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Abstract

Near-term forecasting efforts for seasonal influenza (flu) aim to enable better public health
preparedness before, during, and after each season. The FluSight initiative has fostered flu
forecasting activities since 2013. In 2021-22, the organizers switched the primary target to
incident weekly flu hospitalizations at state, territorial, and national levels in the United
States. Here we studied the performance of contributors who submitted forecasts for this
target during the 2021-22 and 2022-23 seasons. We found that forecasters generally did not
perform consistently across locations within seasons. For the select group of forecasters who
submitted to both seasons, the overall performance relative to one another was not always
consistent either. However, several forecasters, including the FluSight ensemble, were among
the top performers in both seasons.

1 Introduction

Seasonal influenza (flu) imposes a significant and ongoing burden on population health around the world
(CDC 2022). The severity and strain on public health resources varies by season. To help better anticipate
geographic spread and intensity of flu activity, infectious disease modelers have developed near-term flu
forecasting methodologies. Forecasters use a variety of computational modeling approaches and data sources
from which they can engineer features and estimate parameters for models (Kandula and Shaman 2019;
Lu and Meyer 2020; McAndrew and Reich 2021; Osthus 2022). Once disseminated, near-term forecasts
provide public health officials and the general public with valuable information to inform resource allocation,
vaccination campaigns, and the implementation of preventive measures before, during, and after the flu
season.
In recent years, such forecasting activities have become centralized through consortia efforts. Contributors
using disparate modeling methodology and data sources are openly invited to contribute forecasts in a common
format for eventual ensembling and dissemination. The Centers for Disease Control and Prevention (CDC)
FluSight initiative, established in 2013, has been foundational in formalizing the “forecast hub” approach
(Reich et al. 2019). The COVID-19 pandemic inspired similar forecasting hubs (Cramer et al. 2022), and also
shifted the focus of FluSight. COVID-19 has changed dynamics of influenza-like illness (ILI) (Zipfel, Colizza,
and Bansal 2021), which historically was the flu activity indicator used as a target for FluSight forecasting.
Likewise, the COVID-19 pandemic motivated data collection efforts that have standardized flu data alongside
COVID-19 reporting. One example is the mandatory state-level reporting of flu hospitalizations alongside
COVID-19 hospitalization data via the HHS Protect system during the COVID-19 public health emergency.
As of the 2021-22 season, the FluSight coordinators leveraged HHS Protect reporting to shift the forecasting
target to incident weekly hospitalizations by state for 1-4 week-ahead horizons. The target has remained the
same during the 2022-23 FluSight season. The FluSight network includes contributors who have submitted
across multiple seasons, in some cases using the same methodology.

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.09.28.23296216doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.09.28.23296216
http://creativecommons.org/licenses/by/4.0/


September 27, 2023

Here we primarily aim to assess how forecasters submitting to both the 2021-22 and 2022-23 FluSight seasons
performed. We estimate forecaster performance within and between 2021-22 and 2022-23 seasons. Seasonal
dynamics of flu can vary dramatically, as illustrated by the 2021-22 season that peaked later compared to
previous years (CDC 2023c). Such an analysis will demonstrate if and to what extent performance varies
not only across forecast dates, horizons, and locations, but also across seasons. The results of this analysis
may help forecasters and hub coordinators understand sensitivity of contributions to seasonal dynamics,
and to reinforce the utility of consortium ensemble approaches that have previously been shown to improve
forecasting accuracy (Wang et al. 2022; Wu and Levinson 2021).

2 Methods

2.1 Data sources

2.1.1 Truth data

Daily laboratory-confirmed flu cases among hospitalized patients as reported by hospital systems to the U.S.
Department of Health & Human Services HHS Protect system (HHS 2023) were used as the “gold standard”
data for evaluation of forecast performance. These data are aggregated to the state level in HHS Protect
and further aggregated from daily to weekly resolution to compare against weekly forecasts of incidence.
All evaluations compared submitted forecasts to data that was current as of July 2023 in the HHS Protect
system.

2.1.2 Forecasts

To evaluate performance we first needed to retrieve published forecast data from FluSight. We retrieved
the openly licensed submissions using the Zoltar forecast repository (Reich et al. 2021). The FluSight
coordinators allow teams to make multiple submissions for different methods. As such, we consider individual
submissions as “forecasters” (i.e., unique combination of team and method). Every weekly forecast submission
required both a point estimate and a probabilistic distribution described in 23 quantiles1, and forecasts ranged
from January 10, 2022 to June 20, 2022 (24 weeks) and October 17, 2022 to May 15, 2023 (31 weeks) for
the 2021-22 and 2022-23 seasons respectively. In total, there were 56 contributed forecasters, with 25 in the
2021-22 season and 31 in the 2022-23 season. From these we analyzed a subset of forecasters that regularly
submitted within each respective season. For a forecaster to be included, it must contain all quantiles and
horizons for each given location and forecast week. Furthermore, for any given forecast week to be included in
evaluation we required that the forecasters must include forecasts for at least 25 locations (i.e., approximately
50% of the geographic locations across state, territorial, and national resolution). Finally, across the season
the forecaster must have submitted to at least 60% of the forecast weeks. In addition to contributed forecasts,
we retrieved the FluSight ensemble forecasts and FluSight baseline forecasts, which were both available for
all locations and forecast weeks across the 2021-22 and 2022-23 seasons.
FluSight forecasters are free to use any methods they choose to generate forecasts for submissions. The
consortium asks that contributors include a description of methods in a metadata file. We reviewed metadata
files for submitting forecasters to ascertain the kinds of methods being used per metadata descriptions.
Contributors used a wide variety methods, including deep learning models, regression techniques, various
compartmental models, time series approaches, and ensembles to generate forecasts. The FluSight baseline
model was developed as a comparison for evaluation of submissions. This model predicts the incidence
as equal to value of prior week (CDC 2023a).The FluSight ensemble uses all eligible submitted forecasts2

to create a combined forecast for respective targets (CDC 2023b). The FluSight baseline and ensemble
approaches remained the same in both the 2021-2022 seasons. For contributing forecasters who submitted to
both seasons, we reviewed the history of the metadata to see if there were any significant changes in methods
described for 2021-22 versus 2022-23 submissions.

1The forecast distribution is described via estimates for 23 quantiles: 0.01, 0.025, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35,
0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.975, and 0.99.

2To be eligible for inclusion in the ensemble, forecasts must be submitted ahead of the weekly deadline set by CDC.
Forecasters designated as “primary”, “secondary”, or “proposed” will be included in ensemble.
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2.2 Performance evaluation

To evaluate forecasting performance we use two measures: weighted interval score (WIS) and absolute error
(AE). The WIS has been described previously (Bracher et al. 2021b) and is frequently used in contemporary
evaluations of infectious disease forecasting performance (Bracher et al. 2021a; Sherratt et al. 2023). While
the WIS compares the forecast distribution (i.e., all quantiles), the AE measures the difference between the
forecasted point estimate and the observed value. Because the WIS measure considers the entire distribution,
it has the advantage of being able to estimate over/under prediction. In short, the WIS assigns weights to
different spaces in the prediction interval based on the actual outcome. The WIS is always non-negative,
with a lower score indicating better forecast accuracy (smaller error). Likewise, a smaller AE indicates
better performance. The AE provides an absolute measure that complements WIS. It may be informative
to investigate discrepancies between AE and WIS performance. For example, forecasters that produce
accurate point estimates but perhaps have less well calibrated error estimation might exhibit such discrepancy.
Therefore we calculated both the WIS and AE using the evalcast R package (McDonald et al. 2023) for
every forecaster, forecast week, location, and horizon. To standardize across forecasters we computed a
relative WIS (rWIS) compared to the FluSight baseline WIS. We further used medians of rWIS and AE
across all forecast weeks, locations, and horizons to rank performance of forecasters relative to one another.

3 Results

3.1 Hospitalization data

The pattern of incident flu hospitalizations reported in HHS Protect was strikingly different between the
2021-22 and 2022-23 seasons. Fig. 1 displays a heatmap of standardized hospitalization rates across states in
each season. The observed peak in 2021-22 was shifted much later than a typical season, with some states
seeing the highest rate of hospitalizations as late as May 2022. The 2022-23 season conformed to typical
historical trends for flu activity, with peaks in most locations in the winter months (Lowen and Steel 2014;
Reichert et al. 2004). However, some locations in the south (e.g., Louisiana, Mississippi, and Alabama)
experienced elevated rates as early as October 2022.

3.2 Forecasters included

Based on our inclusion criteria for completeness of submissions, we excluded three forecasters from the 2021-22
season and 13 from the 2022-23 season. Additionally, one forecaster distributed forecasts with an ambiguous
license and was therefore excluded from both seasons. In total, we analyzed 21 contributed forecasters for
2021-22 and 17 for 2022-23. Of these forecasters, 11 submitted to both seasons. The full list of contributing
forecasters along with number of weekly submissions and unique locations by season is provided in Table 1.
Nearly all of the forecasters submitted all weeks and all locations.

3.3 Performance across locations

Within each season, we observed that the FluSight ensemble was consistently one of the best performers
per the rWIS metric. For the ensemble and individual forecasters, the performance varied by location. In
the 2021-22 season (Fig. 2A), several forecasters performed similar to the ensemble, scoring better than
baseline on median across most locations. However, most of the forecasters performed no better or worse
than baseline on median. Notably, some of the forecasters who scored poorly in some locations scored very
highly in others. For example, Forecaster-07 and Forecaster-12 both had the best median rWIS for Kansas
and North Dakota respectively but did not perform as well in other locations. It is also worth noting that
while for some locations (like Alabama and Wyoming) nearly all of the forecasts beat the baseline, for other
locations (like Arizona and Hawaii) there were only one or two forecasters with a median rWIS < 1.
For the 2022-23 season (Fig. 2B) many more forecasters performed better than the baseline across most
locations. However, forecasts for some locations, including Georgia and Hawaii, had higher rWIS (i.e., worse
performance) across most of the forecasters. As with the 2021-22 season, some forecasters performed very
well for certain locations but not as well for others. As an example, Forecaster-27 generally performed well
across all locations except Georgia, Virginia, North Carolina, and South Carolina.

3
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3.4 Performance across seasons

Forecasters submitting to both seasons did not all exhibit consistent performance across seasons. Fig. 3
shows the shift in ranks per median rWIS from 2021-22 to 2022-23. Several forecasters, including the FluSight
ensemble, were consistently ranked high across both seasons. However, others shifted dramatically. For
example, Forecaster-07 exhibited greatly improved performance in the 2022-23 season per the rWIS ranking.
Likewise, relative to the other submissions Forecaster-01 performed much better in 2021-22 compared to
2022-23. Again, it is worth noting that the FluSight ensemble remained relatively constant. Appendix Fig.
S1 provides a comparable rank change visualization using AE measures.
Fig. 4 provides a more granular depiction of performance at individual horizons and locations. The histogram
shows the counts of individual rWIS rankings for submitted forecasts across all forecast weeks, horizons,
and locations. Any given forecast ranked “1” performed the best relative to the other forecasters. The
distributions of these ranks reinforce the finding that performance varies within season. For some forecasters
we see different shapes of the rank distributions between 2021-22 and 2022-23, which communicates that the
performance of methods used can vary across seasons as well. Appendix Fig. S2 provides a similar depiction
of the distributions of the AE for forecasters within and between seasons.
Fig. 5 shows the absolute change between median WIS from 2021-22 and 2022-23. Note that for this analysis,
the WIS is presented in place of the normalized rWIS to demonstrate magnitude change in performance
improvement or degradation for each forecaster across seasons and location. For each forecaster, the WIS
and AE are computed as median across forecast weeks and horizons within each forecaster and location in
both seasons. The difference between the values (2022-23 median minus 2021-22 median) for every forecaster
and location are visualized. Here, a larger negative value corresponds to greater improvement in performance
in 2022-23 compared to 2021-22. It is worth noting that while the performance was generally higher relative
to baseline for contributing forecasters in 2022-23 (Fig. 2B versus Fig. 2A), the heatmap of differences
shows that the absolute change in median metrics for forecasters contributing to both seasons was generally
modest. However, some forecasters (e.g., Forecaster-07 and Forecaster-12) improved WIS dramatically for
many locations compared to the initial 2021-22 season. Appendix Fig. S3 displays the magnitude change in
AE and corroborates the WIS finding.
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Table 1: Summary of forecast submissions by season. The table includes the number of weekly submissions
alongside the number of unique locations submitted during the season. Forecasters that submitted to only
one season have an ’X’ in the column for the other season.

Season 2021-2022 Season 2022-2023
Forecaster-01 24 weeks; 51 locations 31 weeks; 51 locations
Forecaster-02 X 30 weeks; 52 locations
Forecaster-03 X 25 weeks; 52 locations
Forecaster-04 24 weeks; 52 locations 29 weeks; 52 locations
Forecaster-05 18 weeks; 51 locations 25 weeks; 52 locations
Forecaster-06 24 weeks; 52 locations X
Forecaster-07 24 weeks; 52 locations 23 weeks; 52 locations
Forecaster-08 X 29 weeks; 52 locations
Forecaster-09 24 weeks; 52 locations 31 weeks; 52 locations
Forecaster-10 20 weeks; 52 locations 30 weeks; 52 locations
Forecaster-11 24 weeks; 52 locations X
Forecaster-12 24 weeks; 51 locations 31 weeks; 51 locations
Forecaster-13 22 weeks; 52 locations X
Forecaster-14 23 weeks; 52 locations X
Forecaster-15 22 weeks; 52 locations X
Forecaster-16 22 weeks; 52 locations X
Forecaster-17 23 weeks; 52 locations X
Forecaster-18 X 28 weeks; 52 locations
Forecaster-19 X 20 weeks; 52 locations
Forecaster-20 21 weeks; 52 locations X
Forecaster-21 24 weeks; 52 locations 31 weeks; 52 locations
Forecaster-22 24 weeks; 52 locations 26 weeks; 52 locations
Forecaster-23 21 weeks; 52 locations X
Forecaster-24 24 weeks; 51 locations 29 weeks; 51 locations
Forecaster-25 22 weeks; 52 locations 31 weeks; 52 locations
Forecaster-26 24 weeks; 52 locations X
Forecaster-27 X 26 weeks; 52 locations
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Figure 1: Comparison of the observed hospitalizations across all states. (A) The observed hospitalizations in
the 2021-22 flu season. (B) The observed hospitalizations in the 2022-23 flu season. All hospitalizaton counts
are converted to a rate per 100,000 based on population of the given state and further standardized with
a Z-score within each season. The 2021-22 flu season is truncated to begin in January 2022 to align with
initation of flu hospitalization data reporting requirements in HHS Protect, and extends to June 2022 given
extended CDC monitoring due to late-season activity.
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Figure 2: Heatmap of median relative weighted interval score (rWIS) across all forecasters eligible for
evaluation within each season: (A) the 2021-22 season and (B) the 2022-23 season. Tiles are labeled to depict
score and colored on a standardized scale within season. The forecasters are ordered by sum of rWIS across
all locations. Locations are ordered alphabetically and only include the 50 states.
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Figure 3: Forecasters ranked by median relative weighted interval score (rWIS) across seasons. The lower
rank value indicates better performance (i.e., 1 is best). The line segments show direction of change (if any)
in each forecaster rank in relation to others submitting to both seasons.
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Figure 4: Counts of median relative weighted interval score (rWIS) ranks across all forecast weeks, locations, and horizons for (A) 2021-22 and
(B) 2022-23 seasons. Scores are normalized to the baseline performance then ranked relative to one another. The lower rank value indicates better
performance (i.e., 1 is best). Only forecasters submitting to both seasons are included.
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Figure 5: Difference in weighted interval score (WIS) between 2021-22 and 2022-23 seasons. The median value for the previous season is subtracted
from the value for the more recent season, such that a negative difference indicates a drop in WIS (i.e., better performance). Forecasters are sorted by
total sum of WIS difference across all locations. The heatmap is colored by standardized differences (Z-score).
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4 Discussion

Our study provides several key insights regarding flu hospitalization forecasts submitted to FluSight across
the 2021-22 and 2022-23 season: 1) the performance of forecasters generally varied by location; 2) contributing
forecasters submitting in both 2021-22 and 2022-23 did not all perform the same across seasons; 3) the
FluSight ensemble did consistently perform as one of the best forecasters in both seasons. FluSight invites
submissions of forecasts at national, state, and territorial granularity. Our finding that forecaster performance
varied across locations within each season affirms what we have observed through operational forecasting
activities. Certain locations are more difficult to forecast, even for forecasters that otherwise perform well.
It is worth noting that, the reverse scenario is also demonstrated in the results of this study. There were
some forecasters that generally did not perform as well for most locations, but appeared to be especially
well-suited for others and in fact outperformed all forecasters at these locations. This finding underscores the
utility of the open ensemble approach, which inspires diverse methodological contributions. Some of those
methods may not work well for all locations given location-specific dynamics of parameters and covariates
used to train the models. However, if those methods do work well for specific locations then the ensemble
could still benefit from the contributions. It is important to note that it is incumbent upon contributors to
be conscientious with studying the locations for which their forecasters performed best/worst. Such review
could lead to more targeted submissions that provide the most accurate information to the ensemble without
contributing poorer performing forecasts.
The variability in performance of some of the forecasters contributing across seasons indicates that it is not
necessarily safe to assume that a forecaster that works well for one season will work as well for the next.
Likewise, a forecaster that performs poorly in a prior season may perform better later. This suggests that
there may be challenges for forecasters who are evaluating forecast methods by looking at retrospective
season performance. The finding also further demonstrates the utility of the consortium ensemble methods.
In fact, while some other forecasters shifted in overall performance the FluSight ensemble was one of the best
performers in both seasons.
Our study has several limitations. As described in the results, the 2021-22 and 2022-23 flu seasons were
markedly different, with a much later peak in 2021-22 as compared to 2022-23. The 2021-22 season was also
abbreviated due to limited hospitalization data reporting prior to January 2022. The difference in patterns
of flu hospitalization incidence very likely impacted factors and covariates used to train and parameterize
forecasting approaches. The different dynamics could also impact evaluations. For example, a season that
was generally “easier” to forecast (e.g., long periods of stability in signal being forecast) might bias WIS
towards lower values. While the different seasonal patterns could make it challenging to interpret absolute
measures of performance our use of rWIS ranking should mitigate this effect. Across seasons, the rWIS may
inherit some of the bias in different patterns observed. However, the shifts in ranks of rWIS is relatively
robust in that all forecasters are compared to the baseline and relative to each other.
It is also worth noting that our assessment of forecast performance assumes that forecasters submitting to
both seasons used the same methods. The FluSight coordinators require that forecasters include metadata
describing methodology. We reviewed the GitHub history for the metadata file for all 11 contributing
forecasters analyzed and did not find any major methodological changes noted. The consortium also asks that
submitters use updated names (i.e., specifying a different forecaster altogether) if there are major changes to
methods. With that said, it is still possible and perhaps likely that contributors would use lessons learned
from the 2021-22 season and the intervening months to improve the forecasters moving into 2022-23. In this
analysis, we cannot definitively say that methods used were identical within or between seasons. Furthermore,
we know that while the FluSight ensemble methodology remained the same, it included forecasts from different
constituent forecasters between 2021-22 and 2022-23.

5 Conclusion

We have studied the performance of flu hospitalization forecasters submitting near-term forecasts to FluSight
during the 2021-22 and 2022-23 seasons. Generally, contributing forecasters performed better in some locations
as compared to others in each season. If we assume that forecasters submitting to both seasons used the same
methods in 2021-22 and 2022-23, then we can conclude that some methodology did not consistently perform
the same. The FluSight ensemble forecast, however, did achieve some of the best overall performance in
both 2021-22 and 2022-23. Collectively, these findings reinforce the need to continue to ensure that ensemble
forecasting initiatives are adequately resourced with regular submissions from diverse methods. It is not
reasonable to expect that a single independent forecasting approach will perform the best across all locations
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within a given season, nor when summarized and measured overall across seasons. The consortium ensemble,
however, can benefit from information provided by independent forecasters to provide an accurate depiction
of future disease activity and healthcare burden.
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Figure S1: Forecasters ranked by median absolute error (AE) across seasons. The lower rank value indicates
better performance (i.e., 1 is best). The line segments show direction of change (if any) in each forecaster
rank in relation to others submitting to both seasons.
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Figure S2: Counts of median absolute error (AE) ranks across all forecast weeks, locations, and horizons for (A) 2021-22 and (B) 2022-23 seasons.
Forecasters are ranked relative to one another. The lower rank value indicates better performance (i.e., 1 is best). Only forecasters submitting to both
seasons are included.
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Figure S3: Difference in weighted interval score (AE) between 2021-22 and 2022-23 seasons by location. The median value for the previous season is
subtracted from the value for the more recent season, such that a negative difference indicates a drop in AE (i.e., better performance). The heatmap is
colored by standardized differences (Z-score).
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