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ABSTRACT 

Importance: Aortic stenosis (AS) is a major public health challenge with a growing therapeutic 

landscape, but current biomarkers do not inform personalized screening and follow-up. 

Objective: A video-based artificial intelligence (AI) biomarker (Digital AS Severity index 

[DASSi]) can detect severe AS using single-view long-axis echocardiography without Doppler. 

Here, we deploy DASSi to patients with no or mild/moderate AS at baseline to identify AS 

development and progression. 

Design, Setting, and Participants: We defined two cohorts of patients without severe AS 

undergoing echocardiography in the Yale-New Haven Health System (YNHHS) (2015-2021, 

4.1[IQR:2.4-5.4] follow-up years) and Cedars-Sinai Medical Center (CSMC) (2018-2019, 

3.4[IQR:2.8-3.9] follow-up years). We further developed a novel computational pipeline for the 

cross-modality translation of DASSi into cardiac magnetic resonance (CMR) imaging in the UK 

Biobank (2.5[IQR:1.6-3.9] follow-up years). Analyses were performed between August 2023-

February 2024. 

Exposure: DASSi (range: 0-1) derived from AI applied to echocardiography and CMR videos. 

Main Outcomes and Measures: Annualized change in peak aortic valve velocity (AV-Vmax) 

and late (>6 months) aortic valve replacement (AVR). 

Results: A total of 12,599 participants were included in the echocardiographic study (YNHHS: 

n=8,798, median age of 71 [IQR (interquartile range):60-80] years, 4250 [48.3%] women, and 

CSMC: n=3,801, 67 [IQR:54-78] years, 1685 [44.3%] women). Higher baseline DASSi was 

associated with faster progression in AV-Vmax (per 0.1 DASSi increments: YNHHS: +0.033 

m/s/year [95%CI:0.028-0.038], n=5,483, and CSMC: +0.082 m/s/year [0.053-0.111], n=1,292), 

with levels ≥ vs <0.2 linked to a 4-to-5-fold higher AVR risk (715 events in YNHHS; adj.HR 

4.97 [95%CI: 2.71-5.82], 56 events in CSMC: 4.04 [0.92-17.7]), independent of age, sex, 

ethnicity/race, ejection fraction and AV-Vmax. This was reproduced across 45,474 participants 

(median age 65 [IQR:59-71] years, 23,559 [51.8%] women) undergoing CMR in the UK 

Biobank (adj.HR 11.4 [95%CI:2.56-50.60] for DASSi ≥vs<0.2). Saliency maps and phenome-

wide association studies supported links with traditional cardiovascular risk factors and diastolic 

dysfunction. 

Conclusions and Relevance: In this cohort study of patients without severe AS undergoing 

echocardiography or CMR imaging, a new AI-based video biomarker is independently 
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associated with AS development and progression, enabling opportunistic risk stratification across 

cardiovascular imaging modalities as well as potential application on handheld devices.   

 

KEYWORDS: artificial intelligence, imaging, aortic stenosis, risk stratification, computer 

vision
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INTRODUCTION 

With the expanding availability of transcatheter and surgical aortic valve replacement (AVR) 

procedures that effectively modify the prognosis of aortic stenosis (AS),1–4 there has been a focus 

on the timely identification of individuals at risk of rapid progression.5–8 Such efforts have been 

limited by the high prevalence of aortic sclerosis, variable progression rates, 9–11 and marked 

heterogeneity in the condition and its drivers.12–15 As monitoring continues to depend on referrals 

for comprehensive testing by Doppler echocardiography, there is an unmet need to develop more 

precise algorithms to better define the personalized trajectory of AS. 

 We recently developed a deep learning (DL) strategy that uses a self-supervised, 

contrastive learning approach to learn the computational representation of severe AS on simple 

parasternal long axis (PLAX) videos without Doppler,16 a standard echocardiographic view  

easily captured on handheld devices.16,17 The predicted model-derived phenotype score, the 

Digital AS Severity index (DASSi), demonstrated excellent performance (Area Under the 

Receiver Operating Characteristic curve [AUROC] of 0.94-0.98) for the discrimination of severe 

AS across 9,338 studies in three distinct cohorts.16  

In the present study, we hypothesized that, as DASSi identifies the echocardiographic 

signature of severe AS, it may stratify the risk of AS development and progression among 

individuals without AS or with early valve sclerosis and stenosis, independent of traditional 

Doppler parameters. Furthermore, we hypothesized that the anatomical and temporal information 

learned by DASSi through self-supervised pre-training on a video-based modality16 would 

generalize to other modalities where the cinematic representation of cardiac activity is captured. 

We examined this using data from two health system-based echocardiography cohorts across the 

U.S., as well as cardiac magnetic resonance (CMR) data from the UK Biobank18 after developing 

a computational pipeline for cross-modal translation, thus spanning a range of geographical 

settings, imaging modalities, and phenotypes. 

 

METHODS 

Study Design, Study Population and Data Source: 

Echocardiography Study: This was a multi-center retrospective cohort study of patients without 

severe AS (with moderate, mild, or no AS) who underwent clinical echocardiography and were 

followed longitudinally within their respective health systems (Figure 1A). Participants were 
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independently drawn from 5 hospitals affiliated with Yale-New Haven Health System (YNHHS) 

across Connecticut and Rhode Island between 2015-2021, and from Cedars-Sinai Medical Center 

(CSMC) (Los Angeles, California) between 2018-2019 to define two nested sub-cohorts within 

each center: (1) A longitudinal echocardiography cohort of individuals undergoing clinically-

indicated transthoracic echocardiography (TTE) at two or more timepoints; and (2) a clinical 

outcomes cohort which included all individuals with longitudinal follow-up for AVR. Eligible 

individuals had i) baseline peak aortic valve velocity (AV-Vmax) of <4 m/sec, ii) no prior AVR, 

and iii) PLAX videos available for processing. To avoid bias, none of the patients from the 

original training set were included.16 Moreover, the YNHHS cohort was specifically enriched for 

cases of mild/moderate AS, whereas the CSMC cohort sampled cases at random, reflecting local 

AS prevalence (Supplement). 

 CMR study/UK Biobank: The UK Biobank represents a prospective observational study 

of 502,468 participants aged 40-69 years. We performed a post-hoc analysis on 45,474 

individuals (182 [0.4%] patients with AS of undetermined severity by diagnosis codes) who 

enrolled in the CMR sub-study between 2014-2020,18,19 after excluding individuals who had 

withdrawn consent, had prior AVR or videos that failed technical preprocessing (Figure 1B).  

Across all three cohorts reporting stands consistent with the STROBE statement.29 Race 

and ethnicity were self-reported by the participants. In the YNHHS cohort, race categories 

included African American, Asian, White, and other, which included American Indian or 

Alaskan Native, Native Hawaiian or Pacific Islander, more than one race, unknown, or not 

reported. Hispanic ethnicity was reported separately. In the CSMC cohort, Hispanic ethnicity 

was included as an additional field under race/ethnicity. In the UKB, race groups included Asian 

(or Asian British, or Chinese), Black (or Black British), White, and other, which included more 

than one race, unknown, or not reported. 

 

Echocardiogram/CMR Interpretation: All clinical echocardiograms were reviewed by board-

certified cardiologists in the local laboratories who determined the presence and severity of AS 

according to the American Society of Echocardiography.9,20 Measurements other than DASSi 

were derived from the structured echocardiographic reports. The CMR studies in the UK 

Biobank were performed as part of a research protocol, with left ventricular ejection fraction 

(LVEF) measurements previously measured in an automated manner (Supplement).21,22  
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Cardiac magnetic resonance (CMR) pre-processing: To test the cross-modal generalizability 

of the video-based algorithm, we defined a novel pipeline that extracts individual CMR files, 

identifies long-axis cine views of the left ventricular outflow tract, and compiles these into cine 

videos. These are then rotated, cropped to cardiac outline, and inverted to grayscale to create 

clips that loosely mimic the acquisition of a PLAX view on echocardiography (Supplement). 

 

DASSi calculation: DASSi can be directly quantified using a simple two-dimensional video.16 

Our algorithm provides a numerical probability of severe AS phenotype ranging from 0 (lowest 

probability) to 1 (highest probability). For reference, the validated cut-off for screening of severe 

AS in the general population was previously set at 0.607.16 Deployment of DASSi involves 

sequential automated steps that include de-identification, down-sampling, automated view 

classification, and inference using an ensemble model (Supplement). We computed DASSi at the 

level of each echocardiographic study by averaging video-level predictions, as previously 

described.16,23 For CMR, we applied DASSi directly to the pre-processed PLAX-like CMR 

videos (one video per patient). 

 

Definition of outcomes: 

Echocardiographic outcomes: The primary echocardiographic outcome was the annualized rate 

of change in the AV-Vmax (m/sec/year). If three or more studies were present, we calculated the 

rate of change as the coefficient of a univariate ordinary least squares regression model of time 

against AV-Vmax. To avoid outlier effects, we winsorized the rate of change to no less than -1 

m/sec/year and no more than +2 m/sec/year.24 We chose this over the aortic valve area (AVA) or 

mean gradient, as these were not consistently measured in patients without AS (missing in 36.8% 

and 29.0% of cases, respectively). Secondary echocardiographic outcomes were: i) progression 

to a higher severity (mild-moderate-severe) stage, ii) development of any (≥mild) AS (among 

patients without AS at baseline), iii) and a sensitivity analysis on discrimination of participants 

with fast (≥0.4 m/sec/year) vs no measured progression (no increase) in AV-Vmax. 

Clinical outcomes: The primary clinical outcome was time-to-AVR, with all-cause mortality as 

a competing risk. These outcomes were derived from the linked institutional electronic health 

records, which provided dates of relevant procedures and the date of death, including out-of-
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hospital deaths. Across cohorts, we applied a blanking period of 6 months to avoid 

contamination of our results from echocardiograms performed during acute illness or from early 

AVR in the setting of possible AS misclassification. (see Supplement).  

 

Model explainability: 

Saliency maps: To supplement our prior work in echocardiography,16 we generated sample 

saliency maps for selected high DASSi cases using the self-supervised part of the ensemble 

model and Gradient-weighted Class Activation Mapping (Grad-CAM).25 We present the 

pixelwise maximum along the temporal axis to capture the most salient regions. Phenome-wide 

association study (PheWAS): To explore the clinical correlates of DASSi we applied a 

computational approach that automatically maps ICD-10 codes to 1,572 unique phenomic 

concepts, adjusts estimates for relevant covariates (age and sex), applies Bonferroni correction, 

and visualizes the results using a Manhattan plot.26,27 

 

Statistical Methods: Categorical variables are summarized as counts (valid percentages), and 

continuous variables as mean ± standard deviation, or median [25th-75th percentile], unless 

specified otherwise. Normally distributed continuous variables between two groups were 

compared by unpaired t-test. Pairwise comparisons between continuous variables or an ordinal 

and a continuous variable were performed using Spearman’s ρ coefficient. Across all 

multivariable regression models covariates with missing values were imputed using non-

parametric chained equation imputation with random forests by including all model covariates 

(age/sex/race/ethnicity/AV-Vmax/DASSi/baseline LVEF).28 Correlations between continuous 

variables were visualized using Loess regression plots that use local weighted regression to fit 

smooth curves. 

For the analysis of the echocardiographic and clinical outcomes, we defined nested 

models that included the patient’s age, sex, race, ethnicity, AV-Vmax, and LVEF at baseline, 

followed by the addition of DASSi. For the rate of change in AV-Vmax, we fit a multivariable 

generalized linear model (GLM) and compared the improvement in model performance when 

adding DASSi using the likelihood-ratio (LR) chi-squared test. Calibration was examined based 

on the alignment between observed progression rates across progressively higher DASSi in the 

CSMC cohort based on the YNHHS models. The performance of the two models in 
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discriminating individuals with fast vs no progression was examined by comparison of model 

AUROC by DeLong’s test. Based on the clinical interaction between related AS metrics, we 

evaluated an interaction term between AV-Vmax, or the dimensionless valve index (DVI), and 

DASSi and mapped the results using contour plots. We also present tables of sensitivity, 

specificity, positive (LR+) and negative LR (LR-) for AV-Vmax progression across DASSi/AV-

Vmax groups.  

For the composite outcome of time-to-AVR, time-to-next severity stage, or any AS, we 

first fit multivariable Cox regression models to account for the variable length of follow-up. The 

proportionality of hazards was assessed by visualizing Schoenfeld residuals. For the analysis of 

AVR with death as a competing risk, we fit multivariable Fine-Gray proportional sub-

distribution hazard regression models. Using nested models that included baseline predictors 

with or without DASSi, we assessed the improvement in discrimination and reclassification with 

DASSi by a LR test, but also C-statistic, categorical net reclassification improvement (NRI) 

indices (defining low, intermediate and high-risk categories based on a risk of AVR of <5%, 5-

20% and ≥20% at the median follow-up) and integrated discrimination improvement (IDI). The 

latter are only presented in the YNHHS cohort due to limited event counts in the CSMC or UKB 

cohorts (n=715, versus 56, and 52 events respectively). Calibration curves are presented at t=4 

years (rounded median follow-up). We also present adjusted survival curves across DASSi 

groups, and forest plots for subgroup analyses. The association of the top PheWAS hits with 

DASSi was explored in age- and sex-adjusted multivariable linear regression models.  

All statistical tests were two-sided with a significance level of 0.05 (except for the 

PheWAS analysis where a Bonferroni correction was applied). Where needed, 95% confidence 

intervals (CI) were derived from bootstrapping (200 replications). Analyses were performed 

using Python (version 3.11.2) and R (version 4.2.3).  

 

Ethical Approval of Studies and Informed Consent: The study was reviewed by the Yale and 

Cedars-Sinai Institutional Review Boards (IRBs), which approved the study protocol and waived 

the need for informed consent as the study represents a secondary analysis of existing data (Yale 

IRB ID #2000029973). The UK Biobank analysis was conducted under research application 

#71033. 
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RESULTS 

Study overview and population  

The YNHHS echocardiography cohort consisted of 8,798 patients (4,250 [48.3%] women) with a 

median age of 71 [IQR:60-80] years. Patients self-identified with the following race categories: 

737 (8.4%) African American, 108 (1.2%) Asian, 6,347 (72.1%) White, and 1,606 (18.3%) 

other. Moreover, 613 (7.0%) self-identified as Hispanic. At the time of the baseline 

echocardiographic assessment, 1,047 (11.9%) participants had aortic sclerosis without stenosis, 

2,017 (22.9%) mild AS and 979 (11.1%) moderate AS.  

The CSMC echocardiography cohort included 3,801 participants (1,685 [44.3%] women) 

with a median age of 67 [IQR:54-78] years. Patients self-identified with the following race and 

ethnicity categories: 551 (14.5%) African American, 296 (7.8%) Asian, 424 (11.2%) Hispanic, 

2,152 (56.6%) White, and 378 (9.9%) other. At baseline, 3,392 (89.2%) had no AS, 251 (6.6%) 

sclerosis without stenosis, 83 (2.2%) mild AS, and 75 (2.0%) moderate AS.  

From the UK Biobank, we included 45,474 individuals (65 [IQR:59-71] years, 23,559 

[51.8%] women), 182 (0.4%) of whom had AS (Table 1 and eTable 1). Patients self-identified 

with the following race categories: 619 (1.4%) Asian, 304 (0.7%) Black (or Black British), 

43,990 (96.7%) White, and 561 (1.2%) other. 

 

Baseline DASSi phenotyping on echocardiography 

In the YNHHS cohort, the median DASSi was 0.24 [IQR:0.10-0.47]. Higher baseline DASSi 

was associated with greater AS severity by traditional Doppler-derived parameters (AV-Vmax: 

ρ=0.63, [n=8,798]; mean AV gradient: ρ=0.64, [n=6,220]; AVA: ρ=-0.53, [n=5,410]; and DVI: 

ρ=-0.63, [n=8,163], all p<0.001). There was a modest correlation with diastolic dysfunction by 

E/e’ (ρ=0.36, [n=7,079]), left atrial volume index (ρ=0.31, [n=7,421]), and right ventricular 

systolic pressure (ρ=0.18, [n=6,312], p<0.001 for all three). DASSi was independent of LVEF 

(ρ=-0.01, [n=8,608], p=0.39) and stroke volume (ρ=-0.02, [n=7,073], p=0.11). Collectively, 

these parameters explained less than half of the variation in DASSi (R2=0.46, [95%CI:0.44-

0.49]).   

 

DASSi and echocardiographic progression of AS 
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YNHHS cohort: In total, 5,483 of 8,798 patients (62.3%) in the YNHHS cohort had at least one 

follow-up study (median 4 [IQR:2-5] studies/patient) within a median of 3.5 [IQR:2.3-4.6] years. 
DASSi ranged from 0.14 [IQR:0.05-0.27] among patients without AS or sclerosis to 0.61 

[IQR:0.48-0.72] among patients with moderate AS (eFigure 1A-B).  

When stratified by DASSi, the annual change in AV-Vmax ranged from 0.04±0.01 

(standard error of mean) m/sec/year for DASSi values <0.2 at baseline, to 0.21±0.01 for baseline 

values ³0.6 (eFigure 2), a trend that persisted within each distinct baseline AS stenosis group 

(Figure 2A and eTable 2). The addition of DASSi to a model consisting of baseline AV-Vmax, 

LVEF, age, sex, and race/ethnicity was associated with an +0.033 m/s/year [95%CI:0.028-0.038, 

p<0.001] adjusted annualized AV-Vmax increase independent of the number of studies and 

follow-up length (Figure 2B) and significantly improved baseline model performance (p <0.001 

by LR test). There was interaction between baseline DASSi and the flow-corrected DVI 

(p=0.002 for interaction), but not AV-Vmax (p=0.26 for interaction) (Figure 2C-D), with higher 

DASSi associated with faster progression rates for lower baseline DVI. The association between 

DASSi and AV-Vmax change remained consistent across demographic subgroups, impaired or 

preserved left ventricular function (LVEF ³ vs <50%) and baseline AV-Vmax strata (eFigure 3).  

DASSi improved the baseline model’s ability to discriminate individuals with the fastest 

progression rates (≥0.4 m/sec/year, n=693) from those without progression (n=1836), with 

AUROC increasing from 0.63 to 0.70 (δ[AUROC]=0.07 [95%CI:0.05-0.09]). Among 

individuals with AV-Vmax<2.5 m/sec, a DASSi of ≥0.5 was linked to LR(+) of 5.9 for identifying 

participants with AV-Vmax change ≥0.4 m/sec/year, while for AV-Vmax 3.0-3.9 m/sec a DASSi 

<0.2 was associated with LR(-) of 0.1 (eTable 3). 

In total, 2,037 (37.2%) participants had a follow-up echocardiographic report describing a 

higher AS severity grade than their baseline study. Greater DASSi was associated with a higher 

adjusted risk of progressing to a higher severity stage (adj.HR 1.14 [95%CI: 1.12-1.17], p<0.001, 

per 0.1 DASSi increments) after multivariable adjustment including baseline AS severity. DASSi 

was also positively associated with the future development of any AS (n=325 new AS cases) in a 

subset of 2,091 patients without AS at baseline (per 0.1 incr.; adj.HR: 1.16 [95%CI:1.09-1.23], 

p<0.001). 

 These results were replicated in the geographically distinct CSMC cohort, where 1,292 

patients had echocardiographic follow-up over a median of 1.1 [IQR:0.4-1.8] years. DASSi was 
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independently associated with the rate of change in AV-Vmax (per 0.1 increments: adj. coefficient 

+0.08 m/s/year [95%CI:0.05-0.11], p<0.001; and p<0.001 by LR test compared to the baseline 

model). There was also significant improvement in discrimination of fast vs no progression 

(n=269 vs 634, respectively; AUROC 0.59 to 0.67; δ[AUROC]=0.08 [95%CI:0.04-0.11]). 

Higher baseline DASSi was also associated with a higher adjusted risk of progressing to a higher 

AS stage (n=183 cases, adj. HR 1.18 [95%CI:1.08-1.29], p<0.001), including progression to new 

AS (n=148 new cases of mild or greater AS among 1208 patients without stenosis at baseline; 

adj. HR 1.19 [95%CI:1.07-1.33], p<0.001), with overall alignment of observed and predicted 

rates across cohorts and DASSi thresholds (eFigures 2 and 4).  

 

DASSi and future AVR 

The 8,798 patients in the YNHHS cohort were followed for 4.1 [IQR:2.4-5.4] years. Following a 

blanking period of 6 months, 715 underwent AVR. Higher baseline DASSi was independently 

associated with a higher adjusted risk of AVR (per 0.1 increments; adj.HR 1.21 [95%CI:1.16-

1.26], p<0.001) (Table 2, eTable 4, and eFigure 5). Compared with the reference group of 

DASSi<0.2, the risk of AVR increased from 2.9-fold higher for DASSi 0.2-0.4, to 4.7-fold and 

5.4-fold higher for those with DASSi levels 0.4-0.6, and ≥0.6, respectively (Table 2 and eFigure 

6A). The prognostic value of DASSi was consistent across sex, age, LVEF, and AV-Vmax strata 

(eFigure 7), and offered marginal improvements in reclassification and discrimination beyond 

baseline (p<0.001 by LR test; C-statistic 0.896 to 0.902 (δ[C-statistic]: 0.006 [95%CI:0.002-

0.009]), categorical NRI 0.05 [95%CI:0.02-0.08], and IDI: 0.006 [95%CI: 0.003-0.009]). 

 In the CSMC cohort there were 56 AVR procedures performed (>6 months) among 3,801 

individuals followed over a median of 3.4 [IQR:2.8-3.9] years. Similar to the YNHHS cohort, 

when compared with the reference group of DASSi<0.2, those with DASSi ≥0.2 had a 4-fold 

higher adjusted risk of undergoing AVR at CSMC, though 95% confidence intervals were wide 

and included the null value (adj.HR 4.04 [95%CI: 0.92-17.70], p=0.06) (eFigure 6B; Table 2). 

A YNHHS-based model incorporating age, sex, AV-Vmax, and DASSi showed good calibration 

in the CSMC cohort with a mean absolute error of 0.6% for AVR at 4 years (eFigure 8), whereas 

the addition of DASSi to the baseline parameters improved the goodness-of-fit of the model 

(p<0.001 by LR test).  
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Cross-modal validation of DASSi using CMR videos: We designed a novel pipeline that 

enables direct cross-modal application of the original DASSi algorithm to cine CMR videos by 

creating pseudo-PLAX echo views. Activation maps across two examples with the highest 

DASSi (0.5 to 0.6) showed that the model focused on myocardial structures, such as the left 

atrium and right ventricle (Figure 3A). CMR-based DASSi successfully discriminated between 

patients with vs without diagnosed AS (DASSi: 0.32 [IQR:0.25-0.38], n=182, vs 0.19 [IQR:0.12-

0.26], n=45,292, respectively, p<0.001) (Figure 3B).  

 Over 2.5 [IQR 1.6-3.9] years, there were 52 AVR procedures (>6 months). Compared 

with the reference group of <0.2, individuals with DASSi levels 0.2-0.4, and 0.4-0.6 had an 11- 

and 24-fold higher adjusted risk of AVR, independent of age, sex, race/ethnicity, history of AS, 

and baseline LVEF (Figure 3C, Table 2). There were no individuals with DASSi values of 0.6 

or greater in this cohort. 

 

Phenotypic correlates of DASSi: In age- and sex-adjusted PheWAS analyses, DASSi was 

associated with cardiovascular-specific risk factors – hypertension, atrial fibrillation, obesity, 

diabetes mellitus, and hypercholesterolemia (eFigure 9). Age and sex explained 19% of the 

variation in DASSi, whereas the addition of the top 10 hits only increased this to 21% (R2=0.21). 

Further adjustment for these phenotypes did not impact the prognostic value of DASSi for AVR 

(adj.HR 2.12 [95%CI:1.50-2.99], p<0.001). 

 

DISCUSSION 

In this multinational cohort study of 58,073 individuals with no or early AS, a novel video-based 

biomarker of AS – DASSi – was reproducibly associated with the future risk of AS development 

and progression independent of key clinical parameters and baseline severity by Doppler. The 

prognostic association of DASSi was shown across three geographically, temporally, and 

phenotypically distinct cohorts, including patients undergoing clinical echocardiography, the 

original modality used for its training, as well as a prospective cohort of protocolized CMR 

imaging in the UK Biobank. These findings support the use of DASSi, a cross-modal AI 

biomarker for both opportunistic AS screening on echocardiography as well as deeper 

phenotyping of AS on standard non-invasive modalities and potentially handheld devices.  
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 Efforts to identify individuals at risk of AS progression have been limited by the large 

burden of milder forms of aortic valve disease, such as aortic sclerosis, found in ~26% of 

individuals over 65 years.11,30,31 However, a challenge in personalizing patient follow-up is the 

marked variability in the progression rates of patients within similar Doppler-adjudicated 

severity stages.32–35 Traditional risk factors such as hypercholesterolemia, smoking, renal 

dysfunction, and elevated natriuretic peptides, lack specificity for AS,15,36 while alternative 

Doppler-derived indices require skilled acquisition and modifications to the scanning 

protocols.36,37  

 Deep learning-enhanced, two-dimensional echocardiography with DASSi aims to bridge 

this gap by providing a Doppler-independent AS severity metric that can be computed from any 

portable or standard echocardiogram. Trained to detect generalizable features associated with the 

severe AS phenotype,16 DASSi maintains its prognostic value across the spectrum of AS stages, 

identifying individuals who do not meet traditional criteria for severe AS, yet exhibit fast rates of 

progression. Critically, DASSi has several features that make it generalizable and scalable. 

Unlike prior methods that have utilized structured echo reports and measurements,37–40 Doppler 

images,41 or still images of the aortic valve,42 DASSi can be directly applied to unprocessed, 

standard PLAX videos, without the need for any Doppler or two-dimensional measurements, and 

provides a reader-independent metric to supplement an echocardiographer’s impression, assisting 

in standardized severity classification.16 Furthermore, DASSi can be applied to videos obtained 

at the point-of-care by individuals with minimal to no training.16,17 The value of this approach is 

supported by consistent and robust effect sizes for both intermediate echocardiographic and long-

term clinical outcomes, reproduced across multinational cohorts undergoing both clinically 

indicated and protocolized imaging. 

  The cross-modality validation is included not merely to suggest a role for CMR in 

opportunistic AS screening, but because it shows that DASSi flags a distinct myocardial and 

valvular phenotypic signature rather than modality- or population-specific confounders.43 The 

specificity of the algorithm is further illustrated by representative saliency maps and PheWAS, 

suggesting cardiovascular-specific associations with traditional risk factors and links to extra-

valvular phenotypes of myocardial remodeling and diastolic dysfunction that may flag AS 

progression.44 However, these only partially explain the variability in DASSi, highlighting the 
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need for multiparametric phenotyping. This innovative framework also suggests a generalizable 

way to test the validity of new AI-derived echocardiographic biomarkers. 

Certain limitations merit consideration. In the echocardiography study, repeat imaging 

was clinically determined rather than based on a study protocol, thus favoring patients with 

higher symptom burden and closer interaction with the healthcare system. Reassuringly, our 

analyses revealed consistent results across varying levels of AS severity at baseline, independent 

of the frequency of echocardiographic follow-up, for both echocardiographic and clinical 

outcomes, with the overall findings reproduced in the prospectively enrolled population of the 

UK Biobank. Further prospective clinical studies will explore the longitudinal association 

between DASSi and its changes with AS progression across protocol-defined echocardiographic 

intervals and using multi-modality calibration in racially and ethnically diverse cohorts. Second, 

it is possible that DASSi flags a cardiovascular phenotype that is not exclusive to AS, a condition 

that shares several risk factors with coronary artery disease, stroke, and heart failure;45 however, 

analyses across distinct cohorts and outcomes suggest a consistent association with AS-specific 

outcome measures. Third, outcome ascertainment is the hospital-based echocardiography cohorts 

was performed through local electronic health records. Thus, events that occurred in different 

hospitals, or deferral of AVR due to patient preference or ineligibility may not be adequately 

captured. Indeed, estimates of incremental discrimination and risk stratification were limited by 

low event counts in two of the three cohorts given the predominance of patience without AS at 

baseline. Finally, we focused on AV-Vmax, given its more complete capture in our dataset. 

Though this parameter may be flow-dependent, we demonstrate that associations persisted 

despite adjusting for LVEF, when modeling against the DVI, and when assessed against future 

clinical events.  

 

CONCLUSION 

Our study defines a novel AI-based videographic phenotyping of cardiac anatomy and function 

to detect distinct clinical trajectories among patients with no or non-severe AS, which generalize 

across multi-national cohorts and non-invasive modalities. By practical deployment in any 

setting where video-based cardiac imaging is obtained, DASSi may enable more precise risk 

stratification for the most common valvular disorder without any changes in the image 

acquisition protocols.  
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TABLES 

 

Table 1. Table of cohort demographics. 

Feature Description Echocardiography CMR 
YNHHS CSMC UK Biobank 

Total participants  8,798 3,801 45,474 
Age (years)  71 [60, 80] 67 [54, 78] 65 [59-71] 

Sex Female 4,250 (48.3) 1,685 (44.3) 23,559 (51.8) 
Male 4,548 (51.7) 2,116 (55.7) 21,915 (48.2) 

Race 

African American/Black 737 (8.4) 551 (14.5) - 
Asian  108 (1.2) 296 (7.8) 619 (1.4) 
Black (or Black British) - - 304 (0.7) 
White  6,347 (72.1) 2,152 (56.6) 43,990 (96.7) 
Other a 1,606 (18.3) 378 (9.9) 561 (1.2) 

Ethnicity Hispanic b 613 (7.0) 424 (11.2) - 
LVEF (%)  62 [57,66] 61 [54, 66] 58 [54-61]  

Aortic Stenosis (AS) 

None reported 4,755 (54.1) 3,392 (89.2) 

182 (0.4)c Sclerosis 1,047 (11.9) 251 (6.6) 
Mild 2,017 (22.9) 83 (2.2) 
Moderate 979 (11.1) 75 (2.0) 

AV area (cm2)  1.5 [1.2, 1.9] 2.0 [1.3, 2.6] - 
AV mean gradient (mm Hg)  11.5 [5.3, 17.3] 5.0 [3.0, 11.0] - 
AV peak velocity (m/s)  1.8 [1.4, 2.6] 1.4 [1.1, 1.8] - 
DASSi  0.24 [0.10, 0.47] 0.15 [0.07, 0.30] 0.24 [0.10, 0.47] 
Total follow-up (years)  4.1 [2.4-5.4] 3.4 [2.8-3.9] 2.5 [1.6-3.9] 
Death rate (≥6 months) (Per 100 participant years) 4.1 (n=1,284) 6.1 (n=644) 0.3 (n=358) 
AVR rate (≥6 months) (Per 100 participant years) 2.3 (n=715) 0.5 (n=56) 0.04 (n=52) 
a Other race includes American Indian or Alaskan Native, Native Hawaiian or other Pacific Islander, more than one 
race, unknown, or not reported. 
b Reported separately of race in the YNHHS cohort; reported with race in the CSMC cohort. 
cAS was adjudicated by diagnosis codes in the UK Biobank. Severity is undetermined. 
Categorical variables are summarized as counts (valid percentages after excluding missing values). Continuous 
variables are presented as median [25th, 75th percentile].  
Abbreviations: AS: aortic stenosis; AV: aortic valve; AVR: aortic valve replacement; CMR: cardiac magnetic 
resonance; CSMC: Cedars-Sinai Medical Center; DASSi: digital aortic stenosis severity index; LVEF: left 
ventricular ejection fraction; YNHHS: Yale-New Haven Health System. 
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Table 2. Adjusted Cox regression estimates for DASSi and late AVR incidence. 

DASSi Outcome: AVRa  
HR [95% CI], p value (total counts) 

 Echocardiography CMR 

 YNHHS cohort  
(n=8,798; 715 events)b 

CSMC cohort  
(n=3,801; 56 events)b 

UK Biobank cohort 
(n=45,474; 52 events)c 

Continuous DASSi per 0.1 
increments 1.21 [1.16-1.26], p<0.001 1.08 [0.92-1.26], p=0.36 2.09 [1.54-2.83], p<0.001 

DASSi groups    

Less than 0.2  Reference 
(n=3,837) 

Reference 
(n=2,302) 

Reference 
(n=24,579) 

0.2 or greater 4.97 [2.71-.582], p<0.001 
(n=4,961) 

4.04 [0.92-17.70], p=0.06 
(n=1,499) 

11.4 [2.56-50.6], p=0.001 
(n=20,895) 

0.2 to less than 0.4  2.86 [1.90-4.30], p<0.001  
(n=2,188) 

3.67 [0.79-17.1], p=0.10  
(n=881) 

10.7 [2.36-48.8], p=0.002 
(n=19,787) 

0.4 to less than 0.6  4.67 [3.12-6.97], p<0.001  
(n=1,601) 

4.68 [1.00-21.87], p=0.05  
(n=375) 

24.3[4.64-120.7], p<0.001  
(n=1,108) 

0.6 or greater  5.38 [3.54-8.15], p<0.001  
(n=1,172) 

3.74 [0.76-18.35], p=0.10 
(n=243) 

n/a 
(n=0) 

a Estimates for AVR were derived from Fine-Gray proportional sub-distribution hazards regression models with death as competing risk. 
b adjusted for baseline age, left ventricular ejection fraction, peak aortic valve velocity, sex, race/ethnicity.  
c adjusted for baseline age, left ventricular ejection fraction, aortic stenosis presence, sex, and race/ethnicity.  
All events were recorded at least 6 months after the index imaging visit (following a 6-month blanking period). 
AVR: aortic valve replacement; CI: confidence interval; CMR: cardiac magnetic resonance imaging; CSMC: Cedars-Sinai Medical Center; 
DASSi: digital aortic stenosis severity index; HR: hazard ratio; YNHHS: Yale-New Haven Health System. 
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Figure Legends 

 
Figure 1 | Study design. AV-Vmax: peak aortic valve velocity; AVR: aortic valve replacement; 
CMR: cardiac magnetic resonance; DASSi: digital aortic stenosis severity index; PLAX: 
parasternal long axis view.
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Echocardiographic outcome analysis: 
median follow-up 3.5 [IQR: 2.3-4.6] years (n= 5,483)

Clinical outcome analysis: 
median follow-up 4.1 [IQR: 2.4-5.4] years (n= 8,798)

CSMC cohort 
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Exclusion criteria
1. Severe AS at baseline or AV Vmax ≥4 m/sec

2. History of AVR at baseline
3. No PLAX videos present in the study
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Echocardiographic outcome analysis: 
median follow-up 1.1 [IQR: 0.4-1.8] years (n= 1,292)
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median follow-up 3.4 [IQR: 2.8-3.9] years (n=3,801)
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Figure 2 | Stratifying the rate of aortic stenosis (AS) progression by DASSi. (A) Observed 
progression rates across DASSi subgroups stratified by baseline severity of AS (error bars denote 
the standard error of mean) in the YNHHS cohort. The counts of unique observations for each 
group are provided above each bar. (B) Loess regression curves with 95% confidence bands 
showing the association between baseline DASSi and the annual rate of change in the peak aortic 
valve velocity (AV-Vmax), adjusted for baseline AV-Vmax, left ventricular ejection fraction, age, 

Figure 2
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sex, ethnicity/race. (C-D) Contour plots examining the interaction between DASSi and (C) the 
baseline AV-Vmax, as well as (D) the dimensionless valve index (DVI). On these plots, each dot 
represents a unique observation (participant); the horizontal/vertical axes represent the baseline 
DASSI/AV-Vmax values, respectively, and the colored contours denote the adjusted AV-Vmax 
progression rates. AS: aortic stenosis; AV-Vmax: peak aortic valve velocity; DASSi: digital aortic 
stenosis severity index; YNHHS: Yale-New Haven Health System. 
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Figure 3 | Cross-modal evaluation of DASSi in the UK Biobank. (A) We designed a new 
computational pipeline that enabled the direct transformation of long-axis cine cardiac magnetic 
resonance (CMR) clips into PLAX-like cine videos. Saliency maps of individuals with the 
highest DASSi values (0.5-0.59) on CMR demonstrated that the DASSi algorithm focused on 
key cardiac structures, such as the left atrium and right ventricle. (B) Density plot of DASSi 
(probability that DASSi takes a given value among patients with AS and no AS undergoing 
CMR imaging in the UK Biobank). (C) Flexible adjusted hazard ratio curve for AVR or all-
cause mortality based on a multivariable Cox regression model that included DASSi adjusted for 
age, sex, ethnic background, known AS and baseline left ventricular ejection fraction. AS: aortic 
stenosis; AVR: aortic valve replacement; CI: confidence interval; CMR: cardiac magnetic 
resonance; DASSi: digital aortic stenosis severity index; HR: hazard ratio. 
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