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Abstract 

We identified genetic subtypes of type 2 diabetes (T2D) by analyzing genetic data from 

diverse groups, including non-European populations. We implemented soft clustering 

with 650 T2D-associated genetic variants, capturing known and novel T2D subtypes 

with distinct cardiometabolic trait associations. The twelve genetic clusters were 

distinctively enriched for single-cell regulatory regions. Polygenic scores derived from 

the clusters differed in distribution between ancestry groups, including a significantly 

higher proportion of lipodystrophy-related polygenic risk in East Asian ancestry. T2D 

risk was equivalent at a BMI of 30 kg/m2 in the European subpopulation and 24.2 (22.9-

25.5) kg/m2 in the East Asian subpopulation; after adjusting for cluster-specific genetic 

risk, the equivalent BMI threshold increased to 28.5 (27.1-30.0) kg/m2 in the East Asian 

group, explaining about 75% of the difference in BMI thresholds. Thus, these multi-

ancestry T2D genetic subtypes encompass a broader range of biological mechanisms 

and help explain ancestry-associated differences in T2D risk profiles. 
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Introduction 

The pathophysiology of type 2 diabetes (T2D) is influenced by multiple biological 

pathways, such as insulin resistance and beta cell dysfunction. Ongoing efforts have 

focused on advancing precision medicine in diabetes by identifying unique clinical 

trajectories or treatment approaches based on diabetes subtype1. Multiple strategies 

have been applied to identify T2D subtypes; some strategies rely on readily available 

clinical features and biomarkers, while other strategies incorporate additional 

information such as genomic data2.  

  

Previously, we used genetic data and implemented a soft clustering approach using 

Bayesian non-negative matrix factorization (bNMF) to identify five T2D genetic 

subtypes3. Two subtypes were related to insulin deficiency (with elevated or decreased 

proinsulin levels), while three were related to insulin resistance, mediated by obesity, 

lipodystrophy, or abnormal liver/lipid metabolism. More recently, we developed a high-

throughput pipeline to analyze a larger set of genome-wide association studies (GWAS) 

to increase our power to detect T2D subtypes4. This approach recapitulated our 

previous five clusters and also identified five additional clusters: another cluster related 

to beta cell dysfunction, a cluster with insulin resistance and very elevated insulin levels, 

and three clusters with abnormalities in alkaline phosphatase (ALP), sex hormone-

binding globulin (SHBG), and lipoprotein A (LpA). 

  

In this study, we expanded our analysis pipeline to investigate T2D genetic clusters 

using multi-ancestry cohorts. Previously, we focused on genetic data from individuals 
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with European genetic ancestry; this was done due to limited data availability in other 

ancestry groups, as well as methodological limitations when analyzing genetic data from 

diverse populations. We hypothesized that incorporating individuals from diverse 

populations would increase the breadth of biological mechanisms captured and 

potentially explain ancestry-associated differences in T2D risk while avoiding the 

exacerbation of health disparities5. Thus, we leveraged the recent completion of 

additional multi-ancestry genetic studies6–8 to investigate T2D genetic clusters in diverse 

ancestral populations. Using an expanded set of cohorts, we replicated our previous 

T2D genetic clusters and identified new clusters related to decreased cholesterol levels, 

abnormal bilirubin metabolism, and abnormal lipid processing in adipose and hepatic 

tissues. We confirmed that common polygenic pathways contribute to T2D risk across 

multiple ancestral populations and are distinctively enriched for tissue- and single-cell 

regulatory regions. Additionally, we described associations of the genetic clusters with 

clinical phenotypes in two independent datasets, thereby characterizing the genetic 

subtypes. Finally, we demonstrated that the relative contribution of each genetic cluster 

differed according to ancestry group. This finding may help explain why certain 

individuals of a particular population genetic ancestry are more susceptible to T2D 

despite having a lower body mass index (BMI). 

 

Results 

Multi-ancestry clustering approach identifies twelve T2D genetic clusters 
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In our prior work, we developed a high-throughput pipeline to generate T2D clusters 

using T2D GWAS summary statistics4. Here, we expanded our set of input T2D GWAS 

to include those participants with non-European ancestry (Supplementary Table 1), and 

we updated our pipeline to account for varying allele frequencies across ancestry 

groups (Extended Data Fig. 1). We included a total of 37 T2D GWAS representing more 

than 1.4 million individuals across varied genetic ancestral backgrounds: African/African 

American, Admixed American, East Asian, European, South Asian, or multi-ancestry 

(Supplementary Table 1). After quality control and linkage disequilibrium (LD) pruning, 

we obtained a final set of 650 variants that had independent genome-wide significant 

associations with T2D (Supplementary Table 2). Next, we assembled a list of 165 

GWAS of T2D-associated traits (Supplementary Table 3). After performing quality 

control and removing highly correlated traits, we assembled a final list of 110 traits. We 

then constructed an input matrix with our final set of 650 variants x 110 traits and 

applied our bNMF clustering algorithm. 

  

The bNMF algorithm identified a total of twelve T2D genetic clusters (Fig. 1, Table 1, 

Supplementary Table 4). We identified three novel clusters, labeled as Lipodystrophy 2, 

Cholesterol, and Bilirubin. Compared to our prior work4, the multi-ancestry approach 

recaptured eight out of ten clusters: Beta Cell 1, Beta Cell 2, Proinsulin, Obesity, ALP 

Negative, Hyper Insulin, Lipodystrophy 1, and Liver-Lipid (Extended Data Fig. 2). The 

two remaining clusters from our prior work (SHBG and LpA) collapsed into a single 

cluster, denoted here as SHBG-LpA.  
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Fig. 1. Key loci and traits of multi-ancestry T2D genetic clusters 

Each plot displays the top-weighted loci and traits within each multi-ancestry T2D genetic cluster. The 

length of the bars corresponds to the cluster weight determined by the bNMF algorithm. Green bars 

represent genetic loci, red bars represent traits with increased values, and blue bars represent traits with 

decreased values within each cluster. Female- and male-specific traits are appended with “_F” and “_M”, 

respectively. A maximum of 30 elements (loci and traits) with the highest weights are displayed in each 

cluster.  
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Cluster 
(# Variants) 

Expected 
physiologic
al impact 

Key top-
weighted traits 

Key top-weighted 
loci 

Suspected 
mechanism Note 

Beta Cell 1 (82) Insulin 
deficiency CIR (−), DI (−) 

CDKAL1, C2CD4A,
 HHEX, 
ST6GAL1, LDHB, 
TET2 

Beta cell function, 
glucose 
homeostasis 

Recaptures part of Beta Cell 
cluster from Udler et al 2018 
[3] and Beta Cell 1 from Kim 
et al 2022 [4] 

Beta Cell 2 (40) Insulin 
deficiency 

HbA1c female (+), 
FGadjBMI (+), 
Glucose male (+) 

GCK, TCF7L2, 
SLC30A8, 
SLC2A2, ADCY5, 
DGKB 

Beta cell function, 
insulin processing 

Recaptures part of Beta Cell 
cluster from Udler et al 2018 
[3] and Beta Cell 2 from Kim 
et al 2022 [4] 

Proinsulin (16) Insulin 
deficiency PI (−), VAT (−) ARAP1/STARD10, 

VEGFA Insulin synthesis 
Recaptures Proinsulin cluster 
from Udler et al 2018 [3] and 
Kim et al 2022 [4] 

Obesity (76) Insulin 
resistance 

BMI male (+), 
ASAT (+), waist C 
female (+), Trunk 
fat % female (+) 

FTO, MC4R Obesity-mediated 
insulin resistance 

Recaptures Obesity cluster 
from Udler et al 2018 [3] and 
Kim et al 2022 [4] 

Hyper Insulin 
(41) 

Insulin 
resistance DI (+), CIR (+) 

PDE3A, 
RBM6, TRAF3, 
CNTN2 

Insulin secretion, 
inflammation 

Recaptures Hyper Insulin 
cluster from Kim et al 2022 [4] 

Cholesterol (5) Unclear 

CRP male (+), 
Cholesterol (-), 
Apolipoprotein A 
(+)  

APOE, NECTIN2, 
TM6SF2, 
POLK/HMGCR 

HMGCR 
expression New cluster in this study 

Lipodystrophy 1 
(47) 

Insulin 
resistance 

GfatAdjBMI (-), 
vatGfatRatio (+), 
Adiponectin (-) 

VEGFA, CCFC92, 
CITED2, 
GRB14/COBLL1 

Fat distribution-
mediated insulin 
resistance 

Recaptures Lipodystrophy 
cluster from Udler et al 2018 
[3] and Kim et al 2022 [4] 

Lipodystrophy 2 
(29) 

Insulin 
resistance 

ALT (+), 
ISIadjAgeSexBMI 
(-), AST (+), GGT 
(+) 

PNPLA3, PARG, 
IRS1, PEPD, 
ANKRD55 

Hepatic steatosis 
New cluster in this study; split 
from previous Lipodystrophy 
cluster 

Liver-Lipid (7) Insulin 
resistance 

TG female (−),  
SHBG male (+), 
IGF female (+), 
Albumin male (-) 

GCKR, FADS1, 
PPIP5K1 

Liver/lipid 
metabolism 

Recaptures Liver-Lipid cluster 
from Udler et al 2018 [3] and 
Kim et al 2022 [4] 

Bilirubin (2) Unclear Bilirubin (+) UGT1A3 Bilirubin 
metabolism New cluster in this study 

SHBG-LpA (3) Unclear 

SHBG male (-), 
Lp(a) female (+), 
oestradiol female 
(-) 

SHBG, SLC22A3, 
STAG1 

SHBG and Lp(a) 
metabolism 

Merged from LpA and SHBG 
clusters from Kim et al 2022 
[4] 

ALP Negative (6) Insulin 
resistance 

ALP (−), RBC 
count (-), Hgb 
concentration (-) 

ABO, FADS1 ALP activity levels Recaptures ALP Neg cluster 
from Kim et al 2022 [4] 

 

Table 1. Overview of multi-ancestry T2D genetic clusters 

 

The novel Lipodystrophy 2 cluster contained genetic determinants of lipid metabolism, 

liver dysfunction, and insulin resistance. The top-weighted traits included increased 

hepatic enzymes (aspartate aminotransferase [AST], alanine aminotransferase [ALT], γ-
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glutamyl transferase [GGT]), increased Homeostatic Model Assessment for Insulin 

Resistance (HOMA-IR), and decreased insulin sensitivity index. The top-weighted loci 

included PNPLA3 and PPARG, which regulate the accumulation of fatty acids in the 

liver and adipose tissue9,10. Compared to our prior work, the previous single 

Lipodystrophy cluster appeared to split into two clusters (Extended Data Fig. 2), with 

traits related to body composition (such as increased visceral adipose tissue) remaining 

in the Lipodystrophy 1 cluster and traits related to hepatic function moving to the novel 

Lipodystrophy 2 cluster. 

 

The novel Cholesterol cluster was associated with decreased LDL and total cholesterol 

levels. The top-weighted locus was APOE, which is directly involved in lipid 

metabolism11. Another top locus included the variant rs5744672, located on 

chromosome 5 near the POLK and HMGCR loci. HMGCR encodes HMG-CoA 

reductase, the enzyme responsible for the rate-limiting step of cholesterol synthesis and 

the target of statin medications. To support the hypothesis that the observed variation in 

cholesterol levels is mediated via HMGCR, we searched for expression quantitative trait 

loci (eQTL) in the Genotype-Tissue Expression Project (GTEx; gtexportal.org). We 

found a significant association between rs5744672 and HMGCR expression levels in 

skeletal muscle (normalized effect size = 0.14, P = 2.9 x 10-6), and there was strong LD 

between rs5744672 and the top eQTL variant for HMGCR (rs3846662, r2 = 0.91).  

  

Finally, the novel Bilirubin cluster was associated with increased bilirubin levels. The 

cluster only included two variants, both located on chromosome 2 near the complex 
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UGT1A locus, although the two variants were not in LD (r2 = 0.004). The UGT1A locus 

encodes multiple enzymes in the UDP-glucuronosyltransferase family, which are 

involved in excretion of bilirubin metabolites. We again looked for evidence to support 

the role of this genetic locus by searching for eQTLs in GTEx. We found that the top 

locus in the bilirubin cluster (rs887829) was significantly associated with gene 

expression of UGT1A3 in the liver (normalized effect size = 0.46, P = 3.8 x 10-14); once 

again, there was strong LD between rs887829 and the top eQTL for UGT1A3 

(rs869283, r2 = 0.58). 

 

Common T2D genetic clusters are shared across individual ancestry groups 

To determine whether the genetic clusters were specific to single populations or shared 

across populations, we repeated our clustering pipeline by focusing on each ancestry 

group individually. We found similar T2D genetic clusters within each ancestry group 

(Extended Data Fig. 3, Supplementary Tables 5-8). In summary, all groups included at 

least two clusters related to beta cell dysfunction and at least two clusters related to 

insulin resistance. The East Asian and European groups also captured clusters related 

to abnormal lipid metabolism in the liver and decreased ALP levels, which we also 

identified in our multi-ancestry clusters. We identified fewer clusters in the African and 

Admixed American groups, likely due to the fact that the GWAS sample sizes were 

smaller for these populations, leading to a smaller number of input genetic variants for 

the clustering algorithm. After confirming our findings in ancestry-specific analyses, we 

focused our remaining analyses on the multi-ancestry clusters, since the multi-ancestry 
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clusters included all T2D GWAS from the ancestry-specific analyses and also included 

the trait GWAS with the largest sample sizes.   

 

Multi-ancestry clusters capture heterogeneous T2D genetic subtypes with distinct 

clinical associations 

After creating the multi-ancestry T2D genetic clusters, we tested the association 

between individual clusters and specific clinical continuous traits or metabolic disease 

outcomes. To accomplish this, we implemented cluster-specific partitioned polygenic 

scores using individual-level data (pPS), or if not available, using published GWAS 

summary statistics (GWAS-pPS) (see Methods; Supplementary Table 9). 

 

First, to characterize the clusters in terms of glycemic physiology, we assessed the 

associations of clusters with glycemic traits (Homeostatic Model Assessment of β-cell 

function [HOMA-B], HOMA-IR, proinsulin, and disposition index), using GWAS summary 

statistics included as inputs in the bNMF clustering algorithm (Fig. 2A, Supplementary 

Table 10). The Beta Cell 1, Beta Cell 2, and Proinsulin clusters were associated with 

decreased HOMA-B (b = -0.002 to -0.01, P < 1 x 10-4), suggesting a primary disease 

mechanism of insulin deficiency. The Obesity, Lipodystrophy 1, and Lipodystrophy 2 

clusters were associated with increased HOMA-IR (b = 0.005 to 0.007, P < 1 x 10-8), 

suggesting a primary mechanism of insulin resistance. Two clusters (Liver-Lipid and 

ALP Negative) were associated with both decreased HOMA-B (b = -0.005 to -0.006, P < 

4 x 10-3) and increased HOMA-IR (b = 0.005 to 0.007, P < 0.02), suggesting possible 

contributions from both mechanisms. The Hyper Insulin cluster was not significantly 
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associated with HOMA-B or HOMA-IR levels, but it was characterized by a marked 

increase in the corrected insulin response (b = 0.05, P = 3.7 x 10-17). The final three 

clusters (Cholesterol, Bilirubin, and SHBG-LpA) were not clearly associated with 

mechanisms of insulin deficiency or resistance.  

 

Next, to assess how the T2D multi-ancestry clusters inform individual-level clinical 

differences, we calculated pPS in biobank participants. We performed our primary 

analysis in the All of Us cohort and replicated our findings in the Mass General Brigham 

(MGB) Biobank; here, we present our findings from a meta-analysis of over 100,000 

participants (including over 14,000 with T2D) from the two cohorts (Supplementary 

Table 11).  

 

First, in participants with and without T2D, we validated the relationship between cluster 

pPS and clinical measurements (Fig. 2B, Supplementary Tables 12-13). For example, 

we confirmed that the clusters had varied associations with lipid measurements: the 

Cholesterol pPS was associated with elevated HDL (b = 0.02 standard deviations [SD] 

of HDL per SD of pPS, P = 4.1 x 10-8) and decreased triglycerides (b = -0.03, P = 2.1 x 

10-15), whereas the Lipodystrophy 1 pPS was associated with lower HDL (b = -0.04, P = 

3.6 x 10-33) and higher triglycerides (b = 0.09, P = 1.2 x 10-125). These findings were 

largely consistent after adjusting for T2D status, or when analyzing the subset of 

individuals with T2D only (Supplementary Table 12).  
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Second, we tested the association between pPS and cardiometabolic phenotypes 

(chronic kidney disease [CKD], hypertension, coronary artery disease [CAD], non-

alcoholic fatty liver disease [NAFLD], diabetic retinopathy, and diabetic neuropathy) 

(Fig. 2C, Supplementary Tables 14-15). The Lipodystrophy 2 cluster was associated 

with increased risk of NAFLD (OR = 1.24, P = 1.0 x 10-44), whereas the Liver-Lipid 

cluster was associated with decreased risk of NAFLD (OR = 0.95, P = 3.0 x 10-4); these 

findings remained after adjusting for T2D status (Fig. 2C, Supplementary Table 15). The 

Cholesterol cluster pPS was nominally associated with decreased risk of CAD (OR = 

0.97, P = 2.3 x 10-3) in the individual-level data, and this negative association reached 

greater significance in the GWAS-pPS analysis (OR = 0.97, P = 2.8 x 10-27; 

Supplementary Table 10). The associations between other cluster pPS and 

cardiometabolic phenotypes were similar when we analyzed GWAS-pPS 

(Supplementary Table 10). 

 

In the subset of individuals with T2D, the genetic clusters were also associated with 

significant clinical differences, as noted above (Supplementary Table 12). In this 

subgroup, we also analyzed the risk of two microvascular complications, diabetic 

retinopathy and diabetic neuropathy. No cluster was significantly associated with 

microvascular complications at the Bonferroni-adjusted threshold, although nominal 

associations were observed for the Lipodystrophy 1 cluster with diabetic retinopathy 

(OR = 1.09, P = 2.3 x 10-3) and the Obesity cluster with diabetic neuropathy (OR = 1.06, 

P = 8.5 x 10-3; Supplementary Table 15).  
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Fig. 2. Multi-ancestry T2D genetic cluster associations with continuous traits and clinical 

phenotypes 

(A) Each plot displays associations between selected multi-ancestry T2D genetic clusters and selected 

continuous outcomes, based on GWAS-partitioned pPS. The effect size indicates the beta coefficient 

from a meta-analysis of GWAS summary statistics. Error bars represent the 95% confidence interval. 

(B) Each plot displays cluster associations with selected continuous outcomes, based on individual-level 

pPS obtained from a meta-analysis of MGB Biobank and All of Us. Each outcome was normalized to a 

standard normal distribution. Effect sizes indicate the effect per one standard deviation increase in the 

pPS. Error bars represent the standard error from a linear regression model.  

(C) Each plot displays cluster-specific odds ratios of selected clinical phenotypes, based on individual-

level pPS obtained from a meta-analysis of MGB Biobank and All of Us. Odd ratios are calculated per one 

standard deviation increase in the pPS. Error bars represent the 95% confidence interval.  

For all components, positive associations are colored in red, negative associations are colored in blue, 

and P values are indicated with asterisks (* P < 0.05, ** P < 0.01, *** P < 0.001). 

 

Sex-stratified analyses of anthropometric and laboratory measures show distinct 

effects of multi-ancestry T2D genetic clusters in both sexes 

Because lipid metabolism and adipose tissue distribution differ by sex12,13, we also 

performed sex-specific analyses for a subset of traits by performing separate regression 

models with female or male participants only. We found that the Cholesterol cluster was 

associated with decreased LDL levels in all participants, after adjusting for use of lipid-

lowering medications; however, the effect size was more than twice as high in female 

participants (bfemale = -0.09 SD of LDL per SD of Cholesterol pPS) compared to male 

participants (bmale = -0.04; Pinteraction between sex and Cholesterol pPS = 4.0 x 10-3) 

(Supplementary Table 13). In addition, the Liver-Lipid cluster was significantly 
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associated with decreased LDL levels in female participants (bfemale = -0.02) but not in 

male participants (bmale = +0.007; Pinteraction = 4.0 x 10-5).  

 

Next, we analyzed individual-level measures of waist and hip circumference (only 

available in All of Us), as well as measures of subcutaneous adipose tissue (SAT) and 

visceral adipose tissue (VAT) (only available in a subset of approximately 9,000 MGB 

Biobank participants). In sex-specific analyses, the Lipodystrophy 1 pPS was 

associated with a lower SAT level in males (bmale = -0.07), but not in females (bfemale = -

0.003; Pinteraction = 0.01). However, the Lipodystrophy 1 pPS was associated with 

increased VAT/SAT ratio in both males (bmale = 0.07) and females (bfemale = 0.08; 

Pinteraction = 0.50) (Extended Data Fig. 4, Supplementary Table 13). Furthermore, the 

Lipodystrophy 1 pPS was associated with a significantly higher waist-hip ratio in both 

females and males, but the effect size was much lower in males (bmale = 0.02) compared 

to females (bfemale = 0.08; Pinteraction = 8.5 x 10-20) (Extended Data Fig. 5, Supplementary 

Table 13). Findings were similar after adjusting for BMI as a covariate.  

 

Finally, we analyzed sex-specific associations between T2D genetic clusters and clinical 

outcomes (Supplementary Table 16). We found that the Beta Cell 1 pPS was 

significantly associated with hypertension in females (ORfemale = 1.04), but not in males 

(ORmale = 1.02; Pinteraction = 3.5 x 10-3). Conversely, the Beta Cell 2 pPS was significantly 

associated with CAD in males (ORmale = 1.06), but not in females (ORfemale = 1.03; 

Pinteraction = 4.7 x 10-2). The Obesity pPS was significantly associated with NAFLD in both 
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males and females, but the effect size was considerably higher in females (ORfemale = 

1.17) compared to males (ORmale = 1.08; Pinteraction = 3.1 x 10-3).  

 

Genetic variants contained in multi-ancestry T2D clusters are transcriptionally 

active in diabetes-related cell types 

To further explore the biological mechanisms of the multi-ancestry T2D genetic clusters, 

we assessed for epigenomic evidence of transcriptional activity across a wide array of 

human tissue types. To perform this analysis, we used CATLAS, a repository of 

candidate gene regulatory elements found in regions with accessible chromatin in 

specific single-cell types14. As a secondary analysis, we also examined tissue-specific 

epigenomic data generated by the Roadmap Epigenomics Consortium15. We found 

cluster-specific enrichment of epigenomic annotations in biologically relevant tissues 

(Fig. 3, Supplementary Table 17). Interestingly, the Beta Cell 1 cluster was enriched for 

epigenomic annotations in a diverse range of cell types, while the Beta Cell 2 cluster 

was specifically characterized by pancreatic islet cell enrichment (False Discovery Rate 

[FDR] < 0.01) (Fig. 3A). These associations between the two Beta Cell clusters and 

epigenomic enrichment in pancreatic islets was also captured in the Roadmap analysis 

(Fig. 3B). Meanwhile, the Liver-Lipid cluster was enriched in fetal hepatoblasts (FDR < 

0.01). Both the Lipodystrophy 1 and 2 clusters were enriched for regulatory activity in 

adipose tissue (FDR < 0.01). These findings confirm that the genetic variants captured 

by different clusters have distinct effects in specific tissue types, and these effects relate 

to suspected disease mechanisms. 
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Fig. 3. Enrichment for cell type specific enhancers in multi-ancestry type 2 diabetes clusters. 

Heatmaps display the significant cluster-specific enrichment of genomic annotations, represented by 

cumulative posterior probability, in (A) CATLAS single cell accessible chromatin data from 222 cell types 

and (B) Epigenomic Roadmap chromatin state calls from 28 cell types. Q values were corrected for false 

discovery rate (FDR). For both analyses, only cell types with at least one association of FDR < 0.1 are 

included in the figure, with additional data in Supplementary Table 17. 
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Next, we assessed whether the multi-ancestry T2D genetic clusters had varying 

contributions to overall T2D genetic risk in individuals with different genetic ancestral 

backgrounds. We applied principal component analysis to classify individuals by genetic 

ancestry in both All of Us and MGB Biobank, using super-populations from the 1000 

Genomes project: African (AFR), Admixed American (AMR), East Asian (EAS), 

European (EUR), South Asian (SAS), or other. After confirming that the distribution of 

T2D genetic clusters was similar in both cohorts, we then performed a meta-analysis of 

the two biobanks. For all individuals, we calculated pPS using the multi-ancestry T2D 

genetic clusters.  

  

We found that the cluster-specific distribution of T2D genetic risk differed according to 

genetic ancestry. For example, the median Beta Cell 1 pPS was highest in the AFR 

ancestry group, whereas the median Lipodystrophy 1 and Lipodystrophy 2 pPS were 

highest in the EAS ancestry group (Fig. 4A; Extended Data Fig. 6). These differences 

led to varying proportions of individuals at the “extremes” of each genetic cluster. For 

instance, 10% of the EUR ancestry group had a Lipodystrophy 1 pPS above 1.11. 

However, 7.5% of the AFR group, 22.7% of the AMR group, 89.4% of the EAS group, 

and 28.2% of the SAS group had a Lipodystrophy 1 pPS above the same threshold (P < 

10-300, one-way ANOVA). Furthermore, within each ancestry group, we found varied 

proportions of T2D genetic risk attributable to each cluster (Extended Data Fig. 7). This 

can be illustrated by the Lipodystrophy 1 cluster once again: 12.7% of the total T2D 

genetic risk across all clusters was present in the Lipodystrophy 1 cluster for the EAS 
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ancestry group, compared to 8.1% for the AFR group, 9.6% for the AMR group, 9.0% 

for the EUR group, and 9.6% for the SAS group (P < 10-300, one-way ANOVA). 

  

Differences in Lipodystrophy 1 and Lipodystrophy 2 genetic clusters explain 

increased risk of T2D in East Asian ancestry 

We then investigated whether ancestry-specific variation in T2D genetic risk resulted in 

phenotypic differences between ancestry groups. We focused on the multi-ancestry 

Lipodystrophy 1 and Lipodystrophy 2 clusters, which were associated with decreased 

BMI but increased T2D risk (Fig. 2, Supplementary Table 12). After classifying 

individuals by genetic ancestry, we first analyzed the relationship between BMI and T2D 

risk in both All of Us and MGB Biobank separately; then, we performed a meta-analysis 

of both cohorts together. 

 

Within each ancestry group, we calculated BMI thresholds with equivalent T2D risk. For 

example, at a BMI of 30 kg/m2 (typically used to define obesity), the risk of T2D within 

the EUR ancestry group was 11.7%. However, in order to achieve the same risk of T2D, 

the corresponding BMI cutoff was 25.2 kg/m2 (95% confidence interval 24.7-25.7) for 

the AFR group, 23.7 kg/m2 (23.1-24.3) for the AMR group, 24.2 kg/m2 (22.9-25.5) for 

the EAS group, and 20.8 kg/m2 (19.4-22.2) for the SAS group (Fig. 4B). After adjusting 

for the Lipodystrophy 1 and 2 pPS, to achieve the same risk of T2D as an individual with 

a BMI of 30 kg/m2 in the EUR ancestry group, the corresponding BMI cutoff was 25.1 

kg/m2 (24.6-25.6) in the AFR group, 25.0 kg/m2 (24.4-25.5) in the AMR group, 28.5 

kg/m2 (27.1-30.0) in the EAS group, and 22.0 kg/m2 (20.6-23.4) in the SAS group (Fig. 
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4C). Thus, by accounting for cluster-specific pPS, the difference in T2D risk-equivalent 

BMI thresholds between the EAS and EUR ancestry groups decreased by about 75%. 

 

Next, we confirmed that the difference in T2D risk-equivalent BMI thresholds was 

primarily driven by the Lipodystrophy 1 and 2 clusters. When we adjusted for pPS from 

all 12 clusters simultaneously, the T2D risk was equivalent at a BMI of 30 kg/m2 in the 

EUR ancestry group and 28.3 kg/m2 (26.8-29.8) in the EAS group, compared to 28.5 

kg/m2 (27.1-30.0) when adjusting for only the Lipodystrophy 1 and 2 clusters.  

 

Finally, we assessed whether differences in adipose tissue distribution could account for 

variation in T2D risk. We analyzed a subset of 9,000 MGB Biobank participants with 

available VAT and SAT measurements. In a multivariate logistic regression model 

accounting for all 12 cluster pPS and BMI, the Lipodystrophy 1 and 2 pPS were 

significantly associated with T2D risk (Lipodystrophy 1: b = 0.11, P = 3.2 x 10-3; 

Lipodystrophy 2: b = 0.12, P = 6.3 x 10-4). However, after additionally accounting for the 

VAT/SAT ratio as a covariate, the association between both clusters and T2D risk was 

attenuated (Lipodystrophy 1: b = 0.06, P = 8.9 x 10-2; Lipodystrophy 2: b = 0.11, P = 1.8 

x 10-3), suggesting that the T2D risk conferred by these clusters is partially mediated by 

changes in the VAT/SAT ratio (even after controlling for BMI). 
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Fig. 4. Ancestry-specific relationship between T2D genetic clusters, BMI, and T2D risk 

(A) Ancestry-specific distribution of Lipodystrophy 1 and Lipodystrophy 2 pPS (normalized to a standard 

normal distribution).  

(B) Relationship between BMI and T2D risk (unadjusted), classified by genetic ancestry. The horizontal 

dashed line represents the T2D risk for participants with European genetic ancestry and a BMI of 30 

kg/m2 (typically used to define obesity). The vertical dashed lines indicate the BMI thresholds needed to 

develop an equivalent risk of T2D in the European and East Asian ancestry groups. 

(C) Relationship between BMI and T2D risk, adjusted for Lipodystrophy 1 pPS and Lipodystrophy 2 pPS. 

All analyses were performed in a meta-analysis of MGB Biobank and All of Us. 
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Discussion 

In this study, we assembled a diverse set of GWAS to analyze 650 independent T2D-

associated variants, as well as their associations with 110 relevant traits, and we 

identified twelve potential T2D genetic subtypes. By including genetic variants from 

multiple ancestry groups, we validated and expanded on our prior T2D clustering work, 

which focused on European populations and included only 323 variants3,4. We 

confirmed the existence of eight previously identified T2D genetic clusters, and we 

found that the previously defined SHBG and Lipoprotein A clusters4 merged into a 

single cluster. A new cluster, which we denoted as Lipodystrophy 2, split from the 

previous Lipodystrophy cluster, and we identified novel clusters associated with 

cholesterol and bilirubin. These clusters were significantly enriched in regulatory 

genomic regions in both bulk tissue and single cell epigenomic datasets. Additionally, 

we characterized the clinical features of the genetic subtypes derived from these 

clusters, including sex-specific analyses as well as association results with NAFLD for 

the first time.  

  

The novel Lipodystrophy 2 cluster included multiple variants related to adipocyte and 

hepatocyte function. For instance, the cluster included variants near PNPLA39 and 

PPARG10, which regulate fatty acid metabolism in both adipocytes and hepatocytes, 

and epigenomic analysis demonstrated that the Lipodystrophy 2 cluster was enriched in 

adipocytes (Fig. 3B). These findings support the concept that the Lipodystrophy 2 

cluster split from the prior Lipodystrophy cluster (Extended Data Fig. 2); indeed, the 

Lipodystrophy 1 and 2 clusters in our current analysis shared multiple phenotypic 
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similarities, such as decreased BMI, decreased HDL, and increased triglycerides, as 

well as increased risk of CAD, CKD, hypertension, and NAFLD. However, the clusters 

differed in their effects on body composition; only the Lipodystrophy 1 cluster (and not 

the Lipodystrophy 2 cluster) was associated with increased VAT and increased waist-

hip ratio (Extended Data Figs 4-5, Supplementary Table 13).  

  

A second new cluster was the Cholesterol cluster, which is notable because it reflects 

the complex relationship between T2D, coronary heart disease, and LDL cholesterol. 

While multiple genetic loci confer increased risk for both T2D and coronary heart 

disease17,18, we identified for the first time a cluster of T2D genetic variants that is 

associated with decreased risk of coronary heart disease. The Cholesterol cluster 

included an eQTL for HMGCR, the target of statin medications, which decrease the risk 

of coronary heart disease via lower LDL cholesterol. Hence, this cluster suggests that 

individuals with decreased expression in HMGCR have an increased risk of T2D, 

consistent with the observation that statin medications are associated with an increased 

risk of T2D19.  

  

Aside from HMGCR, our multi-ancestry T2D genetic clusters confirmed the role of 

multiple genetic variants encoding proteins that serve as drug targets. For example, the 

Lipodystrophy 1 and 2 clusters included rs17036160 near PPARG, the target of 

thiazolidinediones, which promote insulin sensitivity. Furthermore, the Hyper Insulin 

cluster included rs10305420 near GLP1R, the target of GLP1 receptor agonists, which 

potentiate insulin secretion. Finally, the Lipodystrophy 1 cluster included rs998584 near 
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VEGF, the target of VEGF inhibitors, which are used to treat diabetic retinopathy. 

Although the link between lipodystrophy and diabetic retinopathy is unclear, we found 

that an increased Lipodystrophy 1 pPS was nominally associated with an increased risk 

of diabetic retinopathy, and case studies have reported the occurrence of diabetic 

retinopathy in patients with congenital20 or acquired21 lipodystrophy.  

  

The biological significance of the novel Bilirubin cluster is unclear. The top locus 

included an eQTL for UGT1A3, which is directly involved in bilirubin metabolism. 

Although the cluster suggests a positive association between bilirubin levels and T2D 

risk, previous studies have demonstrated a negative association22. In addition, bile acid 

sequestrants may be used for treatment of T2D23; however, the link between bile acid 

sequestrants and serum bilirubin levels is uncertain. 

  

By adopting a multi-ancestry clustering approach, we captured the effects of variants 

that achieved genome-wide significance with T2D in multi-ancestry studies, but not in 

existing European-based studies. For instance, the Hyper Insulin cluster included 

rs59646751 near IGF1R, which had a P value of 2.4 x 10-4 in the European cohort of 

the MVP-DIAMANTE T2D GWAS and 3.4 x 10-9 in the multi-ancestry cohort7. This 

variant was identified in a previous exome sequencing study of T2D, where carriers of 

the variant had higher levels of circulating IGF-1, indicating IGF-1 resistance24. The 

assignment of this variant to the Hyper Insulin cluster suggests that carriers also have 

increased insulin resistance, possibly due to a negative feedback loop resulting in 

increased pituitary secretion of growth hormone. 
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This study also demonstrated novel sex-specific effects of T2D genetic clusters. For 

example, the association between the Cholesterol pPS and decreased LDL levels was 

primarily driven by a larger effect size in females. Similarly, the association between the 

Lipodystrophy 1 pPS and waist-hip ratio had a larger effect size in females. This 

suggests that these genetic associations may be driven by sex-specific physiology, 

potentially mediated by hormones that differ in males and females.   

 

We also demonstrated how our multi-ancestry clusters can explain the heterogeneity of 

T2D among different populations. It is well-documented that individuals from various 

self-identified non-White populations are more susceptible to T2D at a given BMI, 

compared to self-identified White individuals25,26, and many authors have suggested 

that different BMI thresholds should be used to define obesity in separate populations27–

29. Some studies have suggested that genetic differences in adipose tissue distribution 

may explain the varied relationship between BMI and T2D risk in different populations30. 

In this study, after classifying individuals by genetic ancestry, we confirmed prior 

obeservations25,26 that individuals in the EUR ancestry group had the lowest risk of T2D 

at all BMI strata. Furthermore, we demonstrated that variation in the BMI-T2D 

relationship is at least partially explained by variation in the distribution of T2D genetic 

risk among specific clusters. For instance, the EAS ancestry group had the highest 

Lipodystrophy 1 pPS as well as the highest Lipodystrophy 2 pPS (Fig. 4A). These 

clusters are associated with decreased BMI as well as increased T2D risk, resulting in a 

greater proportion of individuals with T2D at lower BMI levels. After adjusting for the 
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Lipodystrophy 1 pPS and the Lipodystrophy 2 pPS, the difference in BMI-adjusted T2D 

risk between the EAS and EUR ancestry groups was reduced by about 75%, 

demonstrating the significant impact of these genetic clusters in East Asian populations 

(Fig. 4B, C). These findings represent a potential step toward developing individualized, 

genetically informed BMI recommendations for counseling patients to help prevent or 

ameliorate the effects of metabolic diseases. Notably, however, the Lipodystrophy 1 and 

Lipodystrophy 2 pPS were not markedly elevated in the other groups (AFR, AMR, and 

SAS) compared to the EUR subpopulation, so adjusting for these scores did not 

substantially affect T2D risk estimates. Thus, further work is needed to investigate 

genetic factors affecting the BMI-T2D relationship in these populations.  

 

In parallel to our current study, the T2D Global Genomics Initiative (T2DGGI) also 

investigated T2D genetic clusters in multi-ancestry GWAS31. The T2DGGI clustering 

approach used genetic variants from a single, large multi-ancestry GWAS. In contrast, 

the study presented here used genetic variants from multiple ancestry-specific and 

multi-ancestry GWAS, including GWAS for T2D as well as for T2D-associated traits. 

Furthermore, the T2DGGI approach used a hard clustering method (K means 

clustering), compared to the soft clustering method presented here. Nevertheless, both 

studies found similar T2D genetic clusters. An analysis of the cluster weights assigned 

to both sets of genetic variants demonstrated high degrees of similarity in several 

clusters, including the Beta Cell, Obesity and Lipodystrophy 1 clusters (Extended Data 

Fig. 8). Despite the similarities between the two sets of T2D clusters, each study also 

included certain clusters that were not captured by the other study. For instance, our 
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study included the Hyper Insulin, Bilirubin, SHBG-LpA, and ALP Negative clusters, 

whereas the T2DGGI study included clusters labeled as Body fat, Metabolic syndrome, 

and Residual glycemic. These findings support that there are multiple possible 

approaches to stratifying genetic loci, and further downstream analyses will be 

necessary to determine the utility of these approaches.  

 

Overall, we demonstrated that similar patterns of T2D genetic subtypes occur across 

multiple populations. Using a multi-ancestry approach, we identified novel clusters that 

help to elucidate the complex relationship between T2D, CAD, and NAFLD. We also 

demonstrated how genetic variation across ancestry groups can cause differences in 

body fat composition, thereby altering T2D risk. To advance the care of patients with 

diabetes, current and future studies may focus on precision medicine strategies to 

target specific biological mechanisms highlighted by the T2D genetic clusters.  

 

Methods 

Pipeline for input variant–trait association matrix for clustering 

The pipeline’s data preprocessing steps are detailed in the flowchart shown in Extended 

Data Fig. 1. For the multi-ancestry clusters, GWAS-significant (P < 5 x 10-8) variants 

were extracted from a diverse set of T2D GWAS (Supplementary Table 1), including 

studies performed in European, East Asian, African, Admixed American, South Asian 

and mixed cohorts. After removing indels and variants found in the major 
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histocompatibility complex (MHC) region, variants underwent five independent iterations 

of LD-pruning (LD r2 < 0.05, MAF < 0.001), one for each population’s reference panel. 

Variants were only retained if found to be independent in all five populations. If any of 

the pruned variants had high-missingness across the trait GWAS, was multi-allelic or 

was ambiguous (A/T, C/G), then it was replaced with a high-LD (r2 > 0.8) proxy variant. 

As a final check, the variants were queried in the largest multi-ancestry T2D GWAS and 

were removed if they had P > 0.05 or if there were discrepancies in the noted risk 

alleles. The final set of 650 T2D-associated variants are shown in Supplementary Table 

2.  

 

For the traits included in the clustering, we compiled an extensive list of 165 continuous 

phenotypes GWAS and allowed the pipeline to determine which were relevant to the 

T2D variants (Supplementary Table 3). We prioritized sex-specific and multi-ancestry 

GWAS; however, if those were not available for a specific trait, then European-based 

GWAS were used. Traits were filtered out if their median sample size was below 5,000 

or if their minimum P value for the final variant set was not Bonferroni-significant (Pmin > 

0.05/650 variants). Finally, we remove highly correlated traits (R > 0.80), prioritizing 

traits by their maximum variant-trait association (Supplementary Table 4C). With this 

final set of variants and traits (650 variants x 110 traits), we generated a matrix of 

standardized and scaled z-scores, which had been aligned to the T2D risk-increasing 

alleles. To fill in any remaining missing variant-trait associations in this final matrix, we 

used z-scores from proxies (LD r2 > 0.5) where possible, and otherwise assigned the 

trait’s median value.  
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The ancestry-specific clusters were generated using the same general steps; however, 

the input T2D GWAS were limited to studies where the cohort matched the population 

of interest. For the African and Admixed American clusters, the T2D P value threshold 

was lowered to P < 5 x 10-6, to account for the less powerful GWAS. The variants were 

pruned in a single iteration, using the appropriate reference panel for each population. 

For the traits, ancestry-specific GWAS were prioritized, followed by multi-ancestry and 

European-based summary statistics (Supplementary Table 3). 

 

Statistical comparison of cluster overlap 

To compare different versions of the T2D genetic clusters, we focused on the cluster 

weights assigned to the T2D-related traits. For each pair of clusters, we calculated the 

Pearson correlation coefficient (R) between each set of trait cluster weights. We 

compared the multi-ancestry clusters generated in this study to the T2D genetic clusters 

identified in our prior studies3,4. We also compared the ancestry-specific clusters to the 

multi-ancestry clusters and to the T2D genetic clusters from our prior study3. 

 

To compare the multi-ancestry clusters and the T2D clusters generated by the T2DGGI 

study31, we focused on the genetic loci included in each cluster, since the clustering 

method used by the T2DGGI study did not assign traits to specific clusters or generate 

cluster weights. First, we matched genetic variants included in the T2DGGI clusters to a 

corresponding high-LD variant (r2 > 0.5) from our multi-ancestry clusters. By doing so, 

we were able to transfer our variant weights to the T2DGGI clusters. We then assessed 
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the correlation between genetic variant weights across the T2DGGI and multi-ancestry 

clusters using the Wilcoxon rank-sum test. 

 

Calculation of partitioned polygenic scores 

We created partitioned polygenic scores (pPS) by calculating a weighted sum of the 

genetic variants in each cluster. We used individual-level data when possible; when 

unavailable, we used GWAS summary statistics. To calculate GWAS-partitioned pPS, 

we extracted the genetic variants from summary statistics of GWAS for specific traits. 

We combined the variants using inverse-variance weighted fixed effects meta-analysis, 

weighting each variant according to its GWAS effect size. We chose GWAS for several 

key glycemic traits (such as disposition index, proinsulin, and fasting insulin) as well as 

for measures of adipose tissue distribution or cardiometabolic outcomes. In addition, we 

calculated individual-level pPS using genotype data from two external biobanks: the All 

of Us research program32 and the Mass General Brigham (MGB) Biobank33. For 

individual-level pPS, we weighted the genetic variants according to the cluster weights 

generated by the bNMF algorithm. We only included those variants with a weight above 

0.7802, a threshold which was calculated to maximize the signal-to-noise ratio, as 

described in Kim et al.4 

 
Biobank Analyses 

For individual-level data, we performed a meta-analysis of two datasets. Each dataset 

was independent of the GWAS cohorts used to generate the clusters. Informed consent 
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was obtained from all participants in both datasets. We complied with all relevant ethical 

regulations when analyzing genetic data from human research participants.  

All of Us: Analysis of the All of Us cohort32 was approved by an institutional Data Use 

and Registration Agreement between MGB and the All of Us Research Program. We 

used the All of Us Controlled Tier Dataset v6. Full details on the demographic 

distribution of the dataset are provided in Supplementary Table 11. Individuals were 

classified as having type 2 diabetes if they were identified by an algorithm from 

Northwestern University as part of the Electronic Medical Records and Genomics 

(eMERGE) consortium34, or if they self-identified as having type 2 diabetes on the All of 

Us participant survey [Szczerbinski et al., manuscript in preparation]. The eMERGE 

algorithm classifies individuals based on diagnosis codes, medication prescriptions, and 

laboratory values. All individuals who were not classified as having type 2 diabetes were 

labeled as controls; however, individuals were excluded from the control group if they 

were less than 30 years old, or if they ever had a hemoglobin A1c greater than or equal 

to 6.5%. Other phenotypes were defined as described in Supplementary Table 14.  

MGB Biobank: We used clinical and genomic data from the MGB Biobank33, which was 

current as of October 2022. Analysis of the MGB Biobank was approved by the MGB 

IRB (study protocol 2016P001018). Full details on the demographic distribution of the 

dataset are provided in Supplementary Table 11. Type 2 diabetes was defined using a 

phenotype algorithm developed by the MGB Biobank, with a set positive predictive 

value of 0.95. Once again, individuals were excluded from the control group if they were 

less than 30 years old, or if they ever had a hemoglobin A1c greater than or equal to 

6.5%. Other phenotypes were defined as described in Supplementary Table 14.  
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Assessment of transcriptional activity 

We analyzed transcriptional activity of genetic loci using two databases of epigenomic 

information. For our primary analysis, we used CATLAS, a resource that maps regions 

of accessible chromatin across the human genome at single-cell resolution14. CATLAS 

uses ATAC-Seq to identify over 1 million candidate cis-regulatory elements across more 

than 200 distinct human cell types (both adult and fetal cells). As a secondary analysis, 

we used information from the Roadmap Epigenomics Consortium, which includes maps 

of regulatory elements for over 100 tissue types at the bulk tissue level15. To assess for 

enrichment of epigenomic annotations, we first defined 99% credible sets for each 

locus. To do this, we calculated approximate Bayes factors (aBFs) for all variants within 

a 500 kb window that had r2 ≥ 0.1 with the index variant, as described previously35. We 

calculated a posterior probability for each variant by dividing the aBF by the sum of all 

aBFs in the credible set. Next, within each cluster, we overlapped credible set variants 

with cell type genomic annotations and calculated the cumulative posterior probability 

(cPPA) for each annotation. We used a permutation test to assess the significance for 

annotations in each cluster. For each cluster, we permuted locus and cell type 

annotations and recalculated the cPPA based on shuffled labels. After performing 

10,000 permutations, we compared the observed cPPA to the permuted background 

using a one-tailed test to determine the significance of each annotation. We corrected 

for multiple tests and defined statistically significant enrichment at q value thresholds of 

0.1 and 0.001. 
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Determination of genetic ancestry 

We performed principal component analysis to uncover population stratification in each 

dataset (MGB Biobank and All of Us). Measurements that capture genetic similarity 

(such as principal components) are preferred when performing genomics research. 

However, due to privacy restrictions, we were unable to combine genomic data from 

both datasets to generate a single set of principal components. Therefore, we used 

principal component data to apply population descriptor labels at the level of continental 

ancestry, acknowledging that these labels are imprecise. We used a random forest 

classifier model to assign participants in each biobank to one of six continental ancestry 

groups (African, Admixed American, East Asian, European, Middle Eastern, or South 

Asian), following the method of the Pan-UK Biobank36. For any given individual, if the 

probability of each ancestry group was less than 50%, then the individual’s genetic 

ancestry was left as “unclassified”. The total number of individuals in each genetic 

ancestry group is listed in Supplementary Table 11. We excluded any population with 

fewer than 500 individuals in a given dataset; therefore, the Middle Eastern ancestry 

group was excluded from downstream analyses.  

 

Individual-level cluster associations with clinical phenotypes 

After generating individual-level pPS, we analyzed the association of the pPS with 

various clinical phenotypes, using linear regression (for continuous outcomes) or logistic 

regression (for binary outcomes). We analyzed all associations in a meta-analysis of 

both biobanks (MGB Biobank and All of Us), using a random effects model. Each 

regression model was adjusted for the following covariates: age, sex, and genetically 
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inferred ancestry. Certain regression models were also adjusted for type 2 diabetes 

status and/or BMI, as noted. A subset of analyses was performed separately for female 

or male participants only; these analyses included age and genetically inferred ancestry 

as covariates. To assess the significance of sex-specific differences, we constructed a 

regression model with all participants and included an interaction term between sex and 

cluster pPS. Clinical measurements that were not normally distributed were log-

transformed to obtain a normal distribution37; following previous studies, these 

measurements included BMI and triglycerides4,38.  

 

For validation tests that confirmed known associations between cluster pPS and 

variables used in the clustering algorithm, we did not use multiple test correction to 

denote statistical significance. Of note, clinical phenotypes were not directly used in the 

clustering algorithm, but several traits that were included in the clustering (i.e. glucose, 

hemoglobin A1c, creatinine, cystatin C, systolic blood pressure, and diastolic blood 

pressure) can define T2D, CKD, and hypertension. In contrast, association tests with 

the remaining phenotypes (CAD, NAFLD, diabetic retinopathy, and diabetic neuropathy) 

revealed novel associations with cluster pPS. For these discovery tests, we defined 

statistical significance using a Bonferroni-adjusted threshold of 0.05/(K x N), where K 

represents the number of clusters tested and N represents the number of phenotypes 

tested. For individual-level testing, we excluded any binary outcome in which fewer than 

500 participants met the outcome in either biobank; therefore, ischemic stroke was 

excluded from downstream analyses.  
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For patients taking lipid-lowering medications, we adjusted lipid levels for medication 

use as described previously39. In particular, total cholesterol was divided by 0.8, LDL by 

0.7, and triglycerides by 0.85. Due to the low frequency of individuals taking non-statin 

lipid-lowering medications (e.g. bile acid sequestrants), we did not adjust for these 

medications. In addition, we did not adjust HDL levels for medication use due to the lack 

of a clear quantitative relationship, although statins are generally felt to cause a modest 

increase in HDL levels. 

  

Calculation of ancestry-specific BMI cutoff values 

We determined ancestry-specific BMI cutoff values with equivalent risk of type 2 

diabetes as described previously25, except we used log transformation of BMI rather 

than fractional polynomials, following standard statistical practices37. For the outcome 

measure, we used the probability of type 2 diabetes generated from a logistic 

regression model, rather than type 2 diabetes incidence, as we were unable to reliably 

ascertain new diagnoses of type 2 diabetes in the biobank cohorts. We fitted a logistic 

regression model of type 2 diabetes status versus log(BMI), adjusted for age, sex, and 

genetic ancestry group. We determined the predicted probability of type 2 diabetes for 

an individual with European genetic ancestry and a BMI of 30. For each ancestry group, 

we calculated the BMI that would yield the same predicted probability of type 2 

diabetes. Then, we repeated this process after adjusting the logistic regression model 

for the specified cluster pPS values. All tests were performed in a meta-analysis of MGB 

Biobank and All of Us, using a random effects model. 
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Analysis of body composition metrics 

For participants in MGB Biobank, we used image-based body composition metrics 

derived from a machine learning algorithm40,41. This algorithm quantifies the cross-

sectional areas of muscle, subcutaneous adipose tissue (SAT), and visceral adipose 

tissue (VAT), as measured in abdominal computed tomography (CT) imaging at the 

level of the L3 vertebral body. For participants in All of Us, we used measurements of 

waist and hip circumference, which were measured for most participants at the time of 

enrollment. 

 

Data Availability 

All referenced GWAS summary statistics are publicly available and are cited in 

Supplementary Tables 3 and 9. Eligible researchers can apply to access individual-level 

data in the All of Us program (researchallofus.org). Individual-level data in the Mass 

General Brigham biobank are only available with approval from the Mass General 

Brigham Institutional Review Board. 

Code Availability 

Code for variant pre-processing, bNMF clustering, and basic visualizations is available 

at https://github.com/gwas-partitioning/bnmf-clustering. 
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