

reference microphone). F1, F2, F3 = first three formants. 

Figure 3. Bland-Altman plots and 95% confidence interval of agreement (dotted lines) for f0, showing 

good agreement between reference and test microphones. PwMS are shown in red. The average 

difference between microphones is close to zero, i.e., not systematic (small measurement bias), and 

differences are independent of average measurement or of presence of MS. Random disagreement 

is also small, highlighted by 95% CIA under 0.1% of the average measurement. 

Figure 4. Bland-Altman plots and 95% CIA (dotted lines) for monologue pause percentage, showing 

poor agreement between reference and test microphones. PwMS are shown in red. All test 

microphones systematically overestimated pause percentage in comparison to the refence 

microphone (measurement bias) but differences seem independent of average measurement or of 
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presence of MS. Non-systematic (random) disagreement is reflected in large 95% CIA, which are over 

20% of the average measurement. 

Figure 5. Scores form the acoustic composite score according to each microphone. 

HS = healthy subjects; MS = participants with Multiple Sclerosis 
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