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The slow descent in TB burden, the COVID-19 pandemic, along with the rise of multidrug-8

resistant strains of Mycobacterium tuberculosis, seriously threaten TB control and the goals of the9

End TB strategy. To fight back, several vaccine candidates are under development, with some of10

them undergoing the phases 2B and 3 of the development pipeline. The impact of these vaccines on11

the general population needs to be addressed using disease-transmission models, and, in a country12

like China, which last year ranked third in number of cases worldwide, and where the population13

is undergoing a fast process of demographic aging, the impact of TB vaccination campaigns may14

depend heavily upon the age of targeted populations and with the mechanistic descriptions of the15

TB vaccines. For these reasons, transmission models need to capture the coupling between TB16

dynamics and demographic evolution, as well as to be able to accommodate different mechanistic17

descriptions of TB vaccine protection. In this work, we studied the potential impact of a new TB18

vaccine in China targeting adolescents (15-19 y.o.) or elderly people (60-64 y.o.), according to varying19

vaccine descriptions that represent reasonable mechanisms of action leading to prevention of disease20

(PoD), or prevention of recurrence (PoR), each of them targetting specific routes to TB disease.21

To measure the influence of the description of the coupling between transmission dynamics and22

aging in TB transmission models, we explored two different approaches to comptute the evolution23

of the contact matrices, which relate to the spreading among different age strata. Our results show24

that the magnitude of model-based impact estimates substantially depends upon the vaccine profile,25

and it is also strongly related to the modeling approach chosen to describe the time evolution of26

contact matrices. In spite of these sources of uncertainty, our results also show, in line with previous27

modeling works, that elder vaccination is a suitable option in China to reduce the incidence of TB.28

I. INTRODUCTION29

Tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium tuberculosis (M.tb.) that usually30

affects the lungs. It is a complex but preventable disease with a high global burden that requires early detection and31

long treatments, and that is still among the leading causes of death for a single pathogen worldwide. In 2014, the World32

Health Assembly introduced the World Health Organization (WHO) ”Global Strategy and Targets for tuberculosis33

prevention, care, and Control after 2015”, labeled as the End TB Strategy, which consists of completing a reduction34

of TB incidence and mortality rates by 90% and 95%, between 2015 and 2035 [1].35

Arguably, the measures and interventions currently under use for TB control are effective, but also insufficient to36

meet the goal of the End TB strategy. Thus, although a decay in TB incidence and mortality has been achieved37

worldwide since 1990 [2], its yearly rate of reduction is still too slow. Furthermore, during 2020 and 2021, and for the38

first time in decades, the world witnessed a surge in global TB burden levels with respect to previous years due to39

the COVID-19 emergency that led to underdiagnosis and under-treatment of TB, along with the saturation of most40

healthcare systems [3–6]. During those years alone, the WHO estimated that TB was the cause of death of more than41

1.5 and 1.6 million people respectively, worldwide, combining HIV-negative and positive cases [3, 7].42

The recent increase in TB burden observed in 2020-2022 due to the irruption of the COVID-19 pandemic, threatens,43

in high-burden countries like India or Indonesia, to raise the TB-related mortality back to even higher levels than44

before in the next few years [8, 9]. Moreover, the ever-increasing rates of emergence of drug resistance [10] evidences45

the necessity of new tools against the disease, including new and better drugs as well as improved diagnosis methods.46

Among these new resources, the development of a new vaccine that either boosts or replaces the current bacillus47

Calmette-Guerin (BCG) is commonly referred to as the potentially most impactful single intervention to halt TB48

transmission, given the limited and variable efficacy levels observed for BCG against the more transmissible respiratory49

forms of the disease in young adults [11]. Consequently, the TB vaccine development pipeline is populated by a number50

of novel candidates of different types, based on a variety of immunological principles and vaccine platforms [12]. For51

estimating and comparing the potential impact of each of these candidates on halting the TB transmission chain,52

the development of epidemiological models arises as a powerful tool. Refining these models and addressing the main53

sources of uncertainty and bias in their architecture constitutes an important step toward the development of new54

TB vaccines.55
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In this work, we forecast the impact of the introduction of a new TB vaccine in China, which, as of 2021, represented56

7.4% of the total number of TB cases worldwide [3]. To produce robust estimates for vaccine impact in this country,57

it is important to consider aging as a key demographic determinant where China differs from the majority of high-58

burden countries in TB. According to the UN population division estimates, among the top-8 countries with the59

highest number of incident TB cases in 2021 (China, India, Indonesia, Philippines, Pakistan, Nigeria, Bangladesh,60

and the Democratic Republic of Congo), China is the one where population aging in the years to come will be more61

pronounced, going from a median age of 39.0 in 2023 to 50.7 years in 2050. Considering this, recent modeling studies62

have suggested that targeting elder population groups in a vaccination campaign may produce a greater impact than63

targeting children or young adults [13].64

Estimating the impact of a vaccine on an aging population must be done considering several technical aspects. From65

a modeling perspective, demographic aging couples with TB transmission dynamics critically in the age-mixing contact66

matrices [14]. These objects capture the relative frequency of social and/or physical contact between individuals of67

different age strata and constitute a great tool for representing contact patterns within epidemic models. When68

working with TB, whose time scales are comparable to those of demographic evolution, models need to incorporate69

sensible heuristics to describe the evolution of those matrices over time, which appears as a consequence of demographic70

evolution itself. In previous works [15], we identified different methods that can be used to adapt the contact matrices71

that were measured in a given population, as the population ages over time. Two of these methods are often found72

in modeling studies of TB [13, 14, 16]. First, contact matrices can be adapted to ensure that the symmetry of the73

encoded information is preserved, namely, the number of contacts per unit of time between two age groups, i and j,74

should be the same, when calculated from the number of contacts per capita, from i to j and from j to i. This method75

is commonly referred to as the pairwise correction method and ensures symmetry in reported numbers of contacts but76

does not produce contact networks whose mean connectivity is stable over time. To solve this issue, these matrices77

can be further corrected to ensure that not only the symmetry but also the average connectivity of the networks is78

preserved across time while underlying populations are aging. This second method, firstly proposed in [15], is referred79

to in this study as the intrinsic connectivity method, and produces contact structures that feature controlled contact80

densities on average, which are stable over time. The adoption of each of these methods to describe the evolution of81

contacts within TB transmission models may affect model outcomes regarding the impact of a new vaccine.82

Another relevant aspect through which populations’ aging and vaccine impact forecasts may couple in ways that83

are hard to predict a priori is the vaccine mechanisms of action, combined with its protection profiles. A successful84

TB vaccine may confer either POD or POR through a variety of mechanisms, including halting fast progression85

towards primary TB upon a recent, first infection event, diminishing the endogenous reactivation rates upon latent86

infection, diminishing the risk of reinfection and/or preventing recurrence after recovery of a previous disease episode.87

Furthermore, the ability of a vaccine to confer protection through each of these mechanisms may depend upon the88

previous exposure of vaccine recipients to Mycobacterium tuberculosis, ascertained by an interferon-gamma release89

assay (IGRA). Since the fraction of individuals who have been previously exposed to the pathogen varies across90

age, and, in an aging population, that changes across time, exploring the effects of vaccine protection profiles and91

mechanisms of action at once is crucial to compare different vaccination strategies targeting different age groups in92

China.93

The goal of this study is to investigate the role of these aspects on the vaccine impact foreseen from two vaccination94

campaigns targeting adolescents (15-19 y.o) and elder individuals (60-64 y.o.) in China, starting in 2025. Capitalizing95

on previous TB transmission models developed by the authors [14, 16], we produced in-silico impact evaluations96

of a series of vaccines with different protection profiles, acting through different mechanisms, evaluated in different97

simulations where contact patterns evolve according to different methods. In what concerns the distribution of vaccine-98

mediated protection across vaccinated individuals, we modeled vaccines as all-or-nothing (AON), as schematized in99

Figure 1, as it is widely used in the modeling literature [17–19]. AON vaccines confer perfect protection to a fraction of100

the vaccinated individuals but are ineffective for the remaining fraction of vaccinated individuals. The share between101

those fractions is related to the overall efficacy of the vaccine. To estimate the impact, we make use of two runs of102

the mathematical model (control and vaccine), and we analyze the results in terms of the targeted population, the103

protection profile of the vaccine, and the method used for updating the contact matrix.104

II. MATERIALS AND METHODS105

A. Modeling the effect of the vaccine106

The efficacy estimates obtained for a given vaccine in a clinical trial can be mapped onto mechanistic descriptions107

within a transmission model in a number of different ways. Elucidating what are the specific mechanisms at place108

that are most likely compatible with trials’ results for a given vaccine is not a trivial task, and the architecture of the109
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FIG. 1. A. In-silico simulations for the introduction of an AON vaccine in a mathematical model of TB transmission. The
model is run twice, one as a control run and the second time with the introduction of the vaccine. In the control run (bottom)
the natural history of the disease remains unaltered, and every transition between states of the model is present. In the vaccine
run, there are two different branches that evolve in parallel. On branch 1, the natural history of the disease remains unaltered,
but a c fraction of the individuals that receive the vaccine is moved towards branch 2, in which the natural history is modified
according to the effect of the vaccine, thus, neglecting some transitions and conferring protection. This way, a fraction, c, of
the vaccinated individuals becomes protected. B. Implementing this general approach for different vaccine characteristics and
protection profiles, under different descriptions of contact matrices evolution, we aim to study the effect of these aspects on the
impact foreseen by our computational model for a vaccine applied either in adolescents (15-19 years old), or in older individuals
(60-64 years old).

model, as well as the characteristics of the population enrolled and detailed data analysis of the results are needed110

for extrapolating the efficacy levels observed in a trial into transmission models describing TB dynamics in entire111

populations[16, 20]. In a disease such as TB, a vaccine conferring POD or POR may base its protective effects on112

interfering with different processes throughout the natural history of the disease, preventing individuals’ progression to113

TB by halting specific routes to disease. In the lack of direct evidence concerning the specific dynamic mechanisms in114

place in a given vaccine, modelers often implement vaccine descriptions where all the main routes to disease putatively115

affected by the vaccine are equally impacted. Instead, in this work, we aim to compare the impact of different vaccines116

whose protection acts through different dynamical mechanisms. Formally, we assume that a vaccine can reduce the117

risk of progressing further from a given state toward disease, thus conferring protection to vaccinated individuals at118

different stages in the natural history of the disease. Capitalizing on our model, we identify four different basic vaccine119

mechanisms that can act either alone or combined:120

• Ep: Protection against primary TB: The vaccine confers protection against fast progression to disease upon121

a recent first infection event. This mechanism is present in a POD vaccine that prevents fast latency toward122

active disease (see supplementary appendix).123

• Erl: Protection against endogenous reactivation of LTBI: Vaccine confers protection against endogenous reac-124

tivation of bacilli in individuals with latent TB infection (LTBI). This mechanism is present in a POD vaccine125

that prevents slow latency towards active disease.126

• Eq: Protection against TB upon reinfection: Vaccine confers protection against exogenous reactivation caused127

by a secondary infection event in subjects who had been previously infected. This mechanism is present in a128

POD vaccine that prevents progression towards active disease upon reinfection, for individuals who had already129

been exposed to the pathogen before (either LTBI or recovered individuals).130

• Erelapse: Protection against TB relapse: This mechanism is present in a POR vaccine that prevents endogenous131

reactivation in individuals who had a past episode of active TB.132
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• All: Every vaccine’s mechanism acts at the same time.133

The interaction between vaccines conferring protection at any of the previous mechanisms, and the natural history134

of the disease is sketched in Supplementary Figure 3. In short, the fraction of the vaccinated individuals who get135

protection from the vaccine will face a modified version of the natural history according to the effect of the vaccine,136

where some key transitions are halted.137

B. Model-based impact evaluations of TB vaccines138

We estimate the impacts of vaccines using an adapted version of the model in [14], which is a deterministic,139

age-structured model based on ordinary differential equations, where individuals belonging to different age strata140

are considered to experiment different levels of epidemiological risk. This translates, in general, into age-specific141

parameter values, as described in the supplementary appendix. The architecture that defines the disease dynamics142

within each age group represents the natural history of TB (see Supplementary Figure 1). The model also includes143

aging dynamics, which is key in countries undergoing fast demographic changes (see Supplementary Appendix, and144

Supplementary Figure 2).145

Regarding the impact evaluation, we use two different runs of the model that ultimately lead to an estimate of the146

incidence rate reduction due to the vaccine. In the first run, specific values of all the epidemiological parameters are147

stochastically drawn from suitable distributions. Using the specific set of parameters obtained, the model is calibrated148

and the spreading of the disease is forecasted in a non-intervention scenario, referred here as the control run. Then,149

the model is run again, using the same calibration, but introducing the vaccine in 2025. This vaccine run does not150

follow qualitatively the same Natural History as in the control run, as the vaccine alters it by reducing the progression151

risk of protected individuals in certain transitions that depend on the characteristics of the vaccine (see supplementary152

appendix). Finally, the impact of the vaccine is estimated by comparing those two runs through the obtention of the153

incidence rate reduction (IRR) at the end of 2050, as follows:154

IRR(t = 2050)(%) =
icontrol run(t = 2050)− ivaccine run(2050)

icontrol run(t = 2050)
· 100 (1)155

Repeating this procedure a number of N = 500 times, we obtain a distribution of forecasted vaccine impacts, which156

allows us to build suitable expected values and confidence intervals that propagate uncertainty from model inputs to157

vaccine impacts.158

As already mentioned, all vaccines are introduced into the model according to an all-or-nothing scheme, which159

means they only show efficacy in a fraction c of the vaccinated individuals, which in this context represents the160

vaccine efficacy under a scenario of perfect coverage. The remaining 1 − c fraction of vaccinated individuals do not161

benefit from these effects and preserve the same dynamics as the unvaccinated individuals. Formally, this is modeled162

by displacing a fraction c of vaccinated individuals from a control branch to a vaccine-protection branch, where the163

dynamics is modified to reflect these changes.164

The vaccines considered in this work feature different levels of waning. As vaccinated individuals age from their165

age at vaccination av to a > av, the vaccine efficacy is expected to decay, eventually becoming inefficient w years166

after vaccination. To implement vaccine waning in an all-or-nothing model, we introduced in the model a series of167

return fluxes that move individuals in the age group a > av back from the protected to the non-protected branch of168

the model. The intensity of those fluxes is given by Equation 2.169

wi(a, av) = 1− e−ln(2)· 5(a−av)
w (2)170

where a is the age group that suffers the waning, av is the age group that is being vaccinated, and w captures the171

waning, in years. This formula ensures that, after w years, the vaccinated individuals will suffer a waning intensity172

of 50%. Moreover, for any a ≤ av, the waning intensity is set to zero, constituting a viable approach to implement173

vaccination campaigns targetting one specific age stratum. Then, the waning flux is calculated as:174

Wf (a, av, t) = wi(a, av) ·X(a, t) (3)175

where X(a) is the population in the age group a, in the reservoir X at time t, where X is every reservoir that176

vaccinated individuals may lie into.177

Besides the alterations in epidemiological risks experienced by the individuals protected by the vaccine, another im-178

portant vaccine characteristic concerns the immunological status that individuals may need to fulfill before vaccination179
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for the vaccine to confer protection to them. Depending on the immunological principles of the vaccine considered,180

its protection may unfold contingent on the previous exposure of the vaccinated subject to the pathogen, and, as181

such, it is possible that new vaccines may confer protection only to susceptible, immunologically naive individuals,182

or to individuals who have been previously infected with M.tuberculosis. To illustrate the effect of the dependency183

between the recipient’s status and vaccine efficacy, we reproduce vaccine impact simulations where the protective184

effect of the vaccine, described through the displacement of a fraction c of individuals towards the protected branch,185

only takes place from different source reservoirs. This way, we explore four possible scenarios where only a fraction c186

of individuals in the following reservoirs get protection: i) only susceptible individuals ii) only LTBI individuals iii)187

only previously exposed individuals (including LTBI and recovered subjects), and iv) all individuals.188

Finally, the vaccination is implemented in two steps. First, a mass vaccination campaign, similar to the one proposed189

in[13] takes place, vaccinating annually a third of the population in the reservoirs affected by the vaccine, and for190

the age targeted population (15-19 or 60-64). Then, after this campaign vanishes, the vaccination continues routinely191

coupled to the aging.192

C. Updating contact matrices with evolving demography193

Age-mixing contact matrices play a key role in epidemic spreading [21–23], as the complete knowledge of the network194

of contacts is usually unreachable or impossible to implement. Thus, for modeling purposes, it is useful to study age-195

group interactions, where contact matrices indicate how age-strata mix between them. Usually, empirical contact196

matrices are obtained through statistical surveys. In these studies, participants are asked how many contacts they197

have during the day and with whom. This allows us to obtain the (average) number of contacts that an individual198

of a particular age i has with individuals of age group j. The resulting matrix is not symmetric due to the different199

number of individuals in each age group. However, it is precisely the demographic structure that imposes constraints200

in the entries of this matrix, as reciprocity of contacts should be fulfilled at any time (i.e., the total number of contacts201

reported by age-group i with age-group j should be equal in the opposite direction). Therefore, an empirical contact202

matrix, that has been measured on a specific population, should not be used directly without adapting it to the203

demographic structure of a different population under study.204

This issue has important consequences in the field of disease modeling. As contact matrices play a key role in205

disease forecast, it is essential to assure that the matrices implemented are adapted to the demographic structure of206

the population considered to avoid biased estimations. For some short-cycle diseases like influenza, the time scale of207

the epidemic is much shorter than the typical times needed for a demographic structure to evolve [24]. The previous208

considerations are more troublesome for the case of persistent diseases that need long-term simulations, for which the209

hypothesis of constant demographic structures does not hold anymore [14]. Particularly, in the case of TB modeling,210

time scales are typically long, as the presence of latent individuals may lead to TB cases decades after primary211

infection [25]. This ultimately leads to the urge to adapt the contact matrices measured in a specific demography in212

such a way that they evolve accordingly to the demography of that setting. To this end, we capitalize on the methods213

proposed by Arregui et al. [15], which are briefly described below. We selected only methods labelled in the original214

article as M1 (Pairwise corrections) and M3 (Intrinsic connectivity) as the first one is typically used in the literature,215

also for modeling TB e.g. [13]), and is the simplest one for short-lives diseases, whereas the second one (M3) allows216

projecting contact matrices along with demography, which fits our needs in TB forecasting.217

1. Pairwise correction218

The magnitude usually reported when measuring contact patterns is the mean number of contacts that an individual219

in age group i has with individuals in age group j during a measured period of time. Calling Mi,j this quantity, we220

observe that, in order to fulfill reciprocity, Mi,j should equal Mj,i, which is not the case with directly measured data.221

An immediate correction is to average those numbers, so that the excess of contacts measured in one direction is222

transferred to the reciprocal. Then, the matrix entry in a new demography is computed as:223

M ′
i,j =

1

N ′
i

1

2
(Mi,jN

′
i +Mj,iN

′
j) (4)224

where M ′
i,j corresponds to the new demography under study. An example of the evolution of the contact matrix used225

in this study, under the pairwise correction is included in Supplementary Figure 4, panels A and B.226
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2. Intrinsic connectivity matrix227

An alternative method that preserves the mean connectivity of the contact network makes use of the density matrix228

or intrinsic connectivity matrix. Using the original data the density matrix Γ is extracted as:229

Γi,j = Mi,j
N

Nj
. (5)230

The Γ matrix corresponds, except for a global factor, to the contact pattern in a “rectangular” demography (a231

population structure where all age groups have the same density). Then, introducing a new demography, the contact232

matrix is obtained as:233

M ′
i,j =

Γi,jN
′
jN

′∑
i,j Γi,jN ′

iN
′
j

. (6)234

An example of the evolution of the contact matrix used in this work when using the intrinsic connectivity method is235

included in Supplementary Figure 4, panels C and D.236

III. RESULTS237

After we implemented our computational model of TB transmission, we evaluated the impact of a TB vaccine of238

varying characteristics, simulated using models where contact matrices are updated using different methods, intro-239

duced in China in either adolescent (15-19 years old), or elder individuals (60-64 years old). In Figure 2 and Figure240

3 we represent the forecast impact of each vaccine using our model. As discussed in the methods section, all vaccines241

are modeled according to an all-or-nothing scheme, conferring different types of protection (Ep, Eq, Erl , Erelapse,242

or all at once, see Methods) to a fraction c of vaccinated individuals in certain disease reservoirs (susceptible, latent243

and/or recovered individuals, or all). The efficacy of the vaccine in all scenarios is set to c = 56%, as a reference value244

compatible with applying a highly protective vaccine with a 70% efficacy through a high-coverage campaign reaching245

80% of the target population, similar to one among the most optimistic scenarios explored in previous modeling stud-246

ies undertaken in China[13]. The vaccination campaign in the simulation starts in 2025, and we forecast the impact247

of the vaccine measuring the IRR (see methods) in 2050. Individuals of the targeted age group, are vaccinated when248

they first enter the corresponding age group. Furthermore, selected vaccines experience waning levels of 10 years, as249

described in more detail in the Methods section.250

In Figure 2, we gather the IRRs achieved by the different vaccines described above when applied to the elderly251

population. In this case, we found that, when vaccines are able to confer protection to immunologically naive252

individuals, either alone (Susceptible only) or along with the rest of individuals in the population, (whole population),253

vaccines featuring the largest impact are those that are able to prevent fast progression to primary TB upon recent254

infection (Ep vaccine featuring 24.9% IRR, 95% CI [17.8-36.1]) in panel A). Instead, if vaccine protection only unfolds255

on individuals who had been previously infected by the time of vaccination (protection active to either latent or256

latent plus recovered individuals only), the most impactful vaccines are those that are able to protect individuals257

from developing active TB upon endogenous reactivation of dormant bacilli (Erl vaccine featuring 6.47% IRR, 95%258

CI[4.88-8.15] in panel C). Furthermore, it is important to notice that, in all vaccines tested leading to an impact259

higher than 1% under at least one of the two methods explored for describing contact matrices evolution, the impact260

was systematically higher when updating the contact matrix according to the intrinsic connectivity approach.261

In turn, in Figure 3, we present the analogous results associated with a vaccination campaign targeting the popula-262

tion between 15 and 19 years old. Although vaccines protecting against primary TB are still more impactful as long263

as susceptible individuals are protected (Ep vaccine featuring 11.11% IRR, 95% CI [8.10-13.98]) in panel A, vs. other264

vaccines), and vaccines halting endogenous reactivation of latent bacilli are more impactful if protection takes place265

after infection, in this case, the impact associated with vaccines in the latter case is comparatively lower than what is266

found in elders (Erl vaccine in panel C yields 2.14 IRR, 95% CI [1.65 2.76], when in elders yielded 6.47% IRR, 95%267

CI[4.88-8.15]). In what concerns the influence of contact matrices on forecast impacts, interestingly, we observe that268

the highest impacts were associated with the pairwise-corrections method, unlike what is observed in the elderly age269

group.270

Admittedly, comparing the impacts from both campaigns targeting elders (Figure 2) and adolescents (Figure 3), we271

see that the question of what is the optimal age group to target in an immunization campaign for a new TB vaccine272

finds different answers depending on the combination of vaccine characteristics, protection profiles, and modeling273

assumptions. More specifically, in cases where previous infection is required for vaccines to elicit their protective effects,274

via protection against endogenous reactivation (Erl) or against relapse (Erelapse), then targeting the older age group275
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FIG. 2. Impact of different vaccines applied to individuals between 60-64 years old. In all panels, tested vaccines act in different
parts of the natural history of TB, halting progression to disease in one or more of the possible routes to disease, as described
in the methods: Ep: protection against primary TB, Eq protection against reinfection, Erl : protection against endogenous
progression to TB after LTBI, Erelapse: prevention of recurrence. We analyze independently the impact of vaccines whose
protective effects unfold when applied to individuals belonging to different compartments of the natural history, A. Susceptible
subjects (efficacy observed before infection). B. Latently infected individuals (efficacy observed after infection). C. Latently
infected and recovered individuals. D. Entire population. In each case, the impact of each vaccine is evaluated for a waning
level of 10 years. In all panels, bars represent median values for the IRR measured in 2050, associated with the introduction of
the vaccine in 2025. Error bars capture 95% confidence intervals from a set of N = 500 model outcomes in each case.

always appears as a superior choice according to our simulations (6.47% IRR, 95% CI[4.88-8.15] in most impactful276

vaccine in elders vs. 2.14 IRR, 95% CI [1.65 2.76] in adolescents). However, as soon as protection against primary277

TB is granted to susceptible individuals as one of the possible protective mechanisms of the vaccines, the quantitative278

description of contagion dynamics implemented within our model becomes more crucial, and, consequently, model279

forecasts are more sensitive to the adoption of either one of the two modeling approaches explored for describing280

contact matrices evolution: pairwise corrections vs. intrinsic connectivity. As a result, only in some occasions when281

the over-simplified pairwise correction method is adopted, the impacts foreseen for an adolescent-focused campaign282

can overcome the impacts found for an elder vaccination campaign (Bars marked in red) for these vaccines. For283

instance, an Ep vaccine yields 11.11% IRR (95% CI 8.10-13.98) under pairwise correction in adolescent, surpassing284

the 8.54% IRR (95% CI 6.03-11.95) obtained in elders for the same method, when vaccine protection unfolds before285

infection, whereas for the rest of vaccines, elders score higher impacts no matter what method is used.286

In order to understand the influence of the vaccine mechanisms on their respective impacts, it is sufficient to analyze287

the time evolution of the distribution of TB cases across the different routes to disease classically described in TB,288

aggregated across age groups, as we represent in Figures 4A and 4B. These routes include fast progression to primary289

TB upon a first, recent infection event; TB after endogenous reactivation from LTBI; TB upon exogenous reinfection290
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FIG. 3. Impact of different vaccines applied to adolescents, with ages between 15-19 years old. Analogous to Figure 2, in
all panels, tested vaccines act in different parts of the natural history of TB, halting progression to disease in one or more of
the possible routes to disease: Ep: protection against primary TB, Eq protection against reinfection, Erl : protection against
endogenous progression to TB after LTBI, Erelapse: prevention of recurrence. We analyze independently the impact of vaccines
whose protective effects unfold when applied to individuals belonging to different compartments of the natural history, A.
Susceptible subjects (efficacy observed before infection). B. Latently infected individuals (efficacy observed after infection).
C. Latently infected and recovered individuals. D. Entire population. In each case, the impact of each vaccine is evaluated
for a waning level of 10 years. In all panels, bars represent median values for the IRR measured in 2050, associated with the
introduction of the vaccine in 2025. Error bars capture 95% confidence intervals from a set of N = 500 model outcomes in each
case.

and, last, TB recurrence after a previous disease event (see supplementary methods). Importantly, each of the four291

vaccine mechanisms explored in this work tackles specifically each one of these routes. As seen in Figures 4A and292

4B, primary TB upon recent infection is the prominent cause of TB cases during the simulated period, which makes293

protection against primary TB the most impactful vaccine mechanism, at least, as long as the susceptible individuals294

(who are those under a higher risk of developing primary TB upon infection[26]), could be protected by the vaccine295

(see Figures 2 and 3, panels A,D). Furthermore, we also observe that endogenous reactivation of LTBI individuals is296

the second type of event responsible for the highest share of TB cases, which in turn explains why vaccines protecting297

LTBI individuals are most impactful when they protect against endogenous reactivation (see Figures 2 and 3, panels298

B,C), and why vaccines targeting re-infection or relapse are comparatively less impactful, even when applied on older299

age groups where prevalence of infected and recovered subjects is higher.300

Furthermore, in order to understand the role of the modeling assumptions concerning contacts when comparing301

impact forecasts from analogous immunization campaigns, it is important to highlight that their influence manifests302

more strongly when comparing forecasts for vaccines targeting TB upon recent infection (Ep vaccines) or reinfection303

(Eq vaccines), which is to say when the vaccine targets transmission. In such cases, the adoption of the most adequate304

method providing intrinsic connectivity control appears systematically associated with larger impacts when we analyze305
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FIG. 4. A,B. Evolution of the Percent of TB cases associated with rapid progression upon recent infection (primary TB),
endogenous reactivation of LTBI, TB upon reinfection, or TB relapse; each of them foreseen from the indicated method for
describing contact matrices evolution (pairwise correction or intrinsic connectivity). Primary TB upon recent infection, followed
by endogenous reactivation of LTBI individuals are the two most common types of events. Central lines are medians and the
shadowed areas represent the 95% confidence intervals from N = 500 model realizations. C,D. Evolution of the force of infection
associated with individuals in age groups 15-19 and 60-64 in the period 2000-2050, as foreseen by the model when using the
two frameworks for describing the time evolution of contact matrices. Adopting the simpler pairwise correction method results
in a lower estimate of the force of infection in the older age group, as well as an overestimation in the younger stratum. Central
lines are medians and the shadowed areas represent the 95% confidence intervals from N = 500 model realizations. E. Break
down of the different contributions to the overall TB incidence pool in 2050, distributed across the routes to disease protected
by the vaccines under study. The number of cases in the routes associated with already exposed individuals is systematically
higher in elders than adolescents, no matter which correction for the contact matrices is at play. Bars represent median values
measured in 2050. Error bars capture 95% confidence intervals from N = 500 model realizations.
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elder-focused campaigns, as well as lower impacts when we focus on campaigns targetting adolescents. This can be306

further contextualized by observing the evolution of the force of infection (defined as the fraction of susceptible307

individuals in a given group that gets infected per year) that individuals in each of these two age strata are subject308

to, according to each of the two models explored to describe the evolution of contact matrices. As seen in Figures309

4C and 4D, using the pairwise model appears associated with an underestimation of the force of infection suffered by310

individuals in the older age group, and an overestimation of it among adolescents, with respect to the adoption of the311

more rigorous correction method based on preserving the intrinsic connectivity of contact matrices.312

Finally, in order to contextualize the differences in impact found between elder and adolescents-focused campaigns,313

in Figure 4E, we present a simultaneous breakdown of TB cases predicted by 2050, in each of the age groups,314

associated with each of the routes to disease, according to each of the contact matrices models. In this figure, we see315

how both modeling approaches for contact matrices concur in assigning a higher incidence for TB cases related to316

LTBI reactivation, reinfection, or relapses, which can be interpreted as the main cause why, in Figures 2 and 3, we317

observe that Erl, Eq and Erelapse vaccines are systematically more impactful in elder individuals than in adolescents.318

However, in Figure 4E, we can also observe how the number of cases associated with primary TB is either higher, or319

lower in adolescents than it is in the older age group, depending on whether we adopt the pairwise correction method,320

or the intrinsic connectivity method, respectively.321

Importantly, none of these observations are affected by the level of vaccine waning: while Figures 2 and 3 cap-322

ture impacts associated with vaccines whose protection lasts ten years, largely comparable results are obtained for323

longer lasting vaccines, as summarized in the supplementary appendix (see Supplementary Figure 5, corresponding324

to waning=20 years).325

IV. DISCUSSION326

Mathematical disease-transmission models are a powerful tool for estimating the impact of new TB vaccines, which,327

if done properly, may be instrumental in comparing the potential of different vaccine candidates and immunization328

campaigns. This is true, especially in TB, where vaccine development must face two simultaneous hindrances. First,329

vaccine efficacy is harder to foresee before phases 2b/3 of the development pipeline than for other diseases, given330

the lack of reliable correlates of immune protection[27]. Second, the architectures of the clinical trials of vaccine331

efficacy that are being adopted to test novel TB vaccine candidates are highly diverse [16, 20], and the protection332

profiles of the tested vaccines may be equally diverse. Taken together, these issues claim the development of rigorous333

computational models to produce impact comparisons for different vaccines tested in trials of different characteristics334

and implemented through assorted immunization campaigns. These constitute extremely non-trivial tasks, which335

enhances the need to ensure that current TB models can handle them while minimizing bias and uncertainty.336

In accomplishing this goal, an aspect that demands special attention is the description of the coupling between337

demographic aging and the evolution of TB epidemiology in a given population. This is especially true in a country338

such as China, where two simultaneous aspects concur, namely: an intense process of demographic aging -already339

ongoing, and expected to continue in the next few decades-, concomitant with a high burden of TB incidence and340

prevalence levels. While previous works pointed to the observation that immunization campaigns targeting older341

age groups (paradigmatically individuals above 60 years old) are expected to cause a stronger reduction in global342

TB incidence levels than campaigns targeting adolescents (16-20 years old) [13], the robustness of these results under343

different modeling scenarios, including different vaccine characteristics and modeling decisions concerning the evolution344

of contact matrices among different age-groups remained to be proven.345

Capitalizing on a mathematical model previously developed by the team [14, 16, 20], in this work we reproduce the346

general observation that, in China, immunization campaigns targeting older individuals, in the age group between347

60 and 64 years old, are associated with promising levels of reduction in the incidence rates expected by 2050, with348

varying forecast impacts depending on vaccine characteristics and modeling assumptions, especially if the vaccine is349

able to protect already exposed individuals. This observation can be interpreted in light of the demographic shift350

expected in the country, where older age strata are expected to accumulate a higher fraction of total TB cases in351

the years to come. However, by using our model, we were able to address, for the first time in this study, how352

this observation may depend, in turn, on vaccine characteristics (the combination of its mechanisms of action and353

protection profile), as well as on modeling assumptions (the description of contact matrices over time).354

On the one hand, when modeling TB vaccines, it is important to acknowledge the multiplicity of possible mechanisms355

of action a vaccine may confer protection through [16, 20]. This aspect, in turn, must be considered simultaneously with356

the fact that the initial immunological profile of vaccinated individuals (i.e. their IGRA status) may in turn influence357

the ability of the vaccine to provide its protective effects. [13]. In this work, we describe how these two aspects are358

coupled, generating strong interactions between the vaccine mechanisms in place and the sub-population reservoirs359

that may gain protective effects upon vaccination. Specifically, we observed that vaccines protecting susceptible,360
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immunologically naive individuals are more impactful when their mechanism of action is based upon the prevention361

of primary TB after infection. This result can be understood by observing that progression to primary TB upon362

recent infection represents not just the main epidemiological risk for susceptible individuals, but the most common363

route to disease in the whole population, as sketched in Figures 4A and 4B. Importantly, our simulations indicate364

that tackling primary TB is the most promising intervention, not only when the immunization campaign targets365

adolescents, but also when it targets older individuals, as long as vaccine protection unfolds for susceptible individuals366

at least. Furthermore, when a vaccine requires that vaccinated individuals have previously been infected, the most367

impactful vaccine mechanism of action is based on preventing endogenous reactivation of LTBI. This indicates that,368

for LTBI subjects, endogenous progression to TB represents the highest epidemiological risk, which is shown in Figures369

4A and 4B, where endogenous reactivation in the second most common route to disease. These couplings between370

vaccine mechanisms and protection profiles should be carefully taken into account when testing and comparing vaccine371

candidates with different profiles and immunization strategies.372

On the other hand, in a country such as China, it is key to produce model-based descriptions of TB dynamics373

that are robust under the scenario of fast demographic aging. Under these circumstances, the adoption of plausible374

description frameworks to describe the evolution of contact matrices is key. The reason for this is that these matrices375

capture the relative frequency of contacts that may lead to new infections among individuals of different ages, and376

these are bound to evolve with time in an aging population. While relatively naive descriptions of contact matrices377

based on symmetry preservation through pairwise corrections are enough when modeling infectious diseases during378

short periods of time, TB demands more sophisticated approaches that preserve not only the symmetry but also the379

overall connectivity of the entire contact networks [15]. The reason for this is that during the extended time windows380

that TB modeling requires, demographic structures are expected to vary significantly, and, with them, the frequencies381

of social contacts among age strata, and the entire connectivity, measured as the average number of contacts per382

individual, of the system.383

In this work, we showed that more sophisticated modeling approaches based on imposing the preservation of the384

intrinsic connectivity of contact networks (instead of simpler methods based on pairwise corrections aiming only at385

preserving symmetry) are linked to higher vaccine impacts when immunization campaigns target transmission among386

elder individuals. In turn, for campaigns targeting transmission among adolescents, it is the simpler methods, based on387

pairwise corrections, the one yielding higher impacts. In short, our simulations indicate that vaccines whose protection388

mechanisms take place after infection (e.g. Erl, Eq and Erelapse on L, L+R, or All population), are expected to elicit389

higher population impacts if applied in elder individuals, as well as vaccines protecting susceptible individuals against390

primary TB, providing that an adequate modeling approach is used to describe the evolution of their contact matrices,391

ensuring intrinsic connectivity control.392

We also need to mention that our approach is not exempt from limitations that affect TB transmission models.393

The outcomes of our model depend on a series of epidemiological parameters and initial burden estimates that are394

subject to strong sources of uncertainty, thus propagating this uncertainty to the results. This means that future395

improvements in measuring the input data are expected to impact the quantitative outcomes of our mathematical396

model, in the same way it would affect any other model that leans on them. Always bearing in mind the strong397

uncertainties that the forecasts inherit, our results highlight the importance of acknowledging the complexity of TB398

transmission dynamics when modeling the effects of an age-focused intervention such as the introduction of a new399

vaccine on a specific age group.400

In closing, our results emphasize the idea that immunization campaigns for the introduction of new TB vaccines in401

different countries can be, and must be, tailored using mathematical models that integrate information on vaccines’402

profiles, population demography, and basal TB epidemiology.403
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