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Abstract12

The emergence of resistant phenotypes following the introduction of new antibiotics is well doc-13

umented. However, the subsequent dynamics of resistance frequencies over long time periods14

are less well understood: the extent to which resistance frequencies increase, the rate at which15

resistance frequencies change, and how this depends on antibiotic consumption remain open16

questions. Here, we systematically analyse the resistance trajectories emerging from 3,375,77417

hospital bacterial isolates sampled from infections in Europe over 1998-2019, representing 88718

bug-drug-country combinations. Our analyses support a model in which, after an initial in-19

crease, resistance frequencies reach a stable intermediate equilibrium. The plurality (37%) of20

analysed trajectories were best described as ‘stable’ (neither increasing nor decreasing). The21

second largest category of trajectories (21%) was those best described as ‘stabilising’ – i.e.22

showing a transition from increasing frequency to a stable plateau. The antibiotic consumption23

in a country predicts both the equilibrium frequency of the corresponding resistance and the24

speed at which this equilibrium is reached. Moreover, we find weak evidence that temporal25

fluctuations in resistance frequency are driven by temporal fluctuations in hospital antibiotic26

consumption. Overall, our results indicate that ever increasing antibiotic resistance frequencies27

are not inevitable and that antibiotic management limits resistance spread. A large fraction of28

the variability in the speed of increase and the equilibrium level of resistance remains unexplained29

by antibiotic use, suggesting other factors also drive resistance dynamics.30

1 Introduction31

Antibiotic resistance is a serious public health concern, with an estimated 5 million resistance-32

associated deaths per year globally [1]. The emergence of resistance phenotypes following the33

introduction of new antibiotics is well documented [2]. However, once present, the fate of34

these resistance phenotypes – i.e. the change in the frequency of resistance in the population35

over longer time frames – is less well understood. Existing studies into temporal trends in36

resistance frequencies, often focused on specific species-antibiotic (‘bug-drug’) combinations,37

report a variety of resistance trajectories – including increasing, decreasing, apparently stable,38

and non-monotonic time courses [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. A recent study looking39

at 13 bug-drug combinations across a large number of countries also reported a mixture of40

increasing and decreasing trends [15].41

Beyond characterising overall trends, analysis of temporal trajectories has the potential to pro-42

vide important additional insights into resistance dynamics. Predictions about medium to long-43

term resistance trends require an understanding of both the speed at which resistance frequencies44

change and how this speed itself changes – e.g. is there evidence of the rate of resistance increase45

slowing down as resistance frequencies get higher? In other words, if antibiotic consumption46

1

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 28, 2023. ; https://doi.org/10.1101/2023.09.27.23296241doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.09.27.23296241
http://creativecommons.org/licenses/by-nc/4.0/


rates remain relatively stable, are resistance frequencies expected to continue rising to eventually47

reach 100% (‘fixation’) or will we observe stabilisation at intermediate frequencies?48

This question of fixation is particularly important as it informs long-term expectations about49

the burden of resistance and has received considerable attention in the theoretical literature. An50

intuitive understanding of resistance evolution suggests that fixation should occur if resistance51

is beneficial enough to emerge in the first place. The simplest models of resistance dynamics52

predict a logistic rise in resistance frequencies (Figure 1B), at a rate dependent on the population53

antibiotic consumption and fitness cost associated with resistance [16]. For example, under54

typical simplifying assumptions [16], if a population is prescribed an average of one course of55

antibiotics per person per year and if resistance has little cost, the growth advantage of resistance56

(called ‘selection coefficient’ in evolutionary biology) is of 1 per year. This is enough to shift57

the frequency of resistance from 1% to 99% in 9 years. A higher cost of resistance leads to a58

slower increase, but fixation is still expected – provided the cost is not so high that it outweighs59

the benefit of resistance, in which case resistance would not emerge in the first place. These60

intuitions also hold for many more complex models of resistance.61

However, while some resistance trajectories (e.g. penicillin resistance in Staphylococcus aureus62

[4]) have indeed reached fixation, this is not the norm. An alternative model therefore suggests63

the presence of ‘balancing selection’ (sometimes also called ’negative frequency-dependent selec-64

tion’) which acts to stabilise resistance frequencies at intermediate levels. Multiple mechanistic65

models may generate balancing selection, with stabilising mechanisms arising for example from66

host population structure [17, 18, 19], strain structure [20] or within-host dynamics [21]. Yet,67

the lack of observed fixation is not in itself evidence of stabilisation: trajectories could still be68

rising towards 100%. It is therefore important to systematically assess evidence of stabilisation69

– i.e. a rising phase in resistance followed by a plateau – in temporal trajectories across a range70

of bug-drug combinations.71

Resistance trajectories also matter for understanding the relationship between antibiotic con-72

sumption and resistance. Antibiotic consumption correlates with resistance frequencies across73

European countries and US states [22, 23]. Under the fixation model, this correlation arises be-74

cause antibiotic consumption affects the rate at which resistance increases (Figure 1B,C). On the75

other hand, under the balancing selection model, the correlation between antibiotic consumption76

and resistance may arise not only because consumption affects the rate of increase in the rising77

(‘non-equilibrium’) phase, but also because consumption affects the equilibrium frequency of re-78

sistance (Figure 1E,F). This distinction matters for predicting the impact of reducing antibiotic79

consumption. Under the balancing selection model, if resistance is at equilibrium, reduction in80

antibiotic consumption would lead to a lower plateau. Under non-equilibrium dynamics however,81

a reduction in antibiotic consumption would either slow or reverse the rise in resistance.82

Here we analyse a large number of bacterial isolates sampled from infections in Europe, collected83

by the European Centre for Disease Control and Prevention (ECDC), together with antibiotic84

consumption data. We provide a quantitative and systematic view of the temporal trends in85

resistance and their relation to antibiotic consumption. Firstly, we provide an overview of speed86

and direction of resistance dynamics and assess evidence for stabilisation. Secondly, we quantify87

the association between antibiotic consumption and i) the equilibrium frequency of resistance88

and ii) the speed of increase of resistance. Thirdly, we explore the correlation between year-89

on-year variation in antibiotic use and resistance. We thus provide a comprehensive picture of90

antibiotic resistance evolution in Europe over the past two decades.91

2 Results92

2.1 Resistance is not systematically increasing and dynamics are slow93

We used data from the European Center for Disease Prevention and Control (ECDC) to sys-94

tematically investigate resistance trajectories in Europe from 1998 to 2019. In brief, the dataset95

consists of bacterial isolates tested for antibiotic resistance, with data for 8 species (Streptococ-96

cus pneumoniae, Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, Escherichia97

coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter spp.), 30 countries and98

36 antibiotics. Following data cleaning steps that filtered out trajectories with insufficient sam-99

ple size, the dataset retained for analysis consisted of 887 bug-drug-country combinations (see100

Methods for full details).101

2

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 28, 2023. ; https://doi.org/10.1101/2023.09.27.23296241doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.27.23296241
http://creativecommons.org/licenses/by-nc/4.0/


A. Constant selection

Frequency of resistance

S
el

ec
tio

n

0.0 0.5 1.0

−0.2

0.0

0.2
B. Logistic trend (fixation)

Time

F
re

qu
en

cy
 o

f r
es

is
ta

nc
e

0 50 100

0.0

0.5

1.0

Selection

F
re

qu
en

cy

0.0 0.1 0.2

0.0

0.5

1.0 C. Spatial correlations

Selection

S
lo

pe

0.0 0.1 0.2

0.00

0.05

D. Balancing selection

Frequency of resistance

S
el

ec
tio

n

0.0 0.5 1.0

−0.2

0.0

0.2
E. Stabilising trend

Time

F
re

qu
en

cy
 o

f r
es

is
ta

nc
e

0 50 100

0.0

0.5

1.0

Selection

F
re

qu
en

cy

0.0 0.1 0.2

0.0

0.5

1.0 F. Spatial correlations

Selection

S
lo

pe

0.0 0.1 0.2

0.00

0.05

Figure 1: Schematic of constant selection (A, B, C) and balancing selection (D, E, F) models
of resistance dynamics. The different colours represent different strengths of selection pressure.
For balancing selection, we arbitrarily chose a linearly declining selection coefficient. B and E
show the predicted trajectories for each of the models. The frequency dynamics are generally
linked with the selection coefficient by the differential equation, l̇p = s(lp) where lp denotes
the logit-transformed frequency of resistance (ln[p/(1 − p)]), with p representing the frequency
of resistance) and s(lp) is the selection coefficient. A simple epidemiological model predicts
a constant selection coefficient (A) equal to the antibiotic consumption rate minus the cost
of antibiotic resistance [16]. This gives rise to a logistic trend to fixation (B). In contrast,
balancing selection (D) leads to a stabilising trend (E). A number of candidate mechanisms lead
to balancing selection, but no clear consensus has been reached on a definitive model. C, F:
Both models generate a positive correlation between antibiotic consumption and the frequency
(here at time 50, materialised by points on B, E) and maximum slope of resistance increase
(crosses on B, E).

For an overview of the temporal trends in resistance, we began by fitting a standard logistic102

model to each trajectory. Overall, increasing trajectories are more common than decreasing103

ones, with 62% rising vs 38% declining. However, for most trajectories, the temporal trend is104

not statistically significant at the 0.05 level: 29% of all trajectories are significantly rising and105

16% significantly declining (see Figure 2). The median slope – i.e. selection coefficient in the106

fixation model of resistance – is 0.056 per year for the rising trajectories (-0.051 for the declining107

trajectories). In the fixation model of resistance, this translates to an increase from 1% to 99%108

resistance in 165 years.109

2.2 Evidence of stabilising resistance frequencies110

In order to test whether resistance trajectories might be stabilising at an intermediate plateau,111

we fitted two further models to each trajectory (see Methods for details and SI Figure 1): a112

scaled logistic model, in which the frequency is increasing towards an intermediate plateau rather113

than fixation, and a flat straight line with slope 0. Note that 10% of trajectories were not well114

characterised by any of the models and were removed from further analysis. After exclusion of115

these, the best model generally fit the data well (Figure 3).116

We then compared the fits of the standard logistic (2 parameters), the scaled logistic (3 pa-117

rameters) and flat line (1 parameter) models using the corrected Akaike Information Criterion118

(AICc). Trajectories best characterised by the plateauing logistic were categorised as ‘stabilis-119

ing’ (21%) and those best characterised by the flat line as ‘stable’ (37%). The trajectories best120

characterised by the standard logistic model were further divided into ‘increasing (s)’ (17%),121

‘increasing (ns)’ (4%), ‘decreasing (ns)’ (4%) and ‘decreasing (s)’ (17%) categories, where ‘s’122

3
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Figure 2: The speed of increase or decrease in European resistance frequencies, as measured by
the slope parameter in a standard logistic model, for all bug-drug-country combinations. For
clarity, 6 combinations with very high or low slopes (outside of the interval [-1.75;1.75]) have
been excluded (see Supporting Information). The plot includes both in- and outpatients. The
95% confidence intervals assume normality.

and ‘ns’ denote statistical significance and non-significance at the 0.05 level.123

Overall, these results suggest that resistance frequencies have indeed stabilised for many bug-124

drug combinations (Figure 4): a large proportion of the trajectories which appeared to be125

increasing in the standard logistic model are now classified as ‘stable’ or ‘stabilising’. This is126

particularly striking for the species E. coli and K. pneumoniae. It is worth noting that the stabil-127

ising trends give more support to the balancing selection model than the stable trends, because128

the transition from increasing to stable resistance is observed for these trajectories.129

To further understand the role of species, country and antibiotic class as determinants of ob-130

served temporal trends, we performed a regression analysis (SI Section 2) to correct for corre-131

lations among predictors (e.g. some species being more frequently sampled in some countries).132

The results (SI Figures 2 and 3) are consistent with the information conveyed in Figure 4.133

Finally, to gain further insight into the dynamics of the increasing trajectories, we compared134

the rate at which resistance is rising for the ‘increasing (s)’ category and for the non-equilibrium135

phase of the ‘stabilising’ category. If the ‘increasing’ trajectories also reflect non-equilibrium136

dynamics, we would expect these rates to be similar. We quantified the speed of increase137

for each trajectory as the maximal rate of increase in the time frame for which we had data138

(Methods 4.4, SI Figure 4). The fastest rates of increase were in the ‘increasing (s)’ category.139

On the other hand, the mean rate of increase was significantly lower for the ‘increasing (s)’ than140

the ‘stabilising’ category (2.2 vs 3.9 percentage points per year, p = 4.7 × 10−4 in an linear141

regression model with ‘stabilising’ vs ‘increasing (s)’ as a predictor of the speed of increase, n142

= 299). This difference does not arise from confounding, as the effect remains significant in an143

adjusted model (p = 1.9×10−6 in a linear regression model with species, country and antibiotic144

class as additional covariates). Thus while some of the increasing trajectories likely reflect145

genuine non-equilibrium dynamics, the slow rate of change suggests some of these trajectories146

may instead represent resistance frequencies responding to a changing selection pressure - due147

to, for example, increasing antibiotic consumption (see SI Section 3 for caveats).148
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Figure 3: Example trajectories of antibiotic resistance illustrating the different categories. One
example (a specific country, bug-drug combination) is shown for each category in the eight
panels. The last panels shows the distribution of errors for each category, for all country-bug-
drug combinations. Error is quantified as the mean of the absolute value of the deviation between
model predicted and actual resistance frequency, and trajectories with poor fit (i.e. error above
0.05) are excluded from further analysis.

2.3 Consumption of antibiotics predicts the level of stabilisation and149

the rate of increase of antibiotic resistance150

Next, we investigated which properties of the temporal trajectories of antibiotic resistance are151

predicted by antibiotic use. We correlated both the plateau and maximum rate of increase of152

the resistance trajectories with the use of the corresponding antibiotic class across countries, for153

bug-drug combinations for which at least five countries had data (Methods).154

First, we observed a positive correlation between the plateau level of resistance in the ‘stable’155

and ‘stabilising’ trajectories, and the consumption of the corresponding class of antibiotics in156

the community for most bug-drug combinations (Figure 5A). Overall, the mean correlation was157

significantly greater than 0 (mean correlation = 0.329 [0.18− 0.48], N = 40 combinations, t-test158

p = 5.2×10−5) and several individual correlations were significantly different from zero, despite159

considerable uncertainty in each correlation coefficient. This also held true when considering160

antibiotic use in the hospital instead of in the community (SI Figure 5); mean correlation161

= 0.322 [0.17 − 0.48], N = 31 combinations, t-test p = 1.7 × 10−4). This is consistent with162

selection by antibiotics increasing the plateau level of resistance.163

Second, the rate of increase of resistance frequency for the ‘stabilising’ and ‘significantly in-164
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Figure 4: Proportion of trajectories falling into each temporal trend category, by species (A),
country (B) and antibiotic class (C). The numbers give the actual sample size of trajectories
in each category. This figure does not correct for correlations among the categories (e.g. some
species being more frequently sampled in some countries). A corrected analysis is presented in
SI Section 2 and is consistent with the information presented here.

creasing’ trajectories also exhibited a correlation with antibiotic use, but the signal was weaker165

than for the plateau. In this analysis, the rate of increase was computed as the maximal slope166

reached over the time-period in which we had resistance data. The individual correlations could167

be either negative or positive and none were individually significantly different from 0 (Fig-168

ure 5B). However, overall, the set of correlations had a mean significantly greater than 0 (mean169

correlation = 0.18 [0.06; 0.30], N = 14 combinations, t-test p = 0.005). The mean was similar170

when considering antibiotic use in the hospital sector, though not significantly different from171

0 (mean correlation = 0.19 [−0.08; 0.45], N = 10 combinations, t-test p = 0.15) (SI Figure 5).172

When restricting to stabilising trajectories only, we obtained very few bug-drug combinations,173

most of them from E. coli and showing a positive correlation (SI Figure 6). All in all, there174

was evidence that the rate of increase in antibiotic resistance is driven by antibiotic use.175

Lastly, if we ignore temporal trends, the median level of resistance over time was also generally176

positively correlated with consumption (SI Figure 7).177

2.4 Antibiotic use as a predictor of temporal variation in antibiotic178

resistance179

Following the earlier result that ‘increasing’ trajectories may reflect a changing equilibrium180

frequency, we investigated whether year-to-year variation in antibiotic use could cause corre-181

sponding year-to-year fluctuations in the level of resistance. For each country, we computed182

the temporal correlation of resistance with use of the corresponding antibiotic, for combinations183

for which we had at least five years of data and for all categories of temporal trajectory. We184

then averaged these temporal correlations over all countries and retained only bug-drug combi-185

nations for which we had at least five countries. There was overall a positive mean correlation186

between resistance and antibiotic use in the hospital sector (mean correlation = 0.06 [0.03; 0.09],187
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Figure 5: Spatial correlation coefficients between (A) the plateau frequency of antibiotic re-
sistance, or (B) rate of increase, and the rate of use of the corresponding antibiotic in the
community, for all bug-drug combinations. The number of countries included is indicated for
each combination. The vertical dashed lines show the overall mean. Trends are similar when
considering hospital instead of community use (SI Figure 5).

A B

Figure 6: Temporal variation in hospital antibiotic use as a predictor of temporal variation in
antibiotic resistance. (A), the temporal correlation of the frequency of resistance with hospital
antibiotic use across bug-drug combinations. The number of countries included is indicated for
each combination. The vertical dashed lines show the overall mean. (B), the distribution of
temporal trends in antibiotic consumption in hospitals for each category of trend in resistance.

N = 63 combinations, t-test p = 6.8×10−4) (Figure 6A), but this was not true when considering188

the use of antibiotics in the community sector (mean correlation = 0.01 [−0.02; 0.04], N = 65189

combinations, t-test p = 0.6) (SI Figure 8).190

Because of the mixed evidence, to further investigate the possibility that the frequency of resis-191

tance follows the fluctuations in antibiotic use, we computed two additional partially independent192

indicators (SI Figure 9) [24]. These also suggested that antibiotic resistance follows temporal193

fluctuations in the use of antibiotics in the hospital sector, but not in the community.194

We last looked at whether sustained trends in antibiotic consumption (computed as the Spear-195
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man correlation between calendar year and consumption level) predict the temporal trajectory196

of antibiotic resistance. In other words, we tested whether increasing/decreasing resistance tra-197

jectories are associated with increasing/decreasing consumption of the corresponding antibiotic198

in the corresponding country. Hospital antibiotic consumption rate was increasing on average for199

all resistance trends (Figure 6 B), but the increase in consumption was significantly higher for200

the increasing (s and ns) than decreasing (s and ns) categories (Wilcox test, p = 0.002). Again,201

no significant trend was found when considering community instead of hospital consumption202

(Wilcox test, p = 0.14).203

All in all these analyses provide some evidence that the frequency of antibiotic resistance follows204

changes in the use of the antibiotic – either year-on-year fluctuations and/or sustained trends –205

in the hospital, but not community sector.206

2.5 Case-study: few rising trajectories in previously high-consumption207

countries208

Finally, we combined the insights above to further understand specific resistance trends. Some of209

the countries with the smallest proportion of increasing trajectories (Figure 4 and SI Figure 2),210

such as Greece, Italy, and France, were also the countries with highest levels of antibiotic use211

in the community in the early 2000s [22]. Confirming this observation, there was overall a212

significant negative correlation between antibiotic use in the community sector in 2000 and the213

proportion of increasing resistance trajectories (SI Figure 10C). Such trend was not observed214

for hospital consumption.215

We hypothesised two non-mutually exclusive explanations for this intriguing finding. One pos-216

sibility is that countries with high community antibiotic use in the early 2000s have taken217

effective measures to halt the increase of antibiotic resistance. We looked at whether high218

community antibiotic use in 2000 correlated with a decrease in total antibiotic consumption219

during the study period. This was true in the hospital sector, but not in the community (SI220

Figure 10A,B). Alternatively, as high antibiotic consumption leads to a faster rise in resistance,221

trajectories in high consumption countries are more likely to have reached a plateau either be-222

fore or during the study period, while trajectories in lower consumption countries are still rising223

towards the plateau. This hypothesis requires that increasing trajectories reflect, at least in224

part, non-equilibrium dynamics. In support of this hypothesis, we found that countries with225

high community antibiotic consumption in 2000 had a faster rate of increase in the rising phase226

of the stabilising trajectories (Spearman’s rho: 0.71, p = 0.0014).227

3 Discussion228

Our analysis of resistance trajectories in Europe suggests that antibiotic resistance frequencies229

are not consistently increasing and instead often appear stable over two decades. This obser-230

vation has been previously discussed in the context of S. pneumoniae [17, 18, 20] and, to a231

more limited extent, in other species [19]. Our work provides systematic evidence for stability232

and – notably – stabilisation of resistance in eight important bacterial species. However, a non-233

negligible minority of trajectories were categorised as either significantly increasing (17%) or234

significantly decreasing (17%). These trajectories could reflect either non-equilibrium dynamics235

or a changing equilibrium frequency in response to changing antibiotic use. While we cannot236

determine for certain which is the case for individual trajectories, our analysis suggests a mix237

of these scenarios.238

There was considerable variability in trends by bacterial species, country, and antibiotic class.239

We were able to explain some of this variability. First, resistances were in part associated with240

the rate of use of the corresponding antibiotic. In addition to previous work showing a spatial241

correlation between median consumption and median resistance [22, 23], we evidenced the effect242

of antibiotic consumption on both the rise and the stable level of resistance. We also investigated243

the temporal correlation between antibiotic use and resistance frequency. Resistance was weakly244

associated with hospital – but not community – antibiotic consumption, both in terms of year-245

on-year fluctuations and sustained trends. Second, the species E. coli and K. pneumoniae were246

associated with a particularly large number of increasing or stabilising trajectories. This might247

be linked to the emergence and spread of the CTX-M beta-lactamase enzyme in the late 1990s248

and early 2000s [25]. Third, countries with high antibiotic consumption in 2000 [22] – e.g. Italy,249

Greece and France – saw fewer increasing resistance trajectories than other countries. This was250
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not straightforwardly explained by a decrease in antibiotic use, but might be explained by these251

trajectories having stabilised earlier in these countries than in others.252

A large part of the variability in resistance within and across countries remained unexplained.253

One reason could be that differences in host population structure, and heterogeneity in antibiotic254

consumption within this structure, can lead to different resistance frequencies for populations255

with the same average consumption [19]. A second explanation is the spillover of resistance from256

neighbouring countries: even small amounts of migration from other countries are sufficient to257

influence local levels of resistance, which would tend to weaken the spatial correlation across258

countries [18, 26]. Thirdly, the coupling of multiple resistance genes co-occurring on bacterial259

strains (‘linkage disequilibrium’) [27] means that the frequency of resistance against a particular260

antibiotic could be affected by the consumption of other antibiotics. Finally, a number of studies261

have reported statistical associations between the frequency of resistance and other factors –262

e.g. temperature, pollution, governance- and infrastructure-related factors [15, 28, 29]. While263

this strongly suggests selection pressure is not solely dependent on antibiotic consumption,264

it is challenging to determine which factors are truly causal. Determining the causal role of265

factors beyond average antibiotic consumption requires detailed epidemiological and genomic266

data, including host metadata (host characteristics, geographic location), contact networks,267

and sequence data conveying the genetic coupling between different resistances and other loci268

determining important bacterial phenotypes.269

One important limitation of our study is data quality and consistency across countries. The270

tested isolates do not necessarily reflect a random sample of bacteria circulating in the human271

population, or even of bacteria infecting hospital patients. For example, intensified testing272

in the context of hospital outbreaks might cause the over-representation of particular clones273

in a specific country and year. Resistance frequencies are not comparable across years if the274

threshold for resistance is changed, as was the case in France for P. aeruginosa [30]. The275

antibiotic consumption data is subject to similar data quality considerations. To limit the276

inclusion of biased or poor-quality data in our analyses, we did not consider the trajectories for277

which none of our models fitted the data well (‘poor fit’ category), and we removed temporal278

outliers from the consumption data. Despite these concerns, most trajectories were quite smooth279

temporally (Figure 3). Furthermore, while potential biases will affect the overall estimate of280

resistance frequency, as long as bias remains constant in time, they will not affect the detection281

and categorisation of temporal trends. Although the data from the ECDC may represent one282

of the largest and best standardised datasets on antibiotic resistance and consumption, it is283

limited to European countries. It is important to determine whether the pattern of stability284

and stabilising also holds elsewhere, particularly in low and middle income countries (LMICs).285

While data sources covering a wider range of countries exist (e.g. ResistanceMap1 and ATLAS2),286

their temporal span is currently much smaller for LMICs than the two decades covered by the287

European network. Thus, while quantifying overall resistance trends in LMICs is possible [15],288

assessing evidence for stabilisation may prove more challenging.289

Finally, the stability of resistance trends may not be robust to evolutionary innovation. With290

sustained selection pressure, bacteria may evolve new and less costly resistance mechanisms291

and compensatory mutations that alleviate the cost of resistance. This would result in the292

progressively increase the equilibrium level of resistance. While compensatory evolution is read-293

ily observed under laboratory conditions, its contribution to real-word resistance dynamics is294

unclear.295

In conclusion, using antibiotic resistance data from 3,375,774 bacterial isolates from infections,296

encompassing 8 bacterial species, 30 European countries, and 20 years, we reveal that resis-297

tance trajectories are for the most part stable or stabilising. This overall behaviour of antibiotic298

resistance trajectories suggests that ever increasing antibiotic resistance is not inevitable and299

that resistance management can be effective in limiting resistance spread. Observed resistance300

dynamics were, to some extent, explainable by levels of antibiotic consumption. However, this301

explanatory power was relatively low, highlighting important gaps in our understanding of resis-302

tance dynamics. All in all, we open perspectives for further work elucidating how the complex303

ecology of bacteria determine the long-term fate of antibiotic resistance.304

1https://resistancemap.onehealthtrust.org/AntibioticResistance.php
2https://atlas-surveillance.com
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4 Methods318

4.1 Data319

4.1.1 Resistance Raw Data320

The data on the antimicrobial resistance rates are released by the European Surveillance System321

- TESSy, provided by Finland, Sweden, Belgium, Germany, Greece, Ireland, Italy, Luxembourg,322

Netherlands, Norway, Portugal, United Kingdom, Austria, Bulgaria, Czech Republic, Denmark,323

Estonia, Spain, Malta, Slovenia, France, Croatia, Hungary, Poland, Slovakia, Romania Cyprus,324

Latvia, Lithuania and released by the European Centre for Disease Prevention and Control325

(ECDC). The data covers the years 1998-2019.326

The raw data, available upon request from the ECDC, is in case-based format, and consists of, for327

each isolate: the date of the isolation, the pathogen, the patient type (inpatient or outpatient),328

and the antimicrobial resistance level (sensitive, intermediate, resistant according to EUCAST329

clinical breakpoints) to various antibiotics. Outpatients consist of patients presenting at the330

hospital for dialysis, other day hospital care, or emergency. A more detailed description of the331

raw resistance data is made available by the ECDC [31].332

4.1.2 Antibiotic Consumption Raw Data333

Data on antibiotic consumption is publicly available from the ECDC, and consists of defined334

daily dose (DDD) per 1000 inhabitants by antibiotic class, country, year, sector (community,335

hospital care, total care) and uptake route (oral, parenteral, rectal, inhalation, implant, all).336

The dataset includes the same 30 countries as the resistance dataset, spans the years 1997-2016,337

and consists of the following classes of antibiotics: J01A (tetracyclines), J01B (amphenicols),338

J01C (penicillins), J01D (other betalactams), J01E (sulfonamides), J01F (macrolides), J01G339

(aminoglycosides), J01M (quinolones), J01R (combinations of antibacterials), J01X (others),340

P01A (agents against amoebiasis and other protozoal diseases), A07A (intestinal antiinfectives).341

A detailed description of the consumption data is made available by the ECDC [32].342

4.2 Preprocessing343

4.2.1 Processing of antibiotic resistance data344

We computed the frequency of resistant for each bug, drug, country, year, and patient type345

combination. Intermediate isolates were considered resistant. We compared the temporal trends346

in resistance in inpatients and outpatients for drug-pathogen-country combinations that had347

data on both types of patients. The temporal trends in outpatients and in patients were very348

correlated, with similar or higher levels of resistance in inpatients. Therefore we only considered349

resistance measured in inpatients for further analyses.350
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4.2.2 List of the bug-drug combinations investigated:351

S. aureus: CIP CLO DAP DIC FLC FOX LNZ LVX MET NOR OFX OXA RIF TEC352

S. pneumoniae: AZM CIP CLR CRO CTX ERY LVX MFX NOR OFX OXA PEN353

E. faecalis: AMP AMX GEH LNZ TEC VAN354

E. faecium: AMP AMX GEH LNZ TEC VAN355

E. coli : AMC AMK AMP AMX CAZ CIP COL CRO CTX DOR ETP FEP GEN IPM LVX MEM MFX NAL NET NOR OFX PIP POL TGC TOB TZP356

K. pneumoniae: AMC AMK CAZ CIP COL CRO CTX DOR ETP FEP GEN IPM LVX MEM MFX NAL NET NOR OFX PIP POL TGC TOB TZP357

P. aeruginosa: AMK CAZ CIP COL DOR ETP FEP GEN IPM LVX MEM NET PIP POL TOB TZP358

Acinetobacter spp.: AMC AMK AMP AMX CAZ CIP COL CTX DOR FOX GEH GEN IPM LVX MEM NAL NET POL TOB TZP VAN359
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4.2.3 Processing of antibiotic use data360

For many countries and years, the total consumption of antibiotics by all routes of adminis-361

tration was reported. We primarily used this information when it was available. Moreover,362

some countries and years recorded the consumption decomposed by route of administration363

of antibiotics. This was most commonly oral and parenteral, and, less frequently, inhalation,364

rectal, implant, ”other” routes. When total consumption was not available, we summed the365

consumption recorded over all routes to obtain an estimate of total consumption.366

We considered consumption both in the hospital sector and in the community.367

To remove all outliers for a given antibiotic class, country, sector, route of administration for368

each combination we removed datapoints for years not within ±3× IQR (IQR = Inter quartile369

range) of the temporal median.370

4.3 Inferring temporal trends in antibiotic resistance371

For combinations of bug, drug, country, we fitted logistic models to the temporal trends in the372

frequency of resistance. We only included the combinations with a time series of at least 5373

years, where all years had at least 30 isolates tested for drug resistance, and in total at least374

10 resistant bacterial isolates. Fitting was done with non-linear least square regression, with375

the function nlsLM from the minpack.lm R package, except for the flat line which was fit using376

lm from the base stats package [33, 34]. The error is assumed to be normally distributed and377

proportional to the inverse of the sample size for each year.378

We fitted three models to the temporal trends data:379

1. A standard logistic model with two parameters, an offset and a slope. The standard380

logistic model results in an increasing sigmoid from 0 to 1, or a decreasing sigmoid from 1381

to 0 if the slope is negative. This corresponds to the standard population genetics model382

describing the action of selection on resistance frequency. The resistance frequency f for383

year t under this model is given by:384

f(t) =
1

1 + e−k1(t−k0)
(1)

where k1 is the slope parameter and k0 determines the offset.385

2. A ‘flat’ model with slope 0 and an intercept. In this model, the resistance frequency f for386

year t is given by:387

f(t) = k2 (2)

3. A plateauing logistic model with a maximum frequency below 1, where the sigmoid function388

is scaled by parameter k2. In this model, the resistance frequency f for year t is given by:389

f(t) =
k2

1 + e−k1(t−k0)
(3)

390

We compared the models using the corrected Akaike Information Criterion (AICc), with the391

best model corresponding to the smallest AICc [35]. The AICc is given by:392

2k − 2 ln(L̂) +
2k2 + 2k

n− k − 1
(4)

where L̂ is the maximum likelihood estimate, k the number of parameters and n the sample393

size.394

We quantified the goodness of fit with the mean absolute error of the best fit model. For the395

two logistic models, we determined the statistical significance of the slope based on a threshold396

of p < 0.05.397

This resulted in six categories of temporal trends:398

(i) significantly increasing, when the best model was the standard logistic and the slope was399

significantly positive.400
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(ii) non-significantly increasing, when the best model was the standard logistic and the slope401

was positive but not significantly different from 0402

(iii) non-significantly decreasing, when the best model was logistic and the slope was negative403

but not significantly different from 0.404

(iv) significantly decreasing, when the best model was logistic and the slope was significantly405

negative.406

(v) stable, when the best model was a flat fit.407

(vi) stabilising, when the best model was the logistic with plateau different from 1.408

Additionally, some trajectories were classified as ‘poor fit’ when the mean absolute error exceeded409

0.05 and were not analysed further. The ‘stabilising’ category can be subdivided further in410

‘stabilising significantly increasing’ and ‘stabilising non-significantly increasing’ depending on411

the significance of the slope leading to the plateau.412

4.4 Comparison of rate of resistance change across models413

The slope parameters in the standard and scaled logistic models (k1 in Equations 1 and 3) are414

not directly comparable. This is because the parameter reflects how quickly resistance will reach415

its maximum level. As the maximum is different in the two models, the same slope parameter416

in the two models translates to a different rate of change in the actual resistance frequencies.417

For the analyses in which we sought to compare the speed of change across the two models –418

i.e. the comparison of increasing and stabilising trajectories and the correlation with antibiotic419

usage – we computed a comparable measure of the change in resistance frequencies. Specifically,420

we looked at the maximal rate of change observed in the temporal window for which we had421

data.422

4.5 Correlation between antimicrobial consumption and resistance423

We correlated antimicrobial consumption and resistance across countries and time. In all cases,424

we correlated the level of resistance to a particular antibiotic to the total consumption of all425

antibiotics of this class.426

4.5.1 Correlation between antimicrobial consumption and resistance across coun-427

tries428

For each bug-drug combination, we correlated across countries the median antibiotic consump-429

tion across years, to three properties of the resistance temporal trends. These three properties430

were the median resistance across years, the resistance plateau (for ’stable’ and ’stabilising’431

categories), the slope of the logistic (for ’logistic significantly increasing’ and ’stabilising sig-432

nificantly increasing’ categories). As described above, the slope was computed as the maximal433

rate of change reached in the temporal window for which we had data This ensures the slope434

is comparable across the logistic model with and without intermediate plateau, unlike the slope435

parameter of the logistic. We quantified the correlation with Spearman’s rank correlation coef-436

ficient across countries, for bug-drug combinations represented by at least five countries. The437

correlation was calculated using SpearmanRho from DescTools version 0.99.49 [36].438

This analysis resulted in a number of correlation coefficients. These coefficients are calculated439

for combinations of antibiotics prescribed in the community vs. the hospital sector, (we remind440

that we consider only resistance in inpatients), and of the three properties of temporal trends441

which are correlated (total of 6 combinations).442

4.5.2 Correlation between antimicrobial consumption and resistance across time443

For each country-bug-drug combination, we correlated across years the level of resistance and444

level of antibiotic consumption. This results in a Spearman’s rank correlation coefficient for the445

country-bug-drug combinations and each of the four combinations of community vs. hospital446

sector. This was again calculated using SpearmanRho from DescTools version 0.99.49 [36].447

We kept only country-bug-drug combinations with at least 5 years of data available. We aver-448

aged these correlations over countries for each bug-drug combination, retaining only bug-drug449

combinations for which 5 countries of more were represented. It is expected that the temporal450
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correlation between the frequency of resistance and the corresponding antibiotic use is positive451

if the bacterial population adapts to the changing use of specific antibiotic.452

We additionally computed a cross-temporal correlation, whereby the consumption data were453

shifted by -1 and +1 year compared to the resistance data. To give additional indications that454

yearly variation in antibiotic resistance follows variation in consumption, we used these cross-455

temporal correlations. First, if the bacterial population adapts closely to the contemporaneous456

antibiotic use, it is expected that the ”temporal adaptation” pattern formed by the cross-457

correlation for time-shifts −1, 0 and +1 is maximal at 0 [24]. We counted the fraction of458

bug-drug combinations for which temporal adaptation was maximal at 0 and calculated the459

probability of this fraction under a binomial model with true probability 0.25. Second, we460

compared the temporal correlation with the spatial correlation across bug-drug combinations.461

Indeed, if the bacterial population evolves in response to changing antibiotic use, it is expected462

that levels of resistance match both the contemporaneous and local antibiotic use [24]. We463

therefore tested whether bug-drug combinations with stronger spatial correlations also exhibited464

stronger temporal correlations, by correlating the two correlations across bug-drug combinations465

(Figure 9).466

4.6 Code Availability467

All code is available on the following GitHub repository:468

https://github.com/mjemons/temporal-trends-AMR-manuscript469

All analyses were performed with R version 4.2.3 [34]. Packages are managed with renv470

[37].471
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Ben Cooper, Tim R. Cressey, Elia Criollo-Mora, Matthew Cunningham, Saffiatou Darboe,482

Nicholas P. J. Day, Maia De Luca, Klara Dokova, Angela Dramowski, Susanna J. Dunachie,483

Tim Eckmanns, Daniel Eibach, Amir Emami, Nicholas Feasey, Natasha Fisher-Pearson,484

Karen Forrest, Denise Garrett, Petra Gastmeier, Ababi Zergaw Giref, Rachel Claire Greer,485

Vikas Gupta, Sebastian Haller, Andrea Haselbeck, Simon I. Hay, Marianne Holm, Su-486

san Hopkins, Kenneth C. Iregbu, Jan Jacobs, Daniel Jarovsky, Fatemeh Javanmardi,487

Meera Khorana, Niranjan Kissoon, Elsa Kobeissi, Tomislav Kostyanev, Fiorella Krapp,488

Ralf Krumkamp, Ajay Kumar, Hmwe Hmwe Kyu, Cherry Lim, Direk Limmathurotsakul,489

Michael James Loftus, Miles Lunn, Jianing Ma, Neema Mturi, Tatiana Munera-Huertas,490

Patrick Musicha, Marisa Marcia Mussi-Pinhata, Tomoka Nakamura, Ruchi Nanavati,491

Sushma Nangia, Paul Newton, Chanpheaktra Ngoun, Amanda Novotney, Davis Nwakanma,492

Christina W. Obiero, Antonio Olivas-Martinez, Piero Olliaro, Ednah Ooko, Edgar Ortiz-493

Brizuela, Anton Yariv Peleg, Carlo Perrone, Nishad Plakkal, Alfredo Ponce-de Leon, Math-494

ieu Raad, Tanusha Ramdin, Amy Riddell, Tamalee Roberts, Julie Victoria Robotham,495

Anna Roca, Kristina E. Rudd, Neal Russell, Jesse Schnall, John Anthony Gerard Scott,496

Madhusudhan Shivamallappa, Jose Sifuentes-Osornio, Nicolas Steenkeste, Andrew James497

Stewardson, Temenuga Stoeva, Nidanuch Tasak, Areerat Thaiprakong, Guy Thwaites,498

Claudia Turner, Paul Turner, H. Rogier van Doorn, Sithembiso Velaphi, Avina Vongpra-499

dith, Huong Vu, Timothy Walsh, Seymour Waner, Tri Wangrangsimakul, Teresa Wozniak,500

Peng Zheng, Benn Sartorius, Alan D. Lopez, Andy Stergachis, Catrin Moore, Christiane501

Dolecek, and Mohsen Naghavi. Global burden of bacterial antimicrobial resistance in 2019:502

a systematic analysis. The Lancet, 399(10325):629–655, February 2022. ISSN 0140-6736,503

1474-547X. doi: 10.1016/S0140-6736(21)02724-0. URL https://www.thelancet.com/504

journals/lancet/article/PIIS0140-6736(21)02724-0/fulltext. Publisher: Elsevier.505

[2] Christopher Witzany, Sebastian Bonhoeffer, and Jens Rolff. Is antimicrobial resistance506

evolution accelerating? PLOS Pathogens, 16(10):e1008905, October 2020. ISSN 1553-7374.507

doi: 10.1371/journal.ppat.1008905. URL https://journals.plos.org/plospathogens/508

article?id=10.1371/journal.ppat.1008905. Publisher: Public Library of Science.509

[3] Althea W McCormick, Cynthia G Whitney, Monica M Farley, Ruth Lynfield, Lee H Har-510

rison, Nancy M Bennett, William Schaffner, Arthur Reingold, James Hadler, Paul Cieslak,511

et al. Geographic diversity and temporal trends of antimicrobial resistance in streptococcus512

pneumoniae in the united states. Nature medicine, 9(4):424–430, 2003.513

[4] L. Clifford McDonald. Trends in Antimicrobial Resistance in Health Care–Associated514

Pathogens and Effect on Treatment. Clinical Infectious Diseases, 42(Supplement 2):S65–515

S71, January 2006. ISSN 1058-4838. doi: 10.1086/499404. URL https://doi.org/10.516

1086/499404.517

[5] Lotta Siira, Merja Rantala, Jari Jalava, Antti J. Hakanen, Pentti Huovinen, Tarja Kai-518
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