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Abstract  

Free immunoglobulin E (IgE) concentration is a key biomarker for allergic diseases. Prediction of free IgE 

concentration can help clinicians diagnose and monitor allergic diseases more effectively. In this study, we 

used machine learning to predict free IgE concentration in the blood serum of patients with allergic rhinitis 

who received allergen immunotherapy co-administered with omalizumab. The predictors for free IgE 

concentration were the number of visits for treatment and baseline checking, and treatment groups (1) 

omalizumab/ragweed, (2) omalizumab/placebo, (3) placebo/ragweed, and (4) placebo/placebo. Several 

machine learning algorithms (MLA) were trained with the immunotherapy dataset imported from Immune 

Tolerance Network (ITN) TrialShare into the Orange data mining platform.  The decision tree algorithm 

model amidst the list of MLAs trained and tested was the best performing model for predicting free IgE 

concentration, with an R-squared of about 0.6. This study demonstrates that machine learning can be used 

to predict free IgE concentration with high accuracy. This prediction model could be used to help clinicians 

diagnose and monitor allergic diseases more effectively.  

Keywords: free IgE concentration, machine learning, decision tree, allergen immunotherapy, omalizumab, 

allergic rhinitis  

Background and Significance  

Immunoglobulin E (IgE) is an antibody that plays a key role in the development of allergic diseases. When 

a person with allergies is exposed to an allergen, their body produces IgE antibodies that bind to the 

allergen1, 2. This binding triggers the release of histamine and other inflammatory mediators, which cause 

the symptoms of an allergic reaction3. Free IgE concentration in the blood is a measure of the amount of 

IgE antibodies that are not bound to allergens. Free IgE concentration is a key biomarker for allergic 

diseases, and it can be used to diagnose and monitor these diseases4, 5. Allergen immunotherapy (AIT) is a 

treatment that involves exposing a person to gradually increasing doses of an allergen to desensitize them 

to the allergen. Omalizumab is a monoclonal antibody that targets IgE6. It is used to treat severe allergic 

asthma and other allergic diseases. Prediction of free IgE concentration can help clinicians diagnose and 

monitor allergic diseases more effectively. For example, if a patient has a high free IgE concentration, it is 

more likely that they have an allergy. Additionally, monitoring free IgE concentration over time can help 

clinicians track the effectiveness of AIT and omalizumab treatment7-9. Machine learning is a type of 

artificial intelligence that can be used to learn from data and make predictions. Machine learning algorithms 

are gradually gaining ground as tools that can be very effective at predicting free IgE concentration and 

other immunological biomarkers in patients with allergic diseases10-12.  In this study, we are going to use a 

machine learning algorithm to predict free IgE in allergic rhinitis patients treated with allergen 

immunotherapy and omalizumab5, 6, 9, 13. The development of machine learningbased prediction models for 

free IgE concentration in patients with allergic rhinitis treated with AIT and omalizumab would be a 

significant advance in the field of allergy management. These models could be used to help clinicians 

diagnose and monitor allergic rhinitis more effectively, and to track the effectiveness of AIT and 
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omalizumab treatment. Potential applications of machine learning-based prediction models for free IgE 

concentration in patients with allergic rhinitis treated with AIT and omalizumab: Diagnosis: Machine 

learning models could be used to develop diagnostic algorithms for allergic rhinitis. These algorithms could 

be used to identify patients with allergic rhinitis based on their free IgE concentration and other factors14-17. 

Monitoring: Machine learning models could be used to monitor the effectiveness of AIT and omalizumab 

treatment in patients with allergic rhinitis. This would allow clinicians to adjust the treatment plan as needed 

to ensure that the patient is receiving the most effective treatment possible15, 18, 19. Personalized treatment: 

Machine learning models could be used to develop personalized treatment plans for patients with allergic 

rhinitis. These treatment plans could be based on the patient's free IgE concentration, other factors, and the 

patient's preferences20-22. Overall, the development of machine learning-based prediction models for free 

IgE concentration in patients with allergic rhinitis treated with AIT and omalizumab has the potential to 

significantly improve the management of allergic rhinitis.  

Research Methodology:   

Dataset Extraction from Immune Tolerance Network/TrialShare  

The Immune Tolerance Network ITN/TrialShare23 repository contains data from clinical trials of 

immunotherapy, including both mechanistic and raw clinical datasets. The ITN TrialShare dataset will be 

used as the primary dataset for this study, as it is expected to be the most comprehensive and up-to-date 

dataset available. To extract the immunotherapy biomarker dataset9, 13 from the ITN TrialShare repository, 

the following steps will be followed:  

1. Access the data repository by logging into the TrialShare link on the Immune Tolerance Network 

(ITN) page.  

2. Filter the studies of interest by selecting the therapeutic area (allergy), study type (clinical trial), 

age group (all adults), phase (all phases), and condition (allergic rhinitis).  

3. Select the appropriate study or studies by clicking the "GO TO STUDY" button.  

4. On the study page, export the dataset as an Excel file (xlsx).  

The dataset will then be uploaded into Orange Data Mining Platform24 (the Machine Learning Software 

Platform (python-based) for this study) as CSV files to undergo the various steps leading to the development 

of the machine learning algorithm model for Free Ige Concentration prediction.  

Dataset Preprocessing  

The first step in this process is to visualize and preprocess the data to address a range of issues that may 

affect the learning of the data by the several machine learning algorithms considered before selecting the 

best performing algorithm for the free IgE concentration predictive model. Preprocessing of the dataset will 

involve the following steps:  

1. Data cleaning: This step involves addressing inconsistency, duplicity, noise, and missing data.  

2. Data integration: This step involves combining relevant datasets from the mechanistic and the 

clinical datasets.  

3. Data reduction: This step involves reducing data attributes and dimensionality to features with 

significant impact (high information gain) on the target variable (s).  

4. Data transformation: This step involves creating a function that can map old values into a new set 

of values through smoothing functions (Fourier transform), feature construction, aggregation, and 

normalization such that each old value is identified with a new value.  

5. Data discretization: This step involves applying interval or conceptual labels to datasets such as 

age groups and immunotherapy patients' weekly injection duration.  
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Once the data has been preprocessed, it will be ready for use in the machine learning algorithm model 

development process.  

Machine Learning Algorithm Training and Testing  

The preprocessed dataset will advance to the next stage within the Orange data mining platform, which 

focuses on machine learning and evaluation, specifically the prediction phase. During this step, the 

identification and categorization of the dataset attributes into predictors and target variables will be done. 

Free IgE concentration will be designated as the target variable while the treatment group ((1) 

omalizumab/ragweed, (2) omalizumab/placebo, (3) placebo/ragweed, and (4) placebo/placebo), 

V_visit_common (weekly visit no treatment administered), and V_Visit_num (treatment IgE assessment 

weekly visit with treatment administered). Other attributes were not considered in the predictors list because 

they are attributes meant for participant identification. These attributes are treated as meta-data or simply 

ignored in the machine learning algorithm procedures. Typically, machine learning employs a single 

variable as the target, but occasionally, multiple variables can be designated as targets simultaneously. This 

machine learning approach, where there is a well-defined target variable, is known as supervised machine 

learning. Among the supervised machine learning algorithms under consideration are k-nearest neighbors 

(kNN), decision trees, linear regression, random forests, artificial neural networks (ANN), gradient 

boosting, and support vector machines.  

The training of the machine learning algorithm will consist of using 70-80% of the dataset for training and 

reserving 20-30% for testing. During this process, the algorithm was tuned (sensitivity analysis) by 

employing techniques such as cross-validation with various fold numbers, bootstrapping for random forest 

algorithms, and adjusting algorithm parameters, such as the number of nearest neighbors in kNN or 

modifying neurons and activation methods in ANN.  After the training phase is completed, the testing of 

the machine learning algorithm on the dataset immediately follows. This machine learning process within 

the Orange Data Mining platform will involve a sequence of widgets encompassing data manipulation, 

transformation, visualization, modeling, and evaluation. These widgets are Python-based tools provided by 

the Orange Data Mining platform.   

Initial datasets have about 5.2 % missing values which are completely from the free IgE concentration. The 

missing data were addressed during the preprocessing stage in three ways. These include filling the missing 

free IgE concentration values with the average/most frequent values, replacing them with random values, 

removing rows with missing values, and replacing them with predicted values from the bestperforming 

MLA model.  Thus, the machine learning algorithm with the best-performing metrics, including coefficient 

of determination (R2), mean squared error (MSE), root mean squared error (RMSE), and mean absolute 

error (MAE) will be chosen as the Machine Learning Algorithm Model for predicting the Free IgE 

concentration. Amidst the list of MLA performance metrics, the coefficient of determination (R2) will be 

the top determinant metric in making the best selection.   

Results and Discussion  

Different scenarios for addressing missing values and the performance metric results  

Scenario 1: imputing missing values with the average/most frequent value  

The missing values in the datasets were addressed by imputing missing free IgE values with the 

average/most frequent with cross-validation of 10 folds and 80 % sampled dataset for MLA training and 

20% dataset to test the MLA model for free IgE concentration prediction. In addition, the parameter for 

each MLA considered was tuned to achieve the optimum performance metric. The resultant performance 

metric for this approach can be seen in the Test and Score widget window below. Figure 1 below shows the 

metric performance measured for MLA trained and tested in this scenario. Thus, the decision tree, the best 
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performing MLA model, has its optimum parameter at 29 minimum number of instances in leaves with split 

subsets not smaller than 80. The worst-performing MLA model, linear regression, has its optimum 

parameter at alpha 30 for the ridge regression as depicted in Figure 2.      

  

Figure 1: Test and Score showing the model evaluation metric for the MLAs under scenario 1  

  

Figure 2: Linear regression and Decision Tree parameter windows under scenario 1  

Scenario 2:  Replacing missing values with random value  

Missing values in the dataset were replaced with random values. Then, the dataset was split into 10 folds, 

and 80% of the data was used to train the machine learning algorithms. The remaining 20% of the data was 
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used to test the algorithms and to tune their parameters. The decision tree algorithm was the bestperforming 

algorithm, with the lowest errors measured relative to other algorithms. Its optimum parameter was 29 

minimum number of instances in leaves with split subsets not smaller than 120. The worst performing 

algorithm was support vector machine (SVM), with its optimum parameters at Cost (c) of 24.00 and 

regression loss epsilon (ε) equals 4.10 with RBF kernel.     

  

Figure 3. Decision Tree and Support Vector Machine parameter windows under scenario 2  

  

  

Figure 4: Test and Score showing the model evaluation metric for the MLAs under scenario 2  

Scenario 3: Removing rows with missing values option  
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Missing values in the dataset were handled by applying 10-fold cross-validation. We allocated 80% of the 

dataset for training machine learning algorithms (MLA) and reserved 20% for testing the MLA models used 

to predict free IgE concentration. This process led to a reduction in the dataset size from 717 instances to 

418. The parameters of each MLA were fine-tuned to achieve optimal performance metrics. The results of 

this approach, including the performance metrics, are available in the Test and Score widget window. Figure 

5 displays the performance metrics for the MLAs trained and tested in this context. Among the considered 

MLAs, the neural network emerged as the best-performing model, as illustrated in Figure 6. Its optimal 

configuration included three hidden layers with 50, 100, and 50 neurons, utilizing ReLu activation, and a 

regularization parameter (α) set to 0.05. The algorithm was trained and tested for a maximum of 500 

iterations. Conversely, the least effective MLA model among those considered was linear regression, 

specifically the ridge regression variant, which achieved its best performance with an alpha value of 30, as 

indicated in Figure 6.  

.   

Figure 5: Test and Score showing the model evaluation metric for the MLAs under scenario 3  
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Figure 6. Neural Network and Linear Regression parameter windows under scenario 3  

  

Scenario 4: Replacing with missing values with machine-learning-algorithm-generated data  

To handle missing values in the datasets, we employed a method of imputation by replacing the missing 

free IgE values with predictions made by an MLA (Machine Learning Algorithm) specifically designed for 

this task. These predictions were generated using measured features that corresponded to the missing free 

IgE concentrations, serving as predictor variables. Notably, the predictive model used for this purpose was 

a neural network MLA. The machine pipeline for this scenario can be seen below in Figure 7. Our approach 

involved training the MLAs using 80% of the dataset with a 10-fold cross-validation strategy, while the 

remaining 20% of the dataset was reserved for testing. This division allowed us to identify the most 

proficient MLA for predicting free IgE concentrations. Furthermore, we meticulously fine-tuned the 

parameters of each MLA to optimize various performance metrics, including coefficient determination 

(R2), mean absolute error (MAE), root mean square error (RMSE), and mean square error. The performance 

metrics resulting from this method can be observed in the Test and Score widget window, and Figure 8 

visually represents the performance metrics for the MLAs trained and tested within this context. The 

decision tree MLA emerged as the top-performing model, as depicted in Figure 8. Its optimal configuration 

featured a minimum of 29 instances in leaves, with split subsets not smaller than 120. The neural network, 

which ranked as the next best-performing model, was configured with three hidden layers comprising 50, 

100, and 50 neurons, utilizing ReLu activation and a regularization parameter (α) set to 0.05. Additionally, 

the maximum number of iterations employed during the algorithm's training and testing phases was limited 

to 500. Conversely, the least effective MLA model among those considered was linear regression, 

particularly the ridge regression variant, which demonstrated its best performance with an alpha value of 

12, as displayed in Figure 9.   
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Figure 7: Machine Learning Pipeline for the Prediction of Free Immunoglobin E (IgE)   

  

  

Figure 8: Test and Score showing the model evaluation metric for the MLAs under scenario 4  

.     

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 2, 2023. ; https://doi.org/10.1101/2023.09.29.23296326doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.29.23296326
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

Figure 9. Neural Network and Linear Regression parameter windows under scenario 4  

Scenario 4 yields the most favorable performance evaluation results when predicting free IgE concentration 

based on three crucial predictor variables: treatment group (TRT_Grp), weekly visits without treatment 

administered (V_visit_num), and weekly visits with treatment administered (V_visit_common). The 

coefficient of determination (R2) for scenario 4 which is 0.582 is significant for a dataset involving humans. 

Additionally, we conducted an assessment of information gain for these three predictor variables, which 

measures their impact on predicting the free IgE concentration. This analysis revealed that the treatment 

groups (TRT_Grp) exert a substantial influence on predicting free IgE concentration. In contrast, the impact 

of weekly visits, both with and without treatment administered, was found to be negligible in terms of 

predicting free IgE concentration. These findings align with the insights provided in the Rank widget of the 

Orange Data Mining platform, as illustrated in Figure 10. It reinforces the statement made on the Free IgE 

Dataset Properties page of the ITN TrialShare, which indicates that the dataset lacks a clear relationship 

with specific visits.    

  

  

Figure 10. Impact of the three attributes in predicting the Free IgE concentration  
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Table 1 shows assessment metrics for all the machine learning algorithms (MLAs) trained and tested with 

the Free IgE concentration dataset. The neural network algorithm spent almost 45 seconds in learning the 

dataset and 0.031 seconds in testing while 0.074 seconds was used to train the kNN model and 0.028 seconds 

was used to the test data.  The best performing MLA model in Table 1 is the decision tree with coefficient 

of determination,  R2 = 0.582; and the lowest errors measured relative to other MLA models. These errors 

include mean square error (MSE =472.161), root mean square error (RMSE= 21.79), and mean absolute 

error (MAE=12.592).     

Table 1. Showing the metric for the scenario 4  

    Scenario 4    

MLA Model  Train time (s)  Test time (s)  MSE  RMSE  MAE  R2  

kNN  0.074  0.028  499.637  22.353  13.530  0.558  

Neural 

Network  

44.198  0.031  478.369  21.872  12.615  0.577  

Random  

Forest  

0.341  0.042  498.609  22.330  12.943  0.559  

Tree  0.450  0.450  472.161  21.729  12.592  0.582  

Linear 

regression  

0.234  0.017  622.155  24.943  17.098  0.449  

Gradient 

Boosting  

0.785  0.025  487.893  22.088  12.699  0.568  

SVM  0.315  0.051  485.808  22.041  12.630  0.570  

   

Conclusion  

This study aims to develop a machine-learning model for predicting free IgE concentration in patients with 

allergic rhinitis treated with AIT and omalizumab. The dataset was extracted from Immune 

Tolerance/TrialShare, which contains data from clinical trials of immunotherapy. The datasets were 

preprocessed to address inconsistency, duplicity, noise, and missing data. Several machine learning 

algorithms were trained and tested on the preprocessed dataset. The algorithm with the best-performing 

metrics was chosen as the Machine Learning Algorithm Model for predicting the Free IgE concentration. 

Potential applications of the machine learning model include diagnosis, monitoring, and personalized 

treatment of allergic rhinitis. Four scenarios which include replacing the missing values with average/most 

frequent, random values, removing instances with missing free IgE concentration, and replacing missing 

IgE concentration with MLA predicted values were adopted to address the missing free IgE concentration 

in the dataset. Scenario 4 gave the best performance for the prediction of free IgE concentration based on 

the three predictor variables. The coefficient of determination (R2) for scenario 4 is 0.582, which is 

significant for a dataset involving humans. The treatment group has a major impact on the free IgE 

concentration prediction, while weekly visits with and with no treatment administered have negligible 

impact on predicting the free IgE concentration. The decision tree algorithm is the bestperforming algorithm 

with the lowest errors measured relative to other MLA models.  
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