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Abstract 

Background: Major depressive disorder (MDD) is often marked by impaired 

motivation and reward processing, known as anhedonia. Many patients do not 

respond to first-line treatments, and improvements in motivation can be slow, creating 

an urgent need for rapid interventions. Recently, we demonstrated that 

transcutaneous auricular vagus nerve stimulation (taVNS) acutely boosts effort 

invigoration in healthy participants, but its effects on depression remain unclear. 

Objective: To assess the impact of taVNS on effort invigoration and maintenance in 

a sample that includes patients with MDD, evaluating the generalizability of our 

findings. 

Methods: We used a single-blind, randomized crossover design in 30 patients with 

MDD and 29 matched (age, sex, and BMI) healthy control participants (HCP).  

Results: Consistent with prior findings, taVNS increased effort invigoration for rewards 

in both groups during Session 1 (p=.040), particularly for less wanted rewards in HCP 

(pboot<.001). However, invigoration remained elevated in all participants, and no acute 

changes were observed in Session 2 (Δinvigoration=3.52, p=.093). Crucially, 

throughout Session 1, we found taVNS-induced increases in effort invigoration (pboot 

=.008) and wanting (pboot=.010) in patients with MDD, with gains in wanting maintained 

across sessions (Δwanting=0.06, p=.97).  

Conclusions: Our study replicates the invigorating effects of taVNS in Session 1 and 

reveals its generalizability to depression. Furthermore, we expand upon previous 

research by showing taVNS-induced conditioning effects on invigoration and wanting 

within Session 1 in patients that were largely sustained. While enduring motivational 

improvements present challenges for crossover designs, they are highly desirable in 

interventions and warrant further follow-up research.  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.09.28.23296284doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.28.23296284
http://creativecommons.org/licenses/by-nc/4.0/


Graphical abstract 

 

  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.09.28.23296284doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.28.23296284
http://creativecommons.org/licenses/by-nc/4.0/


Introduction 

While we often experience temporary low moods and motivation, persistent 

negative feelings may signify depressive episodes instead. With over 280 million 

people affected globally, major depressive disorder (MDD) is a leading cause of 

disability 1, 2. The prevalence of MDD highlights the need for improved treatment 

options. Particularly, somatic symptoms 3 and anhedonia are associated with greater 

severity and persistence of MDD 4, 5 and they respond worse to conventional 

treatments 4, 6. Recent hypotheses implicate aberrant interoceptive signaling as a 

potential cause in the etiology of somatic and motivational symptoms 7-9. The required 

communication between peripheral organs and the brain is channeled through the 

vagus nerve and converges on the nucleus of the solitary tract in the brainstem to 

modulate motivational circuits 10. Consequently, vagal afferents tune motivated 

behavior 11, 12 such as food seeking 13, 14 and response vigor 15. While preliminary 

evidence has shown the potential of transcutaneous vagus nerve stimulation (taVNS) 

to affect motivated behavior and brain–body signaling in healthy participants 16, 17, its 

potential for improving motivational deficits in MDD has not yet been established.  

Anhedonia is a cardinal symptom of depression and involves diminished reward 

anticipation and effort exertion 18-20. Although rewards typically boost motivation 21-23, 

this function appears impaired in patients with MDD 20, 24. In addition to struggling to 

adapt their behavior to reward magnitude, these patients often experience increased 

exhaustion after effort tasks 21, 24, 25. Since this motivation deficit worsens with 

symptom severity and correlates with a poorer prognosis 20, 26, there is an unmet need 

for rapid, targeted treatments addressing motivational alterations in MDD. 

To treat symptoms of anhedonia and boost mood in people with depression, 

pharmacotherapy with selective serotonin reuptake inhibitors (SSRIs) is the first line 

of treatment 27, 28. On the behavioral level, SSRIs have been shown to increase effort 

expenditure for rewards 29, a behavioral proxy of motivational facets of anhedonia 30. 

Still, antidepressant medication only improves reward-related symptoms in a subset 

of patients 31 and anhedonia is less responsive to SSRI treatments compared to mood-

related symptoms 32. Moreover, the antidepressant effects of SSRIs only materialize 

after several weeks of use 33-36. Hence, adjunct treatments, such as vagus nerve 

stimulation (VNS), have been proposed to improve symptoms more rapidly and 
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increase overall response rates 37, 38. Indeed, studies have shown antidepressant 

effects of invasive VNS 39-41 and non-invasive VNS 42-45. In addition to motivational 

effects, non-invasive VNS has been shown to acutely counteract anxiety-related 

mechanisms and symptoms 46, 47. Since non-invasive VNS is well-tolerated 48-50, it 

could be used as an adjunct treatment for motivational or somatic symptoms.  

Despite the promising long-term effectiveness of VNS 51-53, the acute effects on 

motivational symptoms remain largely elusive 50. In healthy participants, we have 

recently shown that taVNS boosts the drive to work for rewards 16 and ameliorates the 

dampened mood after effortful tasks 54. Since taVNS-induced improvements in 

motivation were stronger for participants with low baseline mood, it might be a 

promising technique to rapidly increase motivational drive in patients with MDD as 

well. To close this gap, we investigated taVNS-induced changes in the motivation to 

work for rewards16 using a single-blind crossover design (taVNS vs. sham) in 

participants with MDD as well as matched healthy control participants (HCP). Based 

on preclinical findings and our previous results, we expected taVNS to acutely boost 

motivation, generalizing to patients with MDD. In accordance with this hypothesis, we 

observed taVNS-induced increases in invigoration during the first session, whereas 

there was no acute effect of taVNS in the second session. Intriguingly, we observed 

conditioning effects in patients with MDD during the first session that were largely 

maintained, pointing to a potentially longer-lasting improvement elicited by taVNS. 
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Methods 

Participants 

We included 31 participants with MDD as well as 34 HCP in the study who 

completed two sessions: one with right-sided taVNS and the other with sham 

stimulation (order randomized). However, data had to be excluded from the analysis 

due to dropout (n=2), technical issues (n=3), or medication (1 HCP), leading to a final 

sample size of N=59 (i.e., n=29 HCP and n=30 with MDD, Table 1). To be included, 

participants went through a screening protocol to ensure they were physically healthy, 

18 to 65 years old, and within a normal or overweight range of their body mass index 

(BMI, 18.5-30 kg/m2). Participants with MDD had to fulfill the criteria for MDD 1 within 

the last 12 months and had to have a current BDI-II score ≥14 55. In contrast, HCPs 

had no history of depression. We only included participants without other mental 

comorbidities apart from anxiety disorders (in HCP only specific phobias) and tobacco 

use disorder 56. Participants provided written informed consent at the beginning of 

Session 1 and received either monetary compensation (32€ fixed amount) or course 

credit for their participation after completing the second session. Moreover, they 

received money and snacks depending on their performance during the tasks. The 

study protocol was registered at clinicaltrials.gov (NCT05120336). The study was 

approved by the ethics committee of the medical faculty of the university of Tübingen 

and conducted in accordance with the ethical code of the World Medical Association 

(Declaration of Helsinki). 
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 Variable N Overall, N=59 HCP, N=29 MDD, N=30 p-value2 

Sex 59    0.711 

male  19 (32%) 10 (34%) 9 (30%)  

female  40 (68%) 19 (66%) 21 (70%)  

Age 59 34.2 (13.5) 37.1 (14.5) 31.4 (12.1) 0.122 

Stimulation 

Session 1 

59    0.701 

Sham  30 (51%) 14 (48%) 16 (53%)  

taVNS  29 (49%) 15 (52%) 14 (47%)  

Comorbidities      

Anxiety 59 13 (22%) 5 (17%) 8 (27%) 0.381 

Trauma-related 59 2 (3.4%) 0 (0%) 2 (6.7%) 0.493 

Substance 

dependence 

(Tobacco) 

59 5 (8.5%) 3 (10%) 2 (6.7%) 0.673 

Personality 

disorders 

59 1 (1.7%) 0 (0%) 1 (3.3%) >0.993 

Medication      

SSRI 59 8 (14%) 0 (0%) 8 (27%) 0.0053 

SNRI 59 4 (6.8%) 0 (0%) 4 (13%) 0.113 

Other 59 3 (5.1%) 0 (0%) 3 (10%) 0.243 

Tetracyclic 59 3 (5.1%) 0 (0%) 3 (10%) 0.243 

Atypical 

antipsychotics 

59 2 (3.4%) 0 (0%) 2 (6.7%) 0.493 

Tricyclic 59 1 (1.7%) 0 (0%) 1 (3.3%) >0.993 

BMI [kg/m2] 59 24.3 (3.4) 24.0 (3.4) 24.6 (3.5) 0.42 2 

BDI 59 13.1 (11.3) 4.1 (3.7) 21.7 (9.2) <0.0012 

Minimal to mild     14 (48%)  

Moderate     7 (24%)  

Severe     8 (29%)  

SHAPS 59 2.5 (2.9) 0.9 (2.5) 4.1 (2.4) <0.0012 

Table 1: Characteristics of the sample. Values reported are mean (SD) for continuous 

variables and n (%) for categorical variables. 1Pearson's Chi-squared test; 2Wilcoxon rank sum 

test; 3Fisher's exact test. taVNS = transcutaneous vagus nerve stimulation, SSRI = selective 

serotonin reuptake inhibitor, SNRI = selective noradrenaline reuptake inhibitor, BMI = Body mass 

index, BDI = Beck Depression inventory, SHAPS = Snaith-Hamilton Pleasure Scale.  
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Experimental procedure 

Experimental sessions were conducted in a randomized, single-blind crossover 

design that was adapted with minor modifications from our previous studies (see 16, 54, 

Figure 1). Before the first session, participants were asked to answer several 

questionnaires at home, including the Beck Depression Inventory-II (BDI-II; 55), Snaith 

Hamilton Pleasure Scale (SHAPS; 57) and behavioral inhibition/activation scales 

(BIS/BAS; 58) to assess reward processing and quantify depressive symptoms. 

Participants were asked to fast 3-5h before each session (Mfast = 4.05h ± 2.12h) 

so that they felt neither full nor hungry. Sessions started at approximately the same 

time of the day (±1h) and lasted about 2.5h. In Session 1, participants provided written 

informed consent. After measuring physiological and anthropometric parameters (e.g., 

pulse and weight), we recorded their preceding food and drink intake. Participants 

were allowed to drink water during the whole session. Next, participants reported their 

current mood state based on the Positive And Negative Affect Scale (PANAS; Watson 

59) using visual analog scales (VAS). To practice the effort task and calibrate the 

individual maximum frequency of button presses, we included a training run of the 

effort allocation task (EAT). Then, the stimulation electrode of the NEMOS® tVNS 

device (cerbomed GmbH, Erlangen, Germany) was attached and secured with 

surgical tape on the right ear, either at the cymba conchae for taVNS or at the ear lobe 

for sham. For each session, we individually adjusted the stimulation amplitude by 

slowly increasing it in 0.1-0.2 mA steps until the participants’ sensation (assessed with 

VAS) was rated as a “mild pricking” and below the pain threshold 16, 60, 61. The 

stimulation then continued according to the default protocol (i.e., alternating 30 s 

phases of stimulation with biphasic impulse frequency of 25 Hz and 30 s pauses). 

After a food-cue reactivity task (~20 min; 56, 60), participants completed the EAT 

(~40 min). The EAT 16, was adapted from 62 and assesses reward-related processes 

by the willingness to exert physical effort to gain food or money rewards depending on 

the difficulty and reward magnitude. Briefly, participants either worked for food or 

money tokens of either low (1 point) or high (10 points) magnitude. Difficulty also varied 

(easy vs. hard), leading to 8 possible trial combinations that were presented 6 times 

each. In each trial, participants saw a blue ball inside a vertical tube with a red 

horizontal line above it on the screen. The height of the red line indicated the level of 
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difficulty and trial type (i.e., reward type and reward magnitude) was displayed in the 

upper right corner throughout the trial. To lift the blue ball above the red line, 

participants had to repeatedly press the right trigger button of an Xbox 360 controller 

(Microsoft Corporation, Redmond, WA); the faster the button was pressed, the higher 

the ball would go. For every second the ball was held above the line, money or food 

points were collected and the current score was displayed in the upper right corner of 

the screen. After each trial, participants were asked about how much they wanted the 

rewards and how much they exerted themselves via VAS. The task included 48 trials 

and two 15s breaks. During the EAT, taVNS was started in synchronization with the 

reward cue by the experimenter. Then, the stimulation continued with the default 

protocol while participants completed a reinforcement learning task (~15 min; 63). 

The task block was followed by VAS ratings. After removal of the taVNS 

electrode, the participants received their snack reward according to their achieved 

energy points and had time to eat as much as they liked during a short break. Then, 

participants answered the state VAS ratings for the last time. To complete the session, 

monetary winnings were paid out based on their earnings in the tasks. Both sessions 

followed the same standardized protocol and were conducted within an interval of 2-7 

d (M = 4.68d ± 2.70). To evaluate the success of blinding, participants reported 

whether they received sham or taVNS at the end of each session. Their responses did 

not exceed the chance level (recorded guesses: 118, correct guesses: 63, accuracy: 

53.3%, pbinom= .52), suggesting successful blinding. 
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Figure 1. Experimental procedure and overview of the effort allocation task (EAT). Participants (29 

healthy control participants, HCP, and 30 with major depressive disorder, MDD) completed two 

experimental sessions, one with active transcutaneous auricular vagus nerve stimulation (taVNS) and 

one with sham stimulation (randomized crossover). Within each session, participants complete tasks 

during stimulation. In the EAT, participants have to repeatedly press a button on an Xbox controller to 

elevate a ball above a red difficulty line to collect food and monetary reward points. Trials differ in their 

reward magnitude, reward type, and difficulty. After each trial, participants rated how much they wanted 

to receive the reward and how much they exerted themselves using visual analog scales (VAS). 

RF = relative frequency (to the maximal frequency of the participant during the training) 

Data analysis 

Estimation of invigoration and maintenance of effort as a motivational index 

To isolate invigoration and maintenance of effort as motivational indices, we 

segmented the behavioral data into work and rest segments 

(https://github.com/neuromadlab)16. We calculated taVNS effects using univariate 

mixed-effects models for our two dependent variables: effort invigoration and 

maintenance 16. Briefly, the models predicted each dependent variable based on the 

following dummy-coded variables: stimulation (taVNS, sham), reward type (food, 

money), reward magnitude (low, high), and difficulty (easy, hard), and the interaction 

between reward magnitude and difficulty. Additionally, we included interaction terms 

of stimulation with all other terms mentioned. To assess differential effects of taVNS 

in the MDD group compared to HCP, we included MDD diagnosis as a between-

participant factor in interaction with the stimulation effect as well as reward magnitude 

and difficulty. Additionally, stimulation order (centered) was included as a nuisance 

variable. To account for deviations from fixed group effects, random slopes and 
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intercepts were modeled for all predictors. Comparable models were used to 

investigate taVNS-induced changes in wanting. 

To evaluate whether taVNS modulates the association between subjective 

ratings and motivation, we additionally used robust regression analysis that is 

preferable in the presence of heteroscedasticity and outliers 64 as is common in the 

rating data. Analogous to our previous work 16, we ran a robust regression (MATLAB 

robustfit, weight function huber) at the group level separately for the MDD and HCP 

groups as many participants had a restricted range in wanting ratings leading to 

uninformative individual slope estimates. Significance was assessed using 

permutation tests (with 10,000 iterations). We then compared the observed difference 

in slopes (taVNS – sham) to the null distribution to calculate p-values for the complete 

sample as well as HCP and MDD groups separately. Due to the advantages of robust 

regression, we used the same approach to compare increases in wanting and 

invigoration across trials and between taVNS and sham. 

Statistical threshold and software 

For our analyses, we used a two-tailed α ≤.05 threshold. Mixed-effects analyses 

were conducted with lmerTest in R 65. Data was visualized using ggplot2 66 and ggdist 

67. We processed data with MATLAB vR2021b and plotted results with R v4.1.1 

(R Core Team, 2021).  
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Results 

To evaluate taVNS effects on effort invigoration and maintenance, we used 

mixed-effects models. First, we replicated the main task effects as participants worked 

more vigorously (invigoration: b= 6.2, p= .007) and harder for higher rewards; 

(maintenance: b= 9.3, p= .002). Participants also showed higher effort maintenance 

(b= 9.1, p= .0001), but not effort invigoration (b= -1.5, p= .35) for easy trials. In contrast 

to our previous study when participants were fasted, they now worked more vigorously 

(b= 5.1, p= .0005) and harder (b= 7.6, p< .001) for money as opposed to food. 

Regarding trial-wise subjective ratings, wanting was associated with both effort 

invigoration (b= 0.16, p< .001) and effort maintenance (b= 0.19, p< .001, Figure S1), 

whereas exertion was more strongly associated with effort maintenance (b= 0.35, 

p< .001) compared to invigoration (b= 0.08, p= .013), again replicating the pattern of 

our previous study.  

Next, we compared performance between the HCP and MDD groups across 

conditions. To this end, we did not include interactions with group in this model. 

Participants with MDD did not exert less effort than HCP (Figure 2, all ps> .21) and 

performance was independent of symptom severity (as assessed by the BDI) and 

anhedonia (as assessed by the SHAPS (all ps> .38), see Tables S1-S4 for session 

specific differences). Adding sex, age, and BMI as covariates did not affect group- or 

stimulation-related inferences. In Session 1, patients with MDD reported lower wanting 

(b= -8.7, p= .032), but this difference was attenuated in Session 2 (b= -5.9, p= .33) 

and not significant across both sessions (b= -8.1, p= .078). Mirroring task 

performance, subjective ratings of exertion (S1: b= 0.9, p= .75, S2: b= 2.4, p= .41) 

were not different between groups. Again, neither symptom severity, nor anhedonia 

were specifically associated with wanting or exertion ratings (Table S5-S8).  
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Figure 2. Patients with major depressive disorder (MDD) invest comparable effort for rewards but report 

lower wanting initially compared to healthy control participants (HCP). a: The absolute frequency of 

button presses showed no differences between groups in either session (Session 1: b= -0.05, p= .74, 

Session 2: b= -0.12, p= .46). b: Effort maintenance as assessed by the relative button press frequency 

throughout the trial was comparable across groups in Session 1 (b= 3.1, p= .33) and Session 2 (b= 4.5, 

p= .15). The nominally higher relative frequency was primarily due to the initial calibration at an 

individual level as absolute frequencies were nearly identical. c: There were no differences in 

invigoration slopes between groups in Session 1 (b= 1.9, p= .33) or Session 2 (b= 1.8, p= .59). d: 

Wanting was significantly lower in MDD compared to HCP in Session 1 (b= -7.0, p= .017), with a similar, 

non-significant trend in Session 2 (b= -2.4, p= .42).  
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taVNS boosts the drive to work for less wanted rewards 

We then sought to replicate our previous findings that taVNS increases effort 

invigoration in healthy participants and evaluated whether it generalizes to patients 

with MDD. In line with Neuser et al. 16, there was no taVNS-induced increase in effort 

maintenance (b= 1.1, p= .64, Table S10) across the sample. However, there was no 

taVNS-induced increase in invigoration (b= 0.02, p= .99, Table S9, Fig. 2a) across the 

sample and sessions. Nevertheless, in line with Neuser et al. 16, taVNS boosted 

invigoration (b= 5.6, p= .040, Cohen’s dS1= 0.55, Figure 2a) in Session 1, and 

invigoration did not change any further in Session 2 (Δinvigoration= 3.3, p= .12). 

Moreover, taVNS-induced changes were comparable in participants with vs. without 

MDD (Stim×Group: invigoration p= .87, maintenance p=. 80). Hence, participants who 

received taVNS in the first session continued to benefit from the stimulation but 

showed little additional change due to the acute stimulation in Session 2 (Figure 2a).  

Next, we conducted a post hoc re-analysis of our previous data 16 to compare 

carryover effects. Although the previously reported taVNS-induced increase in 

invigoration was significant across both sessions, acute taVNS effects were also larger 

in the first session (Cohen’s dS1= 0.47, Cohen’s dS2= 0.01). Moreover, we replicated 

that taVNS increased the drive to work for less wanted rewards as indexed by a 

reduced correlation between wanting ratings and effort invigoration in the HCP group 

(HCP: b= -0.10, pperm= .0014, Fig. 3b-c). Notably, this taVNS-induced decrease in the 

slope was absent in patients with MDD (b= 0.05, p= .080). Whereas there was no 

difference in the correspondence of wanting and invigoration between groups in the 

sham condition (b= 0.05, pperm= .11), the HCP group had significantly lower 

correspondence between wanting and invigoration in the tVNS condition (b= -0.10, 

p= .008). To summarize, acute taVNS-induced increases in invigoration are replicably 

larger in Session 1, and these gains were more conserved and carried over to Session 

2 in the present study.  
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Figure 3. Vagus nerve stimulation (VNS) boosts the drive to work in Session 1 and for less wanted 

rewards in healthy control participants (HCP). a: Invigoration is increased in Session 1 compared to 

sham (b=5.6, p=.036) across both groups. In Session 2, invigoration did not change and differences 

from Session 1 were maintained (Δinvigoration= 3.3, p= .12). Participants receiving taVNS first are 

depicted in red in Session 1 and blue (sham) in Session 2 due to the crossover design of the study. 

Error bars depict 95% confidence intervals at the trial level. b: During taVNS, effort invigoration becomes 

less dependent on wanting in HCP (pperm= .0014), but not in patients with MDD (where the slope tends 

to increase, pperm=.089). Wanting ratings are shown as 2d-density polygon, where brighter colors 

indicate a higher density of data. c: Distributions of the permutated associations between invigoration 

and wanting during taVNS vs. sham. We fitted robust regression coefficients, b, after permuting the 

labels for taVNS vs. sham stimulation, and calculated the difference in slopes (colored bars: dark gray 

= HCP, light blue = MDD, light gray = combined sample) to a permuted null distribution (violin plots in 

the background in gray). This permutation test showed a significant main effect of taVNS in HCP, but 

not patients with MDD. BPR/s = button press rate in % per s. 
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taVNS durably enhances motivation and gains extend to wanting in depression 

To better understand how taVNS-induced increases in Session 1 are translated 

to lasting motivational differences in Session 2, we further explored trial-based 

dynamics of taVNS effects. We reasoned that stimulation-induced changes in behavior 

and ratings across trials might track behavioral adaptations and that taVNS-induced 

gains might be linked to durable changes in the subjective value of the rewards at 

stake. To investigate trial-based dynamics, we estimated the effect of taVNS (vs. 

sham) on changes in effort invigoration and wanting within sessions (i.e., by estimating 

trial slopes capturing changes over trials). In line with an instrumental conditioning 

effect, taVNS induced stronger increases in effort invigoration (pperm= .005) and 

wanting (pperm= .011) during the first session in patients with MDD, but not HCP 

(invigoration: pperm= .96; wanting: pperm= .90). When including continuous symptom 

severity instead of group, participants with a higher BDI showed lower trial-wise 

increases in invigoration (r= .37, p= .046, Figure S1-2) during Session 1 (with a 

comparable trend for wanting, r=.28, p= .14). During taVNS, this association of 

increases in invigoration with BDI was fully attenuated (r= .00, p= .99), indicating that 

taVNS normalized motivation in Session 1 (for associations with other baseline 

characteristics, see Figure S1). Notably, invigoration and wanting plateaued at the end 

of Session 1 and there were no incremental changes in Session 2 (invigoration: b= 

3.3, p= .12, wanting: b = -0.29, p=. 88), suggesting that gains were largely preserved 

across sessions and only marginally influenced by acute stimulation after learning on 

the task. Hence, we also assessed whether taVNS-induced changes between 

sessions were affected by the delay. While we observed nominally lower indices when 

sessions were further apart, the association was not significant (invigoration: b= -0.97, 

t(55)= -1.48, p= .15; wanting: b= -0.97, t(55)= -1.37, p= .17, Figure S3) and a 

reanalysis of the previous HCP data did not show the same pattern (invigoration: 

b= 1.1, t(79)= 1.51, p= .13; wanting: b= -0.81, t(79)= -1.28, p= .21). Taken together, 

our results suggest that taVNS induces rapid gains in invigoration and wanting in 

patients with MDD that persist into Session 2.  
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Figure 3. Transcutaneous auricular vagus nerve stimulation (taVNS) increases effort invigoration and 

wanting across trials in patients with major depressive disorder (MDD). a: Trajectories of effort 

invigoration across trials split by stimulation, session, and group. In Session 1, patients with MDD show 

stronger taVNS-induced increases in invigoration across trials (pperm=.005), indicating instrumental 

learning. b: Across participants, the conditioned increase in invigoration in Session 1 does not change 

in Session 2 (p=.12). c: taVNS-induced increases in invigoration across trials are observed in patients 

with MDD, but not HCP compared to permuted null distributions (colored bars: dark gray = HCP, light 

blue = MDD, light gray = combined sample). d: Trajectories of wanting ratings across trials split by 

stimulation, session, and group. In Session 1, patients with MDD show stronger taVNS-induced 

increases across trials (pperm=.011) indicating instrumental conditioning. e: Learned evaluation of the 

reward at stake as indexed by wanting in the last quarter of the experiment in Session 1 does not 

change in Session 2 (p=.88) across participants. f: taVNS-induced increases in invigoration slope 

across trials are observed in patients with MDD, but not HCP compared to permuted null distributions.    
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Discussion 

Loss of motivation is a pervasive symptom of MDD that is often not effectively 

treated by the current first line of treatment. To this end, we evaluated acute effects of 

taVNS on the willingness to work for rewards in participants with and without MDD. 

First, we replicated that taVNS boosts invigoration in both groups during the first 

session, corroborating our previously reported findings in healthy participants 16. 

Second, we did not replicate that acute taVNS leads to an increase in invigoration 

across both sessions. Instead, taVNS-induced gains in effort invigoration persisted 

into the second session, demonstrating durable increases that could reflect 

instrumental conditioning. In support of this interpretation, we observed increases in 

invigoration and wanting in patients with MDD across trials in the first session, 

indicating that taVNS may facilitate effort-related learning processes that translate to 

the subjective evaluation. Surprisingly, these transfer effects were stable and largely 

resistant to the effects of acute stimulation during the second session. Third, we also 

replicated an increased invigoration for less wanted rewards in HCP, but not in patients 

with MDD. This discrepancy corroborates differences in the dynamics of learning 

during the effort task, where taVNS facilitated a rapid improvement of motivation 

during the first session that translated immediately to changes in subjective wanting in 

patients with MDD, but not in HCP. Taken together, our study demonstrates that acute 

taVNS-induced changes in invigoration and wanting may facilitate value-related 

learning processes that could be beneficial for the development of novel treatments 

for motivational symptoms of MDD. 

In line with our previous results in healthy participants, taVNS increased 

invigoration in both groups in the first session. However, taVNS-induced increases in 

invigoration persisted into the second session and were no longer substantially altered 

by the acute stimulation, indicating longer-lasting learning effects. We then reanalyzed 

our previously collected data 16 and observed larger taVNS-induced effects in the first 

session as well that were comparable to the new sample. In contrast, carryover effects 

were more pronounced compared to Neuser et al.16. These differences might be due 

to changes in our procedure. First, more participants completed their second session 
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two days after the first, leading to a shorter time interval between sessions. Second, 

to ease the recruitment of patients with MDD during the pandemic, participants 

completed the sessions in a non-fasting state corresponding to neither hungry nor full68 

and at different times of day 69. Persistent effects of taVNS due to learning are in line 

with rodent studies showing that VNS improves memory persistence 70. In humans, 

taVNS-enhanced memories were primarily reported for emotional stimuli and episodic 

content 46, 47, 71, 72. Likewise, taVNS has been shown to reduce learning rates which 

may also reflect longer-lasting memory traces for rewards 63. The interpretation that 

taVNS leads to a differentially learned memory trace is strengthened by the 

observation that taVNS-induced gradual increases of invigoration and wanting in 

patients with MDD in the first session. Crucially, the transfer of a heightened reward 

drive with corresponding changes in the subjective wanting of rewards in patients with 

MDD is highly promising for potential interventions. Such trial-to-trial increases in effort 

invigoration might be explained by enhanced motor learning which has been observed 

in rats 73, 74 and translated for clinical use in the recovery of motor function after a 

stroke 75. In healthy humans, the evidence for taVNS effects on reinforcement learning 

is still mixed 63, 76, but a small study in patients with epilepsy also reported taVNS-

induced improvements in learning across trials 77. Taken together, taVNS might lead 

to changes in effort-related learning processes, and harnessing these effects might 

help normalize motivation in patients with MDD to provide a lasting boost in reward-

related behavior. 

In support of a largely subconscious boost of motivational drive, we replicated 

that taVNS enhances invigoration for less wanted rewards in healthy participants 16. 

Hence, taVNS might enhance the utility to work for rewards regardless of the expected 

benefit which would be in line with changes in monoaminergic signaling 78. Intriguingly, 

this reduction in the utility slope was only observed in healthy participants, and not in 

patients with MDD. To better understand this discrepancy, we conducted additional 

analyses within Session 1, demonstrating trial-wise increases in wanting during taVNS 

in patients with MDD. This gradual change in subjective ratings that we did not observe 

in healthy participants might reflect a normalization of reward-related dysfunctions in 

patients with MDD 21, 25, 32, 79. Previous work in patients with MDD has shown that their 
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behavior is less sensitive to manipulations of reward values 80 and taVNS may rapidly 

improve sensitivity to task-related performance feedback as a mechanism of learning. 

Likewise, taVNS may enhance sensitivity to interoceptive signals 12, 17 contributing to 

effortful behavior and the subjective evaluation of costs and benefits of action 16, 81, 82. 

Therefore, alterations in interoception that have been recently linked to depression 83-

86 might provide a mechanism for taVNS to rapidly improve instrumental learning, both 

in terms of invigoration and subjective wanting. Since MDD is also characterized by 

dysregulation of the autonomic nervous system 87, 88 and the monoaminergic system35, 

89-91, taVNS may help normalize signaling in patients with MDD. Consequently, taVNS 

might reveal differential modes of action in healthy populations compared to patients 

with MDD which may ultimately contribute to an improved understanding of the role of 

vagal afferent signals in regulating motivation in both health and disease.  

To guide future research, several limitations of the current study must be 

considered. First, although persistent taVNS-induced gains in motivation are desirable 

for interventions, our crossover design was not optimized to resolve such carryover 

effects. Our post hoc analyses indicate that longer intervals between sessions may 

attenuate carryover effects (Figure S2). However, this pattern was not visible in our 

previous data 16. Therefore, future work should investigate carryover effects with more 

longitudinal sessions, including the pressing clinical questions how long taVNS-

induced changes in invigoration and wanting last and how long-term changes in 

motivation could be facilitated. Second, to improve accessibility for patients with MDD, 

experimental sessions took place throughout the day, not only after an overnight fast 

as in our previous studies 16, 54, 60, 63. Hence, metabolic states were more variable 

among participants (i.e., sessions took place 3 to 5 h after the last meal). Considering 

the role of vagal signaling in conferring the current state of the body 11, the effects of 

taVNS might conceivably depend on the metabolic state 68. Third, patients with MDD 

did not exert less effort compared to HCP as previous research has suggested 18, 20. 

Here, we predominantly recruited patients with mild to medium severity of depression 

(~71%) who were receiving treatment. MDD is a heterogeneous disorder with distinct 

subgroups and symptom profiles 26, and impaired motivation is one facet of anhedonia 

18, 20, 32. Nevertheless, patients with MDD reported lower wanting of rewards during the 
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first session. Larger samples including patients with greater symptom severity and, 

ideally, without concurrent medication with SSRIs might yield more robust associations 

with behavior, even though this would reduce the representative of the patient sample. 

Fourth, although including the current medication (i.e., taking antidepressants vs. no 

medication) did not alter the reported results, taVNS might interact differently with 

antidepressants depending on whether they primarily target the dopamine or serotonin 

system 30. Since the current study is not sufficiently powered to evaluate differences 

between antidepressant classes, future studies are needed to investigate potential 

interactions of taVNS with commonly prescribed antidepressants. 

Motivational symptoms of MDD are difficult to treat and we tested whether 

previously discovered acute invigorating effects of taVNS also occur in patients with 

MDD. Accordingly, we found that taVNS boosted invigoration across groups in the first 

session and taVNS-induced gains even persisted into the second session. In patients 

with MDD, taVNS-induced gains in invigoration evolved over trials and were mirrored 

in increases in wanting, suggesting an instrumental conditioning of subjective value 

that also persisted into the second session. Notably, we also replicated that taVNS 

boosted invigoration for less wanted rewards in healthy participants while patients with 

MDD showed instant improvements in subjective ratings of reward. To conclude, our 

results highlight distinct dynamics of instrumental learning elicited by taVNS in HCP 

and MDD. Specifically, taVNS-induced instrumental conditioning of effort, leading to 

durable effects on invigoration and wanting, appears highly promising for future 

motivational treatments, where taVNS could be used as an adjuvant in behavioral 

modules of therapy. 
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