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Abstract 
 
Objective: To characterize DNA methylation differences between sporadic Parkinson's Disease 
and healthy control individuals enrolled in the Parkinson’s Progression Markers Initiative.  
 
Methods: We characterized cross-sectional and longitudinal DNA methylation differences 
between individuals with sporadic (i.e., non-genetic) PD and healthy controls. We included 282 
individuals (196 Parkinson's Disease individuals and 86 healthy control individuals). DNA 
methylation data was collected at the time of enrollment and longitudinally over three years. 
 
Results: This analysis revealed 81,604 differentially methylated positions and 5,281 
differentially methylated regions between sporadic PD and healthy controls. Gene ontology 
analysis revealed that these differentially methylated positions and regions were associated with 
genes involved in diverse cellular processes, including several with specific functions in the 
brain (Focal adhesion”, “Cholinergic synapse”, “Glutamatergic synapse”, “Dopaminergic 
synapse”). Integration of both differentially methylated sites and expressed genes showed 20 
genes that were hypomethylated and overexpressed and one gene, CTSH that was 
hypermethylated and associated with reduced expression.  
 
Interpretation of Results: Our study provides evidence that alterations in the methylome in 
Parkinson's Disease are discernible in blood, evolve over time, and reflect cellular processes 
linked to ongoing neurodegeneration. These findings lend support to the potential of blood DNA 
methylation as an epigenetic biomarker for Parkinson's Disease. To fully comprehend DNA 
methylation changes throughout the progression of Parkinson's Disease, additional profiling at 
longer intervals and during the prodromal stage will be necessary. 
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Introduction 
Parkinson's Disease (PD) is the second most common neurodegenerative disorder, and its 
prevalence is expected to double by 2040 1, 2. Although various genetic causes of PD have been 
identified, genetic factors account for only a minority of disease heritability 3. Accumulating 
epidemiological evidence has shown that environmental factors can increase the risk of PD 4, 
but not everyone responds in the same way to environment. Presently, it appears that the 
complex interplay between genetic and environmental factors underlies the pathogenesis of PD 
5. Some of the features of PD risk may be reflected in the epigenome, which serves as an 
interface between genetic and environmental risk factors. 
 
Epigenetic modifications do not affect the DNA sequence and can result in alterations in gene 
expression. DNA methylation (DNAm) is the most widely studied epigenetic phenomenon 6-8. As 
such, there is growing interest in exploring the role of DNAm in PD. Some studies suggest that 
methylation patterns in the blood of PD patients differ between cases and controls and may be 
related to the onset of PD 8-10. However, most of these studies have been conducted in 
heterogeneous or small cohorts. Therefore, there is a need for large-scale studies involving 
DNA samples from deeply clinically and biologically characterized PD cases and suitable 
controls, with rigorous collection and storage protocols. 
 
The Parkinson’s Progression Markers Initiative (PPMI) is an observational, international, 
multicenter study designed to establish biomarker-defined cohorts and identify clinical, imaging, 
genetic, and biospecimen (e.g., blood sample, cerebrospinal fluid) markers of PD progression. 
PPMI was established in 2010, and participants have been followed longitudinally, with clinical 
and biological samples, including DNAm, collected on a yearly basis 11 Longitudinal studies with 
multiple time points where methylation data was assessed, could provide novel insights into 
methylation trajectories in disease 12. 
 
The aim of this study was to characterize DNAm differences between individuals with sporadic 
PD (i.e. non-genetic) and healthy controls (HC) enrolled in the PPMI study. Importantly, we 
report on cross-sectional analyses as well as longitudinal DNAm changes in these individuals. 
Additionally, we provide initial data on the use of DNAm to develop an epigenetic signature to 
differentiate sPD and HC individuals.  
 
Methods 
Study cohort 
Data were downloaded from PPMI LONI database (December 13, 2021). The aims and 
methodology of PPMI have been published 11. For this study, we used the analytical dataset for 
sporadic Parkinson Disease (sPD) and HC participants. All study participants were enrolled at 
the initial stage of PPMI. Importantly, sPD individuals were treatment naïve and within two years 
of diagnosis at enrollment. Individuals with a variant in a known PD gene were excluded from 
this analysis. Individuals with a known condition that could impact DNAm (i.e. diagnosis of a 
blood or bleeding disorders, past medical history of cancer, autoimmune conditions and 
inflammtory bowel disease) were also excluded from our analysis.  
 
DNA methylation analysis 
For each study participant, DNAm data of ~ 850,000 CpG-sites were obtained from the Infinium 
MethylationEPIC array (Illumina) generated using bisulfite converted blood DNA. Raw IDAT files 
were available from PPMI. The ChAMP pipeline 13, 14 for Infinium MethylationEPIC BeadChip 
(Illumina) was used for all analyses, following the default workflow. Raw IDAT files were 
exported for processing in R (version 4.1). While β values were used for interpretation of the 
results,  M values [M value�=�log2(methylated intensity/unmethylated intensity)] were used for 
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the differential methylation analysis 15.Quality control and filtering steps were applied to exclude 
probes with detection p-value > 0.01, probes with < 3 beads in at least 5% of samples, non-CpG 
probes, probes that fall in single-nucleotide polymorphism (SNP), multi-hit probes and probes 
located in sex chromosomes 16. Data were normalized with BMIQ Method 17 and batch effects 
were corrected by ComBat 18. Cell type influence on the whole blood data was corrected with 
RefbaseEWAS 19. Differentially methylated positions (DMPs) were detected using limma 20. For 
the longitudinal analysis, we fit linear regression models with cluster-robust standard errors 
using the robust_se( ) function in the R sandwich package. Age, disease duration, sex, blood 
cell composition and levodopa equivalent daily dose (LEDD) were included as covariates in 
these analyses.    
 
Differentially methylated regions (DMRs) were detected using the DMRcate 21. A bandwidth of 
1000 nucleotides (lambda�=�1000) and a scaling factor of 2 (C�=�2) were used as 
recommended by the DMRcate authors. An adjusted (FDR) p value <0.05 was considered 
statistically significant for all methylation analyses. 
 
We will have over 80% power at 70% of methylation sites to detect a difference in methylation at 
significance level 9e-8, as recommended for the EPIC array 22. 
 
RNASeq analyses 
Differential gene expression analyses were performed only for the genes that were mapped to 
or near (± 1000 base pairs) to the DMRs.  Blood gene expression was obtained from the PPMI 
RNASeq raw read counts. Differential expression analysis was done using the R package 
DESeq2 23, and an adjusted FDR p value <0.05 was used to select significantly differentially 
expressed genes. 
 
Results 
Our study included a total of 282 participants from the PPMI cohort. Among these, 196 
individuals belonged to the sPD group, with 34% being female, mean age of 63.31 years, and a 
mean disease duration from diagnosis of 0.5 years at enrollment. Additionally, 86 healthy control 
participants were included, with 32% being female and a mean age of 63.95 at enrollment. 
There were no significant differences in age at DNA collection, sex ratio, or racial composition 
between the sPD and healthy control groups (Table 1). 
 
Baseline and longitudinal clinical characteristics are presented in Table 2. Individuals with sPD 
exhibited significantly lower Montreal Cognitive Assessment (MoCA) scores compared to HC, 
although their scores still fell within the range for normal cognition. As expected, both motor and 
non-motor scores were significantly worse in sPD individuals, and these scores declined further 
during follow-up. None of the sPD participants were taking any dopaminergic medication at 
baseline.  
 
Blood cell composition differs between sPD and healthy controls 
Given that we used whole blood DNA for methylation profiling, we considered the potential 
impact of differential lymphocyte cell type distributions on our analysis. To address this, we 
utilized distinctive cell-specific methylation profiles to estimate the proportional abundance of 
blood cell types in our samples based on the EPIC array's specific probes. At baseline, the sPD 
group exhibited a significantly higher proportion of granulocytes compared to HC (t test: 0.64 vs. 
0.62, p < 0.0001), as shown in Fig1. This difference persisted during follow-up. Additionally, at 
3-year follow up the proportion of CD8+ and CD4+ cells decreased in the sPD group and was 
significantly lower compared to the HC group (0.051 vs 0.060, p=0.041 for CD8+; 0.127 vs 
0.148, p = 0.0001 for CD4+) (Fig1). 
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DNA Methylation differs between sPD and healthy controls 
We conducted a cross-sectional analysis by comparing methylation profiles between sPD cases 
and HC at enrollment. This analysis revealed 81,604 differentially methylated sites between PD 
and HC. Applying a cutoff of a 2% absolute change in average methylation (∆β), resulted in 
5,183 retained positions. The top differentially methylated positions are presented in Table 3. 
PD individuals exhibited hypermethylation in 2,683 DMPs and hypomethylation in 2,495 DMPs 
(Fig2A). Approximately 30% of DMPs were enriched in promoter regions (Fig2B). Gene 
ontology analysis revealed that these DMPs were associated with genes involved in diverse 
cellular processes, including several with specific functions in the brain (“Focal adhesion”, 
“Cholinergic synapse”, “Glutamatergic synapse”, “Dopaminergic synapse”) (Fig2C). 
 
Since methylation at one site can be dependent on the methylation status of nearby CpGs, we 
decided to interrogate DMRs. Consequently, 13,071 differentially methylated regions (DMRs), 
between sPD and HC at baseline, were identified. Using a logFC cutoff of ≥ ±0.05 to focus on 
positions with substantial differential methylation, we identified 5,281 DMRs. The top 20 DMRs 
are presented in Table 4, and gene ontology analysis similarly indicated a connection with 
brain-specific functions (“Dopaminergic synapse”, “Tyrosine metabolism”, “Notch signaling 
pathway”) (Fig3). A complete list of DMPs and DMRs results at each time point are presented in 
Supplementary Tables 1-6. 
 
DNAm influences gene expression in sPD at baseline. 
To delve deeper into the relationship between DNAm changes and gene expression, we 
analyzed RNASeq data from PPMI. 75 significantly differentially expressed genes between sPD 
and HC were identified, with 71 being upregulated and 4 downregulated (Supplementary Table 
7). Integration of both differentially methylated sites and expressed genes showed 20 genes that 
were hypomethylated and overexpressed and one gene, CTSH (beta = 0.005; adjusted P value 
= 0.022), that was hypermethylated and associated with reduced expression (Fig4). 
 
Longitudinal Analysis 
We extended our analysis to longitudinally profile samples collected over a span of 3 years. 
Demographic characteristics at each time point are detailed in Table 2. Linear regression 
models with cluster-robust standard errors identified 579 positions that significantly changed 
over time in sPD. To ascertain that age and LEDD were not the primary drivers of the 
longitudinal epigenetic alterations observed in sPD, we additionally assessed the relationship 
between methylation changes and these variables. We also found that several hypomethylated 
CpGs (7) were near the CYP2E1 gene, while several hypermethylated CpGs (4) associated with 
the NDRG4 gene (Table 5). 
 
Discussion 
This study delves into the emerging role of epigenetic changes in PD and other 
neurodegenerative diseases. Specifically, we conducted a cross-sectional and longitudinal 
analysis of DNA methylation in whole blood samples from individuals diagnosed with sPD within 
the well-characterized and phenotyped PPMI cohort. This data also allowed us to examine 
DNAm patterns in a group of medication-free individuals at baseline, allowing us to uncover 
DNAm alterations more closely tied to disease mechanisms rather than medication-induced 
changes. Moreover, the longitudinal tracking of these individuals, coupled with comprehensive 
clinical and demographic data, offers a comprehensive view of PD's DNAm dynamics. 
Significantly, despite our use of blood-derived data, many of these DMRs were linked to genes 
with established roles in brain function (e.g. CTSH, NDRG4, CYP2E1, BRSK2). 
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By comparing DNAm across a span of three years, we identified 579 DMPs, even after 
controlling for age and LEDD. These findings suggest a potential role of DNAm in disease 
progression. Of interest, several hypomethylated DMPs were associated with the CYP2E1 gene 
that was also a highly significant DMR at baseline. While other groups have reported on 
differential methylation in this gene on cross-sectional data 10, 24, 25, our analysis demonstrates 
that this continues to be the case on follow up, suggesting a role of aberrant DNAm in CYP2E1 
in disease progression. Cytochrome P450 2E1, encoded by CYP2E1, plays a pivotal role in 
generating potentially toxic metabolites linked to dopaminergic degeneration. Furthermore, a 
SNP in this gene was identified as a genetic risk factor for PD in a Swedish cohort 26. CYP2E1 
polymorphisms have also been suggested as indicators of susceptibility to DNA damage in 
individuals exposed to pesticides, a finding of significance given the well-established association 
between pesticide exposure and PD 27, 28. Additionally, we also found several hypermethylated 
genes associated with the NDRG4 gene; the protein encoded by this gene contributes to the 
maintenance of intracerebral BDNF levels and is required for cell cycle progression and survival 
in primary astrocytes. This gene has been found to have reduced expression in the substantia 
nigra and cinglulate gyrus of individuals with PD 29, 30. Future studies analyzing DNAm at longer 
intervals will be essential to gain a more comprehensive understanding of the link between 
DNAm and clinical progression, 
 
Most of the differentially methylated positions at each time point were situated within gene 
bodies. Gene body methylation refers to the methylation of CpG sites in the transcribed regions 
of genes. Growing evidence suggests that methylation in CpG-sparse regions, such as 
enhancers and gene bodies, can profoundly influence gene expression 31. While methylation in 
promoter regions typically silences genes, intragenic methylation may have a more a varied 
effect, such as promoting gene expression, gene silencing, or alternative splicing [35]. 
Therefore, further exploration through functional studies of these intragenic methylation sites 
may provide crucial insights into their role in PD.  
 
To explore the link between DNAm and gene expression, we analyzed RNA Sequencing data in 
individuals with sPD. This analysis unveiled differences in gene expression profiles between 
sPD and HC individuals. Additionally, a comparison between differentially methylated genes and 
differentially expressed genes revealed an overlap of 21 genes.  Here, we identified that the 
CTSH gene was hypermethylated and with reduced expression. CTSH encodes the Cathepsin 
H protein, a lysosomal cysteine protease involved in lysosomal protein metabolism 32, 33. 
Lysosomal dysfunction has been associated with PD 34-36, and lysosomal related genes are 
associated with increased PD risk.  As such, abnormal DNAm of this protein emerges as a 
promising novel avenue for investigating PD pathogenesis. Additionally, while we were only able 
to perform a cross-sectional analysis of RNASeq data, origination and analysis of longitudinal 
gene expression data will aid in contextualizing these findings and their role in disease 
progression.  
 
Our analysis of methylation profiles from whole blood also allowed us to investigate the 
abundance of specific blood cell types in sPD. At baseline, individuals with sPD exhibited an 
increase in granulocytes that persisted upon follow-up, in agreement with previous reports Our 
study also revealed a decrease in CD4T and CD8T cells upon follow-up (3 years after 
enrollment in PPMI). These changes may indicate immune system dysregulation in sPD, a 
finding of interest given the potential role of inflammation in the disease 37, 38. 
 
These findings also suggest that DNAm could be explored as a marker for PD diagnosis and 
disease monitoring, likely as part of a broader biomarker panel. This will likely require the use of 
machine learning algorithms 39. Furthermore, as we move towards an era where the inclusion of 
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pre-symptomatic individuals in clinical trials for PD becomes feasible, characterizing these 
changes in the prodromal stage of PD will be valuable for understanding the mechanisms 
underlying the disease onset and assessing the potential of DNAm as a biomarker for 
identifying individuals at high risk of progressing to motor symptoms. 
 
Future research will also leverage the complete PPMI dataset, including genetic-PD individuals 
and validate our findings in other cohorts. This will be of importance given that most individuals 
included in PPMI are of European descent. As such, it is imperative to perform further analyses 
in diverse populations to ascertain if there are population specific methylation signatures that 
could explain PD risk. Additionally, there is a lack of easily accessible DNAm data in large PD 
cohorts. This study underscores the importance of collecting these biological data in future 
cohort studies, which will aid in replication and validation of this and subsequent epigenetic 
studies.  
 
A limitation of our analysis is the absence of environmental data for these subjects. As 
mentioned earlier, DNAm can be influenced by environmental exposures. Future directions will 
involve analyses on environmental factors such as pesticide exposure and lifestyle factors like 
smoking and alcohol consumption collected as part of PPMI. Further functional characterization 
of some of these findings will be vital for uncovering new disease mechanisms and potential 
intervention avenues. Also, integration of DNAm and other biomarkers will be informative. As an 
example, now that PPMI has data on alpha-synuclein seed amplification assay (αSyn-SAA)40, 
this analysis will be rerun comparing individuals who are αSyn-SAA positive vs those who are 
αSyn-SAA negative.  
 
In summary, our study provides evidence that alterations in the methylome in PD are discernible 
in blood, evolve over time, and reflect cellular processes linked to ongoing neurodegeneration. 
These findings lend support to the potential of blood DNA methylation as an epigenetic 
biomarker for PD. To fully comprehend DNA methylation changes throughout the progression of 
PD, additional profiling at longer intervals and during the prodromal stage will be necessary. 
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Figure Legends 
 
Figure 1. Blood cell composition in sporadic Parkinson Disease individuals 
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Figure 2. Differentially Methylated Probes (DMPs) 

A. Genes associated with DMPs 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Volcano plot of differentially methylated cytosine-guanine sites (CpGs). Each point 
represents an individual probe. Nearest associated gene is presented. 
UP=Hypermethylation; Down=Hypomethylation. Of note, differential methylation is 
presented as M values (log of B values). 
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B. Distribution of CpGs 
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C. Pathway enrichment for DMPs at baseline 
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Figure 3. Pathway enrichment for Differentially Methylated Regions (DMRs) at baseline 
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Figure 4. Overlap of differentially methylated and differentially expressed genes. 
 

 
 
 
Volcano plot of differentially methylated genes and differentially expressed genes. Each point 
represents an individual probe. Nearest associated gene is presented. UP=Hypermethylation; 
Down=Hypomethylation. 
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Table 1. Demographic characteristics at baseline  
 sPD(n=196) HC (n=86) p (95% CI) 
Mean age at baseline visit  
(SD) 

61.80 (9.36) 62.15 (10.78) 0.795 (-2.30,2.99) 

Female/Male (n) 58/129 28/58 0.79 
White (n) 185 77 0.38 

Median disease duration at 
baseline 
(range) 

0.4 (0 -2) NA NA 

Median symptom age (range) 62 (35-81) NA NA 
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Table 2. Clinical characteristics at baseline and on longitudinal follow up 
 Baseline Year 1 Year 2 Year 3 
 sPD 

(196) 
HC 
(86) 

 p  
(95% 
CI) 

sPD 
(178) 

HC 
(83) 

p  
(95% 
CI) 

sPD 
(179) 

HC 
(80) 

p (95% 
CI) 

sPD 
(181) 

HC 
(80) 

p (95% 
CI) 

Mean 
age (SD) 

61.80 
(9.36) 

62.15 
(10.78
) 

0.795  
(-2.30, 
2.99) 

62.59 
(9.43) 

63.58 
(10.43) 

0.46 
(-1.66, 
3.65) 

64.05 
(10.78) 

64.45 
(9.50) 

0.772 
(-2.36, 
3.17) 

64.94 
(9.62) 

65.75 
(10.66) 

0.55 
(-1.93, 
3.56) 

MDS-
UPDRS 
Part I 
(mean) 

1.40 0.63 < .001 
(-1.10,  
-0.42) 

1.76 0.65 < .001 
(-1.50, 
-0.73) 

1.82 0.57 < .001 
( -1.62,  
-0.86) 

1.96 0.62 < .001 
(-1.73,  
-0.93) 

MDS-
UPDRS 
Part II 
(mean) 

6.11 0.52 < .001 
(-6.24,  
-4.93) 

7.62 0.55 < .001 
(-7.90,  
-6.23) 

8.07 0.86 < .001 
(-8.11,  
-6.31) 

8.97 0.63 < .001 
(-9.21,  
-7.45) 

MDS-
UPDRS-
III 
(mean) 

21.55 1.54 < .001 
(-21.41, 
 -18.59) 

25.72 1.90 < .001 
(-
25.67, 
-21.96) 

28.47 1.95 < .001 
(-28.71,  
-24.37) 

30.67 1.47 < .001 
(-
31.33,  
-27.07) 

MOCA  
(mean) 

27.21 28.15 < .001 
(0.54, 
1.33) 

26.38 27.08 0.029  
(0.06, 
1.32) 

26.28 26.98 0.060 
(-0.03, 
1.43) 

26.69 27.4 0.023 
(0.09, 
1.30) 

Mean 
LEDD  
(SD) 
 

NA NA NA 311.81 
(220.27
) 

  381.54 
(280.66
) 

  381.54 
(280.66
) 

  

Table 3. Top 20 differentially methylated probes (DMPs) at baseline 
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Table 4. Top 20 significant differentially methylated regions (DMRs) at baseline 
 

CpG Chr Position Relation to 
TSS 

Nearest 
associated 

gene 

logFC FDR 

cg18213661 11 93681423 IGR  -0.2946842 0.00868945 
cg25403368 5 130554320 IGR  -0.1673612 0.00035482 
cg06378142 19 50119633 Body PRR12 -0.1543515 0.03815787 
cg13388618 2 238814771 Body RAMP1 -0.1355725 0.00063473 
cg17509989 5 176798049 Body RGS14 -0.1284415 0.00682996 
cg15355235 18 35001518 Body CELF4 -0.1198882 0.01153713 
cg10326673 2 30669757 TSS1500 LCLAT1 -0.1107039 0.04497683 
cg03646189 5 2756101 IGR  -0.109624 0.00989133 
cg06087988 2 46567260 Body EPAS1 -0.109153 2.34E-05 
cg14121685 15 56299462 IGR  -0.1054255 1.80E-05 
cg27586797 5 13664584 IGR  0.19857441 0.0160684 
cg06612594 20 43682078 Body STK4 0.133571 0.01565868 
cg01938825 7 1563708 IGR  0.13325065 0.04997444 
cg12858166 6 33033176 3'UTR HLA-DPA1 0.11387422 0.03364694 
cg18661872 5 131436611 IGR  0.11101836 4.20E-07 
cg05804568 5 159592696 IGR  0.1099409 2.63E-10 
cg07796016 1 152779584 TSS1500 LCE1C 0.10961198 0.0417662 
cg26251192 14 74003199 TSS1500 ACOT1 0.10695994 0.00160629 
cg24853868 1 146555624 IGR  0.10477105 0.00406238 
cg05194426 10 135343193 Body CYP2E1 0.10295235 7.68E-06 
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Chromosome Start End CpG FDR Max ∆β Gene 
Hypomethylated       
chr5 159592081 159592696 3 7.43E-10 -0.1063226 N/A 
chr5 131436611 131436890 2 8.35E-07 -0.1030687 N/A 
chr10 135340445 135343248 22 2.48E-05 -0.0981492 CYP2E1 
chr20 43681878 43682078 2 0.01865295 -0.097719 STK4 
chr11 1474588 1475899 7 2.87E-06 -0.0899853 BRSK2 
chr1 232007841 232008510 2 8.71E-05 -0.0888528 DISC1 
chr16 19777410 19778059 4 0.00648286 -0.0842839 IQCK 
chr13 30053833 30055092 6 0.00095081 -0.0756862 MTUS2,  

chr8 143751325 143751796 7 0.00430513 -0.0740626 
PSCA, 
JRK 

chr5 179740743 179741120 4 0.04429012 -0.0697626 GFPT2 
Hypermethylated       
chr2 46567260 46567451 2 4.66E-05 0.09948858 EPAS1 
chr2 30669385 30670304 12 0.01696551 0.09649313 LCLAT1 
chr15 56299462 56299636 2 1.40E-05 0.09613655 N/A 
chr12 7900072 7900651 3 0.00298332 0.09112004 CLEC4C 
chr5 176796807 176798049 7 0.00116872 0.0875691 RGS14 
chr1 115825602 115825641 2 0.02418216 0.08476224 N/A 
chr11 1412270 1414627 9 0.00147298 0.08060391 BRSK2 
chr1 101003634 101003924 3 0.02727681 0.07447863 GPR88 
chr7 948246 949834 6 0.00280961 0.07007024 ADAP1 
chr6 32305106 32305145 2 0.00142024 0.06978072 C6orf10 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5. Top Longitudinal changes in sPD cases 

CpG_Site Coefficient SE FDR ∆β over three years Nearest Gene 
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cg10596483 0.31088382 0.01116813 1.75E-115 -0.0247078 JRK 

cg17416644 0.53757281 0.00913787 1.50E-273 -0.0189683 BRSK2 

cg21941354 0.2000633 0.00637213 7.49E-136 -0.0170572 PSCA 

cg11445109 0.15685194 0.00880022 6.66E-59 -0.0150986 CYP2E1 

cg04008252 0.2226635 0.00607315 3.09E-165 -0.0148353 NPFFR2 

cg05473257 0.16573402 0.00645931 6.16E-103 -0.0127294 CYP2E1 

cg24984195 0.34316818 0.00607679 2.96E-263 -0.0114182 UBE2I 

cg21299458 0.17011373 0.0043338 3.15E-179 -0.0102815 SCARF2 

cg19469447 0.1371077 0.00581347 5.06E-91 -0.0100304 CYP2E1 

cg03134882 0.19896345 0.00548764 5.23E-163 -0.0100248 CYP2E1 

cg17273911 0.21393103 0.00433243 1.45E-230 -0.0092127 N/A 

cg09977703 0.19796984 0.00326851 5.65E-281 -0.0089486 PPP5C 

cg05194426 0.25591425 0.00867698 5.36E-125 -0.0089095 CYP2E1 

cg01873886 0.25430321 0.00524984 4.87E-226 -0.0089066 BMP4 

cg23400446 0.14237323 0.00617015 4.17E-88 -0.0087313 CYP2E1 

cg10862468 0.19063746 0.0061232 2.34E-134 -0.0083889 CYP2E1 

cg12158483 0.18460978 0.00499163 5.51E-167 -0.0083389 BAIAP2L2 

cg12754571 0.51125879 0.00774553 2.83E-303 -0.0076333 LOC148824 

cg06378142 0.5259074 0.01546718 1.59E-150 0.03692832 PRR12 

cg07504457 0.47968392 0.01020797 5.86E-219 0.02384914 VPS28 

cg05725404 0.35295282 0.0064493 1.86E-255 0.02259907 NDRG4 

cg00758881 0.24403566 0.00682108 2.27E-160 0.02230257 NDRG4 

cg17457090 0.2751549 0.00549316 5.79E-234 0.02229852 NDRG4 

cg27113419 0.27983815 0.00544638 4.67E-240 0.02203448 NDRG4 

cg06211550 0.31122216 0.00835066 1.54E-168 0.02119219 N/A 

cg22772380 0.43071726 0.0069473 5.76-287 0.01959139 ZNF12 
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