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Abstract 

Wrist actigraphy is a non-invasive technology to monitor activity over extended periods of 

time. Specific alterations in circadian patterns of activity have been described in several 

psychiatric disorders and are associated with symptom severity in major depressive disorder 

(MDD). The aim of this study was to investigate the correlations between activity patterns and 

the response to different MDD treatments. We used actigraphy recordings acquired for 3 

independent clinical trials investigating the response to internet-delivered cognitive behavioral 

therapy (iCBT), escitalopram, or ketamine. We designed a feature extraction procedure 

applicable both to recordings spanning a single circadian cycle, and to average circadian 

profiles. First, we investigated the effects of MDD treatments independently from magnitude 

of response, and found that each treatment altered a specific subset of features. We next asked 

whether features of activity patterns before treatment correlate with the magnitude of response 

to MDD treatment, and whether the correlations are treatment-specific. We found distinct 

signatures in the correlations between longitudinal changes in individual features and the 

response to different treatments. Next, we trained linear regression ensembles to model the 

response to treatment using the patterns of activity during the depressive episode and ran in-

depth analysis of coefficients to characterize the differences between treatments. We found 

that better response is associated with higher between-days variability for iCBT, and with 

lower between-days variability for ketamine, while lower within-day fragmentation was 

common to both treatments. Our data suggests that the analysis of circadian patterns of 

activity can potentially be used for predicting the response to different MDD treatments, 

however larger confirmatory studies are required for future clinical applications.  
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Introduction 

Major depressive disorder (MDD) is a highly prevalent mental disorder with heterogenous 

biological background. There are many antidepressive interventions available, and all have 

comparable efficiency in reducing symptom severity (~50% at population level) [1]. 

Cognitive behavioral therapy (CBT) is well-established antidepressive non-pharmacological 

intervention [2]. Internet-delivered CBT (iCBT) has been shown to be as effective as face-to-

face and has the advantage of using standardized treatment modules to ensure homogenous 

intervention suitable for longitudinal studies [3]. Antidepressant drugs act on specific 

neurotransmitter signaling pathways, including serotonin, dopamine, noradrenaline, and 

glutamate. Selective serotonin reuptake inhibitors (SSRI) are the most commonly prescribed 

antidepressants, and it typically takes several weeks for the antidepressive effects to stabilize 

[4]. The introduction of rapid acting antidepressants, such as ketamine in subanesthetic dose 

[5] lead to a paradigm shift in the treatment of depression [6]. The prediction of response to 

treatment is relevant particularly for the wellbeing of the patient as well as for avoiding 

unnecessary consumption of healthcare services. Several attempts have been described in the 

literature, including the change in reaction to facial expression early after starting the 

treatment [7], based on the patterns of change in scores for individual items after 4 weeks of 

treatment [8], or using combinations of genetic and non-genetic biomarkers [9]. While 

carrying undeniable advantages towards personalizing the MDD treatment, they either rely on 

treatment to be initiated before evaluation or require collecting biological samples for 

genotyping.  

The recording of movement (actigraphy) provides a promising non-invasive technology for 

data collection, and accumulating evidence points to associations between specific alterations 

in activity and different psychiatric disorders [10–12]. For MDD, the most common 

alterations reported are lower total amount of activity and blunted circadian rhythms [13,14]. 

Similar associations have been described between activity levels and severity of depressive 

symptoms [15,16], and we have shown recently that the patterns of activity correlate with 

depression severity independent of actual levels of activity [17]. However, the potential 

correlations between activity patterns and the response to treatment have received less 

attention to date.  

The aim of this study was to investigate the correlations between activity patterns and the 

response to different MDD treatment alternatives. To this end we designed a features 

extraction procedure including both sequence- and circadian profile-based features. We first 

explored the effects of different antidepressive treatments on circadian patterns of activity in 
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MDD subjects. Second, we explored the changes in patterns of activity in relation to the 

magnitude of response to treatment. Lastly, we trained multivariate linear regression 

ensembles to fit the response to treatment and analyzed the impact and implications of 

individual features.  

Materials and methods 

Data collection 

We pooled together actigraphy recordings from 3 independent studies: (1) a study on 

serotonin transporter availability in patients given internet-based Cognitive Behavioral 

Therapy (iCBT) for the treatment of a major depressive episode [18] (Ethical Permit No. 

2014/452-31, 2015/1177-32, Swedish Ethical Review Authority). Briefly, healthy controls 

(HC) and subjects suffering from depression were recruited by advertisements in local 

newspapers. Diagnosis of depression was established after full psychiatric assessment by a 

psychiatrist or by resident physician supervised by a senior psychiatrist. The study included 

patients with an ongoing major depressive episode according to DSM-IV criteria, with a 

history of at least one prior episode and that were not undergoing any psychopharmacological 

treatment for MDD. Eligible patients had a MADRS score between 18 and 35. HC had no 

history of psychiatric illness and matched the patients by age, sex, and intellectual ability [18]. 

(2) a study on the effects of escitalopram treatment on serotonin 1B receptor binding in MDD 

[Gärde M et al., manuscript in preparation] (Ethical Permit No. 2018/1403-31/1, Swedish 

Ethical Review Authority; pre-registration: AsPredicted.org #33267). (3) a study on the 

effects of ketamine on serotonin receptor 1B binding in patients with depression resistant to 

selective serotonin reuptake inhibitors (SSRI) [19] (Ethical Permit No. 2017/799-31, Swedish 

Ethical Review Authority; pre-registration: AsPredicted.org #17602). Briefly, the study 

included patients with an ongoing major depressive episode, with MADRS ≥ 20, resistant to 

SSRI treatment in an adequate dose for at least 4 weeks. Ongoing antidepressant treatment 

was discontinued and actigraphy data was collected after a washout period of at least 5 times 

the half-life of the SSRI. The patients were instructed to wear the actigraph continuously on 

the wrist of the non-dominant arm and not remove it unless for personal safety reasons. The 

recording started prior to the first ketamine infusion and continued for the duration of the 

open-label ketamine treatment program (0.5mg/kg, 2 infusions/week for 2 weeks) [19]. 

The timing of actigraphy recording and MADRS evaluations are depicted in Fig. 1A, and 

basic demographics, including the number of subjects and number of consecutive days of 

actigraphic recordings are depicted in Tables 1 and 2. Actigraphic recordings on patients 
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receiving iCBT as MDD treatment were acquired using GENEActiv Original wrist-worn 

actigraphs (ActivInsights, Cambs, UK). The devices use three-dimensional accelerometers 

(dynamic range up to 8g; 12-bit encoding, resolution 3.9 mg) at 30 Hz sampling rate to record 

wrist movement. The raw data was downloaded using proprietary software, then processed in 

Matlab® (The Mathworks, Natick, MD, USA), using a modified version of the code 

(https://github.com/DavidRConnell/geneactivReader), as described earlier [20]. Briefly, the 

Euclidean norm of change in acceleration vector was first smoothed using a rolling Gauss 

window spanning 30 consecutive datapoints (1s), then a high-pass filter was applied 

(threshold: 20 mg = 196 mm/s2) before computing the sum of changes in acceleration vectors 

over 1 min epochs (1440 samples/24h). Actigraphic recordings on patients receiving 

escitalopram or ketamine as antidepressant treatment were acquired using Actiwatch 2 wrist-

worn devices (Philips Respironics, Murrysville, PA, USA) set to record activity only 

integrated over 1 min epochs. The raw data was downloaded according to manufacturer’s 

instructions (Actiware 6.x, Philips Respironics) then exported as text files. The text file was 

imported to Matlab® using a custom function designed to yield an output similar to the one 

generated by the import function for GENEActiv devices. 

Quality control and inclusion criteria 

The quality control was performed by the same observer, blind to group belonging. All 

recordings were first inspected visually using a standardized procedure designed to identify 

stretches of missing data, artifacts, and gross abnormal circadian patterns of activity (e.g., 

shift work, or other consistent activity at night). Intervals containing suspected shift work (not 

reported at the time of recording), potential artifacts, or missing data, were cropped out. Only 

recordings spanning at least 3 consecutive days were included in further analyses.  

Pre-processing and feature extraction 

All processing of actigraphy data was performed in Matlab®. The data import procedures 

yielded sizeable differences in range of raw output (activity/min) between GENEActiv and 

Actiwatch 2 devices, but the coefficient of variability of individual days was similar across 

devices (see Supplementary Fig. S1). These differences were managed in the design of feature 

extraction procedures as follows: (1) no features relying on absolute magnitude values were 

included; and (2) features such as circadian peak and trough were calculated after mean 

normalization of raw data. We first cropped all recordings between the first and the last 

recorded midnight to yield an integer number of 24-h periods. For each subject we applied the 

feature extraction procedures on individual days and on circadian profiles calculated as the 
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average across corresponding time bins of registered individual days. The features calculated 

on individual days were used for estimation of variability across days.  

The features we extracted describe the regularity, fragmentation, and complexity of circadian 

patterns of activity, and uses custom implementations of publicly available algorithms. The 

complete list of features and their calculations is available in Supplementary Table 1. The 

following features were extracted: circadian period; circadian peak and trough; relative 

amplitude [13,20,21]; scaling exponents [22]; intradaily variability (IV); interdaily stability 

(IS) [23]; day-to-day variability, and propensity to sustain activity.  

Circadian period was estimated using the Lomb-Scargle algorithm optimized for Matlab 

implementation [24]. The Lomb-Scargle periodogram was preferred over the commonly used 

Sokolove-Bushell algorithm [25] because the latter has been shown to yield period estimates 

biased towards periods below 24 h [26]. The circadian period was calculated over the entire 

recording using an oversampling factor of 10 to yield resolution of the estimated in the range 

of minutes. The scaling exponent for detrended fluctuation analysis was calculated for the 

magnitude of measured activity in 1-min bins using boxes equally spaced on a logarithmic 

scale between 4 min (4 consecutive samples) and 24 h (1440 consecutive samples) as 

described by Hu et al. [22]. The scaling exponent is a feature of the intrinsic regulatory 

mechanisms controlling the rest/activity patterns. It has not been shown to be sensitive to 

extrinsic factors the subject is exposed to in normal daily activity, but is altered as a result of 

disease [10,22,27]. Intradaily variability estimates the fragmentation of activity patterns by 

calculating the ratio between mean squared differences between consecutive time intervals 

and the mean squared difference from global mean activity per interval; it increases as the 

frequency and the magnitude of transitions between rest and active intervals increase, and 

decreases as the active and inactive intervals consolidate [21]. Interdaily stability evaluates 

the coupling between activity patterns and circadian entrainers and is calculated as the ratio 

between variability around circadian profile and global variability. High values indicate 

consistent activity patterns across days, consistent with strong coupling between activity and 

circadian entrainers. The relative amplitude of circadian rhythms of activity (RA) estimates 

the robustness of average circadian rhythms [13,28]. The range of RA is bounded between 0 

(no circadian rhythms) and 1 (robust circadian rhythms, with consistent timing of 

consolidated rest interval longer than 5 h across days). The day-to-day variability comprised 3 

features as follows: circadian profile variance between consecutive days (SeqVar), calculated 

as Euclidean distance between consecutive days, normalized to the total number of samples 

per day; variation from average circadian profile (ProfileVar), calculated as the Euclidean 
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distance between each day and the average profile, normalized to the total number of samples 

per day; and the normalized difference between consecutive days (SeqProfileVar), calculated 

as the ratio between mean difference between circadian profiles of consecutive days and mean 

deviation from average circadian profile. The propensity to sustain activity (SustainProp) was 

calculated as the slope of likelihood to sustain or increase activity in the next minute against 

current level of activity. The distribution was calculated for minutes with activity count>10 

(which eliminated the range specific for sleep, ~30% of datapoints/day) in 20 equally spaced 

bins covering the range up to the 99th percentile of active minutes. This is a hybrid measure 

applying a sequence-based analysis on the distribution of activity counts/min (assumed to 

have exponential distribution). The likelihood to further increase activity drops with 

increasing the activity counts in the current minute, therefore the slope is negative, and 

approaches 0 at the right tail of the distribution. A shallow slope indicates the subject is 

unlikely (not willing) to sustain even low levels of activity. For scrambled data (preserved 

distribution, but random sequence), the slope is about -0.3 (likelihood to sustain activity 

decreases by 30% when the activity count increases 10-fold).  

Feature selection 

There is virtually no consensus around the analysis of actigraphy and parameter selection for 

feature extraction. Therefore, the initial feature space included a number of features with 

different degrees of similarity, as illustrated by the matrix of correlations in Supplementary 

Fig. S2. To mitigate the impact of multicollinearity, one can choose between dimensionality 

reduction techniques (e.g., PCA, UMAP), and feature selection. The former has the advantage 

of identifying latent structures in the feature space and accurately accounting for underlying 

patterns in downstream calculations, but the analysis of individual feature contribution is not 

straightforward. The latter facilitates the intuitive interpretation of the final result, but carries 

the risk of missing out on underlying latent structures. We opted for feature selection to take 

advantage of the interpretability of the results. This is particularly relevant for Bayesian 

model averaging, where posterior inclusion probability is artificially deflated by including 

highly correlated features. The initial feature space included 90 features, distributed in 4 

overlapping clusters as follows: circadian profiles; mean daily features; daily variability 

around the average; and sequential daily variability. Day-to-day variability (calculated as the 

ratio between mean squared sequential differences in circadian profile and the mean squared 

difference from average profile) could only be calculated on the full recording and was 

assigned to the first cluster. We used a hybrid heuristic and data driven approach for feature 
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selection, namely we focused on reducing the clusters of conceptually related features which 

were highly correlated in healthy controls and MDD patients before treatment (see 

Supplementary Fig. S3). The correlation patterns yielded by features calculated on circadian 

profiles largely matched the correlations among features calculated on single days. In 

addition, the correlations between variability around the average and sequential variability 

were virtually perfect, rendering the 2 sets redundant. The final feature space consisted of 28 

features, including 12 from the circadian profile cluster and their correspondents in daily 

variability around the average; propensity to sustain activity and its variance across days; day-

to-day variability of circadian profile; and subject age (Supplementary Table 2).  

Effects of antidepressive treatments and correlations with response to treatment 

The design of analysis uses several underlying assumptions. (1) The effect of antidepressant 

treatment is assumed to have reached steady-state at the time of recording, and no feature 

exhibits significant drifting. This was verified by inspection of trends in individual features 

for each subject (not shown). (2) MADRS evaluation reflects an average state over spanning 

the entire recording period. The self-assessment MADRS scale requires the subject to 

evaluate the severity of symptoms over the last 3 days, and it is therefore justifiable to assume 

irrelevant changes over a period of 5-7 days around the time of evaluation. (3) The 

pharmacological effects are stable on both mood and circadian regulation of activity. Classical 

antidepressive treatments take a couple of weeks to reach full effect on mood (i.e., iCBT and 

escitalopram), which is then stable for sufficiently long time for the purpose of actigraphy 

recording. Fast-acting antidepressants (i.e., ketamine), induce measurable effects on mood 

within a couple of hours after administration. The regimen of ketamine administration in the 

cohort analyzed here was designed to ensure stable drug effect covering 2 weeks in the open-

label phase of the study.  

The response to treatment was calculated as relative change from baseline MADRS. The 

MADRS scores used for the estimation of response to treatment were the last measurement 

available before starting the treatment (baseline), and the last measurement available after 

treatment initiation (see also Fig. 1C, D for details). 

Ensemble training and Bayesian model averaging 

We implemented an ensemble approach to fit the response to treatment. The training was 

performed independently for 3 groups: iCBT, ketamine, and any treatment (iCBT, ketamine, 

or escitalopram). We have generated the initial ensemble by independent homogenous 

training using a systematic bootstrapping (with replacement) scheme for selecting up to 6 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.09.29.23294935doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.29.23294935
http://creativecommons.org/licenses/by-nd/4.0/


features/model (systematic testing of all possible combinations of features). This approach 

ensured a minimum of 2 subjects/feature for the iCBT cohort (N=12). The number of subjects 

available in the escitalopram cohort (N=7) was too low to train meaningful models, therefore 

the response to escitalopram was not modeled independently. After training, we applied an 

adaptation of Occam’s window algorithm [29,30]. First, we included all models satisfying the 

following criteria: VIF<5 (to avoid multicollinearity issues); and adjusted R-square>0.2 

(adjusted R-square>0.1 for “any treatment” ensemble). Next, we excluded all models 

receiving less support from the data than their simpler submodels. More complex models 

(using n features) which are less accurate than other any of the less complex models trained 

on the same subset of features (using any combination of n-1 features) were excluded. This 

procedure penalizes more complex models if their accuracy is not superior to simpler models. 

The pruned ensembles were then sorted by increasing RMSE (decreasing accuracy) and the 

aggregated output of each ensemble was calculated as the cumulative Bayesian average of 

individual models for each subject, using the inverse model RMSE as weights [29].  

We applied a Bayesian approach for the analysis of coefficients in the pruned ensembles. 

First, we estimated the prior inclusion probability for an individual feature as the proportion 

of models including a specific feature relative to the total number of models possible to train 

under the constraint of maximum 6 features/model to 0.2035 (see Supplementary Material). 

The posterior inclusion probability (PIP) for each feature was calculated as the frequency of 

occurrence in the pruned ensembles, and was used for defining levels of evidence strength as 

follows: PIP>0.2035 identifies features with frequency of occurrence increased as compared 

to initial probability (enriched), and indicates medium to strong evidence of correlation; in 

contrast, PIP < prior inclusion probability denotes features depleted after pruning, and 

indicates weak evidence of correlation. The effect size for individual features was estimated 

as the average of standardized coefficients across all models in the pruned ensemble. Lastly, 

we calculated the coefficient of variation (CV=standard deviation/average) for standardized 

coefficients to estimate the stability of individual features (context-independence).  

Results 

We have focused our analyses mostly on visualizing differences and correlations within the 

group of MDD subjects, and this approach is justified by the fact that MDD is a disease with 

largely unknown etiology and heterogenous manifestations: according to the diagnostic 

criteria listed by DSM-5 [31], 227 possible combinations of symptoms can lead to a 
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diagnostic of MDD. Preliminary analyses did not identify significant differences between 

male and female subjects in individual features, symptom severity, or response to MDD 

treatment. The data available in the three cohorts allowed partitioning in several ways: the 

data collected from patients before treatment were pooled into a single group (MDD, N=35), 

which was used as reference for all subsequent comparisons involving subjects on 

antidepressive treatments; similarly, all subjects with MADRSpost ≤ 10 were assigned to a 

single group “remission” (N=12, including iCBT, N=3; escitalopram, N=2; ketamine, N=7).  

Individual features are differentially affected by MDD treatments  

First, we asked whether MDD treatments had any effects on activity patterns, independently 

from the magnitude of response. This approach assumed that antidepressant drugs may impact 

circadian regulation of activity independent of antidepressant effects (reviewed in [32,33]). 

We did not find significant differences between MDD patients before treatment and healthy 

controls (Fig. 2A). Individual MDD treatments displayed significant effects on a wide range 

of features, with distinct, non-overlapping signatures across treatments (Fig. 2A). The effects 

can be summarized as follows: following iCBT, the subjects display increased daily 

variability in circadian profile. Under escitalopram treatment, the patterns of activity are less 

fragmented and more consistent across days, and the subjects display a higher propensity to 

sustain activity as compared to untreated MDD subjects. Under ketamine treatment, the 

patterns of activity are more fragmented and variable across days, but less complex as 

compared to untreated MDD subjects. For subjects in remission, regardless of the treatment, 

we found no difference from MDD or healthy controls. 

Next, we asked whether the magnitude of response to treatment correlated with longitudinal 

changes in individual features of activity (Fig. 2B). In subjects treated by iCBT, the 

magnitude of response to treatment did not correlate with changes in individual features, 

while drug treatments displayed sparse significant correlations with individual features. In 

subjects treated with escitalopram, better response correlated with increase in circadian peak 

of activity, decrease in fragmentation of activity, and decrease in propensity to sustain 

activity. The response to ketamine treatment correlated with a shift in location of circadian 

peak of activity towards earlier occurrence. Better response to treatment in general correlated 

with a shift in location of circadian peak of activity towards earlier occurrence, and a 

stabilization of circadian rhythms (illustrated by decreased daily variability of IS30). 
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MDD treatments have distinct signatures in correlations between magnitude of response and 

individual features 

We asked whether features of activity patterns before treatment correlate with the magnitude 

of response to treatment, and whether the correlations are treatment-specific. 

When analyzed separately, we found distinct signatures for each treatment (Fig. 3A). For 

iCBT, better response was associated with higher age, steeper propensity to sustain activity, 

higher variability in location of circadian trough, and lower and less variable stability of 

circadian patterns of activity. For escitalopram we did not find correlation surviving the FDR 

correction, but we observed a trend in correlation between response to treatment and lower 

variability in fragmentation of activity patterns. Better response to ketamine was associated 

with decreased variability in magnitude of circadian peak of activity. When all cohorts were 

pooled, better response to treatment was associated with more stable patterns of activity, as 

illustrated by decreased variability in location of circadian peak as well as in scaling exponent 

(Fig. 3A). 

We trained 3 independent ensembles of multiple linear regression models to fit the response 

to treatment for iCBT and ketamine separately, and used the pooled dataset for fitting the 

response to treatment irrespective of treatment group (“any treatment”). The procedure 

yielded 41768, 18178, and 23223 models for iCBT, ketamine, and any treatment, respectively 

(Fig. 3B). To analyze the performance of each ensemble, we sorted the models by decreasing 

fitting accuracy (increasing RMSE) and calculated the accuracy of ensemble fitting 

(aggregated output) in a cumulative fashion (Fig. 3C). The aggregated accuracy of all 

ensembles outperformed all independent models, and the accuracy changed with increasing 

the number of models included in a non-monotonic manner: we observed an initial 

improvement in accuracy, followed by degradation with different rates across ensembles (0.8 

vs. 0.2 for iCBT and 0.7 for ketamine) (Fig. 3C). Notably, the ensemble fitting the response to 

any treatment had an accuracy considerably lower than the ensembles fitting the response to 

either iCBT or ketamine. This is illustrated by the minimum and maximum aggregated RMSE 

(0.1377 and 0.1588 vs. 0.0085 and 0.0496 for iCBT and 0.0572 and 0.1092 for ketamine), as 

well as by the slope of cumulative aggregated accuracy (Fig. 3C). For a MADRS score of 30 

before treatment, this translates into an expected error in prediction of MADRS score after 

treatment between 0.25 and 1.5 for iCBT; 1.7 and 3.3 for ketamine; and 4.1 and 4.8 for any 

treatment.  
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To probe the biological relevance of modeling the response to treatment, we performed a 

Bayesian analysis of coefficients. The contribution of individual features in ensembles 

presumably changes depending on the context (i.e., all other features included in the model), 

and the importance of variables in the model can be assessed using several approaches [34]. 

We described the contribution of individual features using the following parameters: PIP (i.e., 

frequency of inclusion in the pruned ensemble); mean standardized coefficient (to estimate 

effect magnitude); and coefficient of variance (to estimate the context-dependence) (Fig. 4A; 

see also Supplementary Fig. S4). These three measurements are not necessarily orthogonal, 

but their joint analysis highlights the most relevant features and supports the interpretation of 

correlation coefficients. For each ensemble we found enriched features with low variability, 

with partial overlap across ensembles (Fig. 4B). The mean standardized coefficients for 

individual features varied considerably across ensembles, and filtering the feature space by 

CV or PIP yielded distinct signatures across ensembles (Fig. 4B; see also Supplementary Fig. 

S5). We further explored the differences between the ensembles modeling the response to 

iCBT or ketamine by plotting the standardized coefficients for individual features (Fig. 4C). 

The distribution of enriched features across the quadrants highlighted the distinct 

contributions of relevant features to modeling the response to treatment. Two out of 5 features 

enriched in both ensembles displayed opposite correlations (i.e., the variability in location of 

circadian trough and the variability in circadian profile), while the rest had similar 

correlations (negative correlation for age and variability in circadian peak amplitude, and 

positive correlation for propensity to sustain activity). In addition, the differentially enriched 

features also appeared to have large effects only in the ensemble they were enriched in. Given 

the bias in the selection of subjects for the ketamine study (insufficient response to SSRI 

[19]), we investigated the potential differences between the two populations, and found that 

variability in circadian profile was higher, and the scaling exponent for short intervals was 

lower in ketamine-treated subjects than in iCBT-treated subjects. To summarize, the 

differentially enriched features suggested the following correlations: better response to iCBT 

correlated with weaker circadian entrainment and earlier circadian peak of activity; better 

response to ketamine correlated with more fragmented and less variable circadian patterns of 

activity, as well as shorter circadian period. In addition, better response to either iCBT or 

ketamine correlated with increasing age and steeper propensity to sustain activity. The 

features enriched in the ensemble fitting the response to any treatment were largely a 

combination of the features enriched for fitting the response to iCBT or ketamine, while age, 

propensity to sustain activity and variability in circadian peak amplitude had similar 
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correlations with the response to any treatment as for iCBT and ketamine (Supplementary Fig. 

S5B).  

Discussion 

We focused on developing a sound pipeline for data pre-processing, feature extraction and 

feature selection for actigraphy as objective measurement during a depressive episode. We 

found sparse correlations between the response to specific MDD treatment and individual 

features, and we observed distinct signatures in the patterns of correlations for specific 

treatments. We modeled the response to treatment using the features of circadian patterns of 

activity before treatment as input to multiple linear regression ensembles and applied 

Bayesian model averaging to account for model uncertainty. The aggregated performance 

varied widely among ensembles, the accuracy observed for iCBT and ketamine being 

considerably higher than for “any treatment”. The Bayesian analysis of coefficients yielded 

distinct correlates of response to treatment for iCBT and ketamine.  

MDD is a disease with largely unknown etiology and heterogenous manifestations, therefore 

comparisons against healthy controls may yield biased results due to restrictive selection 

criteria. Remarkably, a large population-based study found that circadian rhythm features 

(relative amplitude of activity intensity or skin temperature) do not display sex-dependent 

differences, and have small effect on predicting the diagnosis for mood disorders  [35]. 

Similarly, we did not find sex-related differences between groups, nor did we find significant 

differences between MDD subjects and healthy controls. Therefore we pooled male and 

female subjects and focused instead on within-population effects in the MDD group. The 

ketamine cohort is fundamentally different from the iCBT and escitalopram cohorts because 

the lack of satisfactory response to ongoing SSRI treatment was a selection criterion [19]. We 

found only sparse differences among cohorts before treatment, which suggests that the overall 

heterogeneity of the MDD population obscures the differences between subgroups. As 

expected, we found distinct signatures for each treatment which may be attributed to the 

pharmacodynamic differences. Interestingly, they apparently converge on increasing the 

regularity of circadian rhythms, although we observed virtually no overlap between features 

changing due to treatment and the features displaying variations proportional to the magnitude 

of response for specific treatments. We found that changes in 2 specific features correlate with 

the magnitude of response when all cohorts were pooled together (timing of circadian peak of 

activity, and variability in circadian entrainment), which suggests that more robust circadian 
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entrainment of activity (stable alignment to the 24h light-dark cycle) correlates with better 

response to MDD treatment. This may indicate convergent effects of different treatments, and 

points to circadian entrainment of activity being a relevant endpoint for evaluation of response 

to treatment in MDD subjects. We did not find differences between MDD subjects and 

healthy controls, before treatment or in remission after treatment, and therefore cannot 

conclusively assess whether symptom remission is associated with an apparent normalization 

of circadian patterns of activity.  

The intrinsic heterogeneity of unipolar depression is reflected in the diverse 

pharmacodynamic profile of antidepressant drugs available. However, the response rate to 

monotherapy is largely similar among different classes (53.3% in iSPOT-D [36]; 48.6% in 

STAR*D [37]), and response to a certain drug class does not exclude response to a different 

class. We hypothesized that the response to treatment, estimated as relative change from 

baseline, can be modeled using features of circadian patterns of activity before treatment 

initiation. This approach has two potential pitfalls: (1) it does not account for variations in 

individual items in the scale; and (2) it ignores all intermediate states between before and after 

treatment. Regarding the former, it has been shown that the underlying variability is rather 

limited [38–41], which makes the total score a robust estimator of current state. In addition, 

we have shown earlier that the patterns of activity can be reliably used for modeling symptom 

severity before treatment, i.e., without potential pharmacological interference on circadian 

patterns of activity [17]. The dynamics of response to treatment has been shown to be 

accurately approximated by an exponential decay [9], however the timeline differs 

considerably among treatments. For iCBT, the response appears linear (see [18]), and the 

response is most reliably evaluated at the end of the course (10 weeks). The response to SSRIs 

has been classified as either fast (stable response is reached within 2 weeks after treatment 

onset), or slow (response stabilizes after about 4-6 weeks) [42], while the drop in symptom 

severity can be documented within hours after a single dose of ketamine administration and is 

stable for a couple of days [5,43]. We assumed that symptom severity was stable before 

treatment and had reached a plateau after treatment at the time of recording. Provided the 

interval between measurements is appropriate for the actual treatment (i.e., 10-12 weeks for 

iCBT; ~8 weeks for SSRIs; and ~2 weeks for ketamine), our modeling focused on the 

difference between 2 plateaus and made no assumption on the timeline of transition between 

the two states.  
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Approaching individual putative pathological mechanisms (e.g., “serotonin deficiency”) is 

suitable for drug development but may not be satisfactory for multifactorial disorders such as 

major depression. The crosstalk between signaling pathways is illustrated by the recent 

finding that serotonin receptor 1B binding in ventral striatum before ketamine administration 

correlates with both symptom severity, and the response to treatment [19]. We believe that the 

investigation of correlations between patterns of activity, as expression of current status, and 

the response to treatment, as change driven by therapeutic intervention, is a meaningful 

approach. We have shown recently that patterns of activity can predict symptom severity [17], 

and in this study we focus on the identification of most relevant correlates for response to 

treatment. The linear regression ensemble parallel training increases the generalizability of the 

findings, while Bayesian model averaging accounts for model uncertainty and provides the 

tools for posterior analysis of coefficients [29,44]. The added value of Bayesian analysis of 

coefficients is to support the high-level interpretation of correlations between patterns of 

activity and response to treatment. The differences between iCBT and ketamine when 

modeling the response to treatment extend beyond the distinct signatures in terms of relevant 

features. For iCBT, weaker circadian entrainment, and earlier circadian peak of activity 

correlate with better response. For ketamine, more fragmented and less variable circadian 

patterns of activity, and shorter circadian period correlate with better response. In addition, 

higher age and steeper propensity to sustain activity correlated to better response to either 

treatment. Notably, the features differentially enriched for either iCBT and ketamine are 

related to circadian distribution of activity. Circadian entrainment of activity is dependent of 

the central clock, located in the suprachiasmatic nucleus (SCN), and the vast majority of 

neurotransmitter signaling pathways on which antidepressants act have been shown to impact 

circadian rhythms (recently reviewed in [43,45,46]). Briefly, serotonin tonically inhibits the 

direct input from retinal ganglionic neurons, and blocking serotonin reuptake weakens photic 

entrainment of the SCN (reviewed in [47]). Ketamine has been shown to directly interfere 

with clock gene transcriptional activity in primary fibroblasts [48], and appears to have 

widespread effects on circadian clock machinery [43], suggesting that ketamine treatment 

facilitates circadian entrainment of activity. Our results indicates that MDD patients with 

higher variability in magnitude of circadian peak of activity before treatment experience 

better antidepressant effects, which is consistent with the stabilization of circadian rhythms 

following ketamine treatment. In addition, we found that better response correlates with a 

shift towards earlier occurrence of circadian peak, in agreement with previous reports [49]. 

Regarding iCBT as non-pharmacological intervention, the patient is supposed to gradually 
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change behavior in a voluntary manner, therefore alterations in activity patterns can be 

expected after completing the treatment.  

The accuracy of aggregated output indicates that useful models may potentially be developed 

for specific treatments (i.e., iCBT or ketamine), but the correlations with response to any 

treatment have limited practical applicability. Our data suggest potential prospective 

applications for predicting the response to MDD treatment. However, we cannot assess the 

generalizability of our findings because we did not test the performance against an 

independent dataset.  

In conclusion, we identified distinct signatures in the correlations between patterns of activity 

and response to specific MDD treatments. We further found that the stabilization of circadian 

entrainment correlates with the magnitude of response independently from the antidepressive 

treatment followed. Our data suggests that the analysis of circadian patterns of activity may 

potentially be used for predicting the response to treatment in MDD patients, but larger 

confirmatory studies are required to support clinical applications.  
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Table 1. Description of patient cohorts and antidepressant treatments 
Treatment pre post both1  Treatment scheme Ref 

HC 192 (14) N/A N/A N/A [x] 

iCBT 12 (9) 11 (9) 8 (6) 10 self-administered, internet-

delivered sessions (1 

session/week) 

[x] 

Escitalopram 7 (3) 6 (2) 5 (2) 50 mg/ day  [y] 

Ketamine 16 (8) 15 (6) 12 (6) 5 mg i.v. infusion, 2/week [z] 

Numbers in parentheses indicate the number of female subjects in each group. 
1 – used for paired comparisons, post vs. pre 

2 – 1 subject was recorded 3 times; 1 subject was recorded 2 times; 16 independent subjects 

 
Table 2. Group re-allocation and descriptive statistics of data available.  
Group N subjects N days days/ M days/ F 

HC 19 (14) 232 (173) 11.8 12.4 

MDD (pre)1 35 (20) 277 (172) 6.2 8.6 

iCBT (post) 11 (9) 108 (96) 6 10.7 

Escitalopram (post) 8 (2) 62 (8) 10.3 4 

Ketamine (post) 15 (6) 141 (72) 7.7 12 

Numbers in parentheses indicate the number of days actigraphy recorded in female subjects. 
See also Fig 1 for details on timing of recording relative to treatment administration. 
1 – includes all recordings before treatment from all treatment groups 
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Fig. 1 Description of source data. (A) Timeline for data collection for all cohorts included. 

Only subjects for which actigraphy recordings were available are shown. (B) Change in 

MADRS score in individual subjects for each cohort. (C) Distribution of MADRS scores 

before and after treatment in pooled cohorts. The subjects with MADRSpost < 10 are 

included in the “remission” group in subsequent analyses.  
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Fig. 2 Changes in patterns of activity associated with ongoing antidepressive treatment. 

(A) Between-group differences in individual features. Each treatment group is compared 

against MDD subjects before treatment as reference. MDD subjects before treatment are 

compared against healthy controls. The heatmap in the left panel displays the ratios between 

each group average and their respective reference group average. Significant differences 

surviving FDR correction are displayed in the right panel. Note the distinct signatures of 

individual treatments. Subjects in remission (independent of antidepressant treatment) display 

no significant differences from MDD subjects before treatment (remission) or from healthy 

controls (remission*). (B) Correlations between changes in individual features and the 

magnitude of response to treatment. Daily variability of IS (vIS30) and timing of circadian 

peak (M10L) appear to correlate with the response to treatment independently from actual 

antidepressive treatment.   
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Fig. 3 Correlations between activity features before treatment and the response to 

different antidepressant treatments. (A) Correlations with magnitude of response to 

treatment. Left panel: heatmap of raw correlation coefficients. Right panel: correlation 

coefficients surviving FDR correction. Note that response to treatment regardless of the nature 

of antidepressant treatment does not correlate with any individual feature, and that individual 

treatments have distinct signatures in terms of individual features correlating with the 

magnitude of the response. (B) Parallel training of ensembles of multiple regression models 

for response to treatment. Illustration of evaluation of performance for individual models. (C) 

Evaluation of performance of pruned ensembles. Aggregated output is calculated as 

cumulative average of individual model output, after sorting the ensembles by decreasing 

accuracy (increasing RMSE).   
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Fig. 4 Bayesian analysis of coefficients. (A) Analysis of occurrence and variability of 

individual features in each ensemble. Thresholds for CV (arbitrarily set to 1.5) and PIP (set to 

prior inclusion probability, 0.2035). Features in the top-left quadrant have stable coefficients 
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and have medium to strong evidence of correlation with the magnitude of response to 

treatment. (B) Average standardized coefficients for all ensembles to illustrate the differences 

in ensemble composition. The heatmap in the first panel shows all average standardized 

coefficients. The second and third panel display only the coefficients with CV < 1.5 and PIP > 

0.2035, respectively (see (A) for reference). Note the distinct, non-overlapping signatures for 

each ensemble. (C) Direct comparison between effect sizes of individual features in 

ensembles modeling the response to iCBT and ketamine. Enriched features highlighted and 

color-coded based on differential enrichment in either ensemble. Features mapping in top-

right and bottom-left quadrants indicate similar effects, while features mapping in top-left and 

bottom-right quadrants indicate opposite effects between ensembles. In addition, features 

mapping close to either axis indicate large difference in effect size between ensembles. 

Comparison between the two populations for enriched features displayed in the insert. 

Significant differences surviving FDR correction found in alphaShort and ProfileVar, both 

located in the top-left quadrant, indicating opposite correlations.   
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