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Abstract

Background: There is an availability of omics and often multi-omics cancer
datasets on public databases such as Gene Expression Omnibus (GEO), Inter-
national Cancer Genome Consortium and The Cancer Genome Atlas Program.
Most of these databases provide at least the gene expression data for the sam-
ples contained in the project. Multi-omics has been an advantageous strategy
to leverage personalized medicine, but few works explore strategies to extract
knowledge relying only on gene expression level for decisions on tasks such
as disease outcome prediction and drug response simulation. The models and
information acquired on projects based only on expression data could provide
decision making background for future projects that have other level of omics
data such as DNA methylation or miRNAs.
Results: We extended previous methodologies to predict disease outcome from
the combination of protein interaction networks and gene expression profiling
by proposing an automated pipeline to perform the graph feature encoding
and further patient networks outcome classification derived from RNA-Seq. We
integrated biological networks from protein interactions and gene expression
profiling to assess patient specificity combining the treatment/control ratio with
the patient normalized counts of the deferentially expressed genes. We also tack-
led the disease outcome prediction from the gene set enrichment perspective,
combining gene expression with pathway gene sets information as features source
for this task. We also explored the drug response outcome perspective of the
cancer disease still evaluating the relationship among gene expression profiling
with single sample gene set enrichment analysis (ssGSEA), proposing a workflow
to perform drug response screening according to the patient enriched pathways.
Conclusion: We showed the importance of the patient network modeling for
the clinical task of disease outcome prediction using graph kernel matrices strat-
egy and showed how ssGSEA improved the prediction only using transcriptomic
data combined with pathway scores. We also demonstrated a detailed screening
analysis showing the impact of pathway-based gene sets and normalization types
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for the drug response simulation. We deployed two fully automatized Screening
workflows following the FAIR principles for the disease outcome prediction and
drug response simulation tasks.
Availability: The ScreenDOP code is available at
https://github.com/yascoma/screendop while the DReCaS is available at
https://github.com/YasCoMa/caliscoma pipeline/

Keywords: transcriptomics dataset exploration; cancer survival analysis; graph
feature extraction; calibrated interactomes; gene expression

1 Introduction

The wide availability of public biological datasets, specifically related to the omics
data analysis lead to a leverage of bioinformatic applications taking advantage of
these pieces of curated data for deep and machine learning applications in biomedical
research problems. Some of these applications may be drug discovery and repurpos-
ing [1], disease prognosis [2] and diagnosis [3] prediction, biomarker discovery [4] and
precision medicine [5]. The most popular type of omic dataset is the transcriptomic
data, there are several curated and documented experiments in the Gene Expres-
sion Omnibus (GEO) database using either Microarray or RNASeq techniques [6].
Specifically for cancer disease, there are initiatives such as The Cance Genome Atlas1

(TCGA) and the International Cancer Genome Consortium2 (ICGC) that provides
several projects with samples metadata and at least one type of raw data is publicly
available, and among this data often a project contains a multi-omic perspective, but
the majority offer gene expression data.

The transcriptomic data, depending on the way the experiment was design, is
a powerful source of information that is applied for features processing in machine
learning applications. Some of the biomedical tasks in which this type of data figures
are the disease outcome prediction [7–9] and drug response simulation [10]. Recent
methodologies for both task have been taking advantage of multi-omic information,
but in order to acquire knowledge from past experiments that only provide transcrip-
tomic data, the multi-omic strategies could miss information to perform correctly when
transferring learning. Few methods regarding precision oncology [11], for both tasks,
provide their methods in a way that allows reproducibility and handles all the pro-
cess since data preparation for the method application to the post processing analysis
and output exportation, following the FAIR (Findable, Accessible, Interoperable and
Reusable) principles [12].

In this paper, in line with the FAIR principles and allowing reproducible research,
we present two workflows (ScreenDOP - Screening or Disease Outcome Prediction
and DReCaS - Drug response calibration simulation) respectively for disease outcome
prediction and drug response calibration simulation tasks, that allows the execution
of multiple experiment screening in a fully automated ans transparent manner. We

1https://portal.gdc.cancer.gov/
2https://icgc.org/
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aimed at providing an end-to-end data process from acquirement and treatment to the
results exportation and analysis, allowing the hypotheses tracking and performance
explainability.

The ScreenDOP was designed two offer two strategies to extract the numerical
features for posterior application in a classifier, one of the strategies proposes the
combination of gene expression with protein interactions and using kernel functions
form the features with the samples graph similarity matrix. We extended and gener-
alized the application of the first strategy previously used on [13] to RNA-Seq with
multiple experimental design matrices and allowed the modulation of the nodes/edges
attributes that are used by the kernel functions. The second strategy combines the
gene expression data with gene set enrichment analysis (GSEA) to extract pathway
scores. This second method aims at reducing features dimensionality and consequently
increasing computational efficiency in the workflow execution.

The DReCaS workflow was projected to automatize the data preparation and
allow the method proposed by [14], which calibrates patient-specific drug responses, be
automatic and flexible to a diversity of execution scenarios (changes of normalization
types and pathway gene set libraries). We also extended its methodology to allow
the transfer learning mode from a complete cancer dataset with healthy and disease
samples to the disease ones of of another dataset belonging to the same type of cancer.
Two other new features were enabled in DReCaS that are the optimization of the
weights used to calibrate the samples scoring matrix, and the possibility to evaluate
a batch of individual drug or a list of specific drug combinations, forming a report of
drug/combination prioritization and ranking.

https://www.sciencedirect.com/science/article/pii/S0079610722000803
https://www.mdpi.com/2073-4425/10/3/238

In line with the FAIR principles and allowing reproducible research on drug
discovery experiments, we proposed a drug response simulation workflow inspired
on a previous work with a flexible data input handling, parameter optimiza-
tiona and fully automatized from data preprocessing to drug test screening.
https://www.nature.com/articles/s41597-019-0174-7

2 Methods

We proposed a framework (ScreenDOP - Screening for Disease Outcome Prediction)
that offers two strategies to extract knowledge from the expression data provided by
the GEO database from NCBI that have the outcome information for all the samples
and were designed for the disease outcome prediction task. In the second task, we
developed a workflow (DReCaS - Drug Response Calibration Simulation) that applies
gene expression data with gene set enrichment to predict drug response of samples
to drugs automatizing the strategy proposed in [14] illustrating its application using
liver cancer datasets from ICGC. Both workflows for the two tasks generate a report
containing the log of the tasks, the date and time they were executed, the duration
of the execution and the memory usage, to monitor the bottlenecks according to the
datasets’ size.
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2.1 ScreenDOP - Outcome disease prediction task

2.1.1 Prediction based on graph kernel matrices

The first approach for the disease outcome prediction relies on the combination of
protein-protein interactions with the gene expression data of the patient samples form-
ing the personalized network for each individual [13]. This approach uses numerical
features represented by similarity matrices computed from graph kernel functions to
perform a screening of the prediction performance according to distinct edge and
node attributes. This strategy has three main steps: (i) generation of the personalized
network for each patient from the gene expression scores, (ii) extraction of numer-
ical features that represent each patient network, and finally, (iii) disease outcome
prediction screening and results exportation.

In the first step, the patient networks is built using the human interactome from
the last version released by the HINT database, that contains validated protein inter-
actions [15]. Using these connections as template we filter this network to contain only
the interactions whose participants are in the set of DEGs listed in the first column
of the masked tables with the log fold change values. For each of the 119526 positive
PPIs in HINT we evaluated whether the proteins are both up or down regulated fol-
lowing the cutoff of above 1 (up) and under -1 (down), we use a numeric label for the
edge to indicate the up (2) and the down (3) states. The edge is also annotated with
the weight parameter composed by the mean of the proteins’ raw expression values.
This mean values is set positive in case of up regulation or negative for down regu-
lation. The nodes also have two attributes, the first one is the numeric label that is
1 in case the raw expression value is above 1 and 2 when the raw value is under -1.
The second node attribute is the expression containing the normalized raw expression
value. We only used the DEG information to prune the interactome and to take a
decision on whether or not include a link in order to preserve the the profile observed
for each sample and create a variance among the samples’ graph topology.

The numerical features generation from the graphs are computed in the second
step through the usage of three combination manners of use node and edge attributes
implemented by the kernel functions in Grakel [16]. The performance screening loads
the samples’ networks and extracts the nodes and edges attributes in three possible
modes only the labels, only the weights or both. The screening encompasses pairwise
combination of these three modes for the nodes and edges, forming the dataset passed
to compute the similarity matrix of the samples’ graphs representation. From the wide
range of choices available concerning kernel functions, we selected three for this screen-
ing process, which are the vertex histogram, edge histogram and Weisfeiler Lehman.
The criteria used for this choice was the algorithm complexity, avoiding the ones
exponential components, and these chosen methods explores information nodes (Ver-
tex histogram) and edges (Edge histogram) separately or both (Weisfeiler Lehman)
[17, 18].

The calculated similarity matrix are squared and undergo a grid search parameter
optimization of two components of the support vector machine classifier [19], which
are the regularization (C) ranging from 10−2 to 102 and the kernel coefficient (gamma)
from 10−3 to 100. The report of this optimization calculates and saves the kernel
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function name and the values of accuracy, precision, recall and f1 metrics [20] for the
best model chosen from a 10-fold cross validation using each possible pair of these
parameters. The second and last report uses the sample true labels and graph similarity
matrices to compute, for each sample, the number of similar (above 0.7) samples that
are in the same and in the opposite class to obtain a decision to understand the
features distribution prior to the classifier application.

2.1.2 Prediction based on gene set enrichment analysis

The second strategy applies gene set enrichment analysis (GSEA) to retrieve the
pathway enrichment scores according to the normalized raw expression values of the
samples, using these scores for all pathways found as numerical features for the out-
come classification. This strategy is also composed of three steps: (i) numerical features
generation; (ii) model training and prediction evaluation, and (iii) Results exportation
and post processing analysis.

From the data preparation, the gene names were originally identified according to
the Uniprot reference. However most of the gene sets available for enrichment analysis
from gene expression data use the conventional HGNC symbol, so firstly we filtered
the genes available in the full raw expression values matrix for those that have a
corresponding mapping to a gene symbol. In this approach, we use all genes of the
dataset instead of filter the DEGs as the first strategy, and the filtered table mapped to
hgnc symbol pass by a second filtering step to account for those genes that are indeed
present in the gene sets available in the 2021 release from the Kyoto Encyclopedia
of Genes and Genomes (KEGG). The tool used for GSEA analysis was GSEApy [21]
and the chosen gene sets library was KEGG 2021 HUMAN, the gene symbols were
collected from each pathway identifier and used for the second filtering process. Since
both the raw expression values were already normalized, we submitted them directly
to the enrichment analysis and grouped the table by sample, originating a matrix with
the pathway scores in the columns and each sample in the rows. We also attach in
this matrix the information of sample identifier and the true outcome class in the first
columns.

In the second step, the numerical features matrix is used to train the model follow-
ing a similar hyper parameter tuning using grid search optimization, however in this
approach the type of classifier used was the Adaboost that implements an ensemble
technique combining decisions of weak classifiers to decide the label for each record.
The grid search iterated over two parameters: learning rate from 10−4 to 100 and
number of estimators (10, 50, 100, 500) [22]. To deal with the unbalanced number of
records for each class, in this strategy we applied the SMOTE (Synthetic Minority
Over-sampling Technique) strategy to generate more examples of the underrepresented
class [23, 24].

To build the the first results report of the third step of this approach, we also
used a 10-fold cross validation taking the mean of the four performance evaluation
metrics (accuracy, precision, recall and f1) as well as the standard deviations. Each
step of the grid search results is also documented with the mean accuracy and its
standard deviation reached by their combinations. The last post processing report
generated is a comparison among the gene neighbors from the correlation matrix
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from the raw expression values and their neighbors from the HINT validated protein
interactions. For this report, we used the masked matrix containing only the DEGs
and we used a cutoff of above 0.7 and under -0.7 to nominate the respective positively
and negatively correlated genes. This report intended to investigate the agreement of
the physical complexes with the snapshot of the mRNAs quantified inn the samples.
We also stratified this analysis in three cases, among each outcome class separately
and considering the whole range of samples.

2.2 DReCaS - Drug response calibration simulation workflow

We developed a workflow (DReCaS - Drug Response Calibration Simulation) to
automatize the methodology for drug response calibration simulation proposed by
[14], adding new functionalities to complement the original method and providing
then an end-to-end workflow to perform drug response experiment screening. The
workflow comprehends the following procedures: (i) Raw data processing, (ii) Model
training, (iii) Weights optimization for the calibrated scoring matrix, (iv) evaluation
and prioritization of individual drugs, and (v) drug combination evaluation.

2.2.1 Raw data processing

The data processing procedure treats the raw gene expression counts for each of the
samples and starts treating gene nomenclature, to normalize to the standard pattern
of HGNC symbol. It identifies whether there are genes identified with Ensembl or
Uniprot identifiers and uses the Biomart [25] implementation provided in GSEApy [21]
to map the gene identifiers to HGNC symbol. To avoid sending repeated requests for
the same genes over future experiments, it builds an internal dictionary that is loaded
to enhance the speed of this mapping phase. It also saves a list of the identifiers that
could not be found, to exclude in future experiments.

The input expression file is a tab separated file containing three columns repre-
senting the gene id, the sample identifier and the raw read count. We transform this
table using the pivot technique to generate the standard table with gene identifiers
as index, and the raw gene count values for each sample column. The matrix of the
mapped genes per samples are then transposed to be applied in the rnanorm tool
[26] to generate a normalized final table. The user may choose among five types of
normalization methods, which are FPKM (Fragments Per Kilobase of transcript per
Million), FPKM UQ (FPKM upper quartile), TMM (Trimmed Mean of M-values),
TPM (Transcripts Per Million) and CPM (Counts Per Million). The data transforma-
tion for FPKM UQ, TMM and CPM occurs directly, while FPKM and TPM requires
the genes length information in order to calculate. The workflow handles the human
genome builds 37 and 38, and loads the gene lengths from the Gene Transfer Format
(GTF). The mapping is originally available for all genes in ensembl id, but rnanorm
expects only the genes contained in the table to be normalized and then this step of
the pipeline maps and filters the gene length dictionary.

The normalized table is transposed back to the standard genes by samples format to
be applied in the gene set enrichment analysis. The user may choose any of the available
gene sets in the library to enrich the data, but there are only 15 gene sets concerning

6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 28, 2023. ; https://doi.org/10.1101/2023.09.27.23296213doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.27.23296213
http://creativecommons.org/licenses/by-nc-nd/4.0/


pathway information, most of these are versions of WikPathways and KEGG. This
analysis generates the samples pathway scores matrix that will be used for calibration
according to the impact of drugs on the identified pathways.

2.2.2 Model training

This procedure is responsible for training the model that differs from healthy and dis-
ease samples, and calculates the modified pathway scores from the previous calculated
table exactly as specified [14]. However, in the training phase we added a perfor-
mance log to track all the most used performance metrics values (accuracy, precision,
recall and f1), allowing model transparency at every step of the pipeline. The features
used in the model are the normalized enriched scores for all the pathways identified,
distributed across the healthy and disease sample classes. We use the 10-fold cross val-
idation strategy implemented internally in the Elastic Net regressor [27, 28], selecting
and saving the model with the highest precision mean. In case one of the classes is
poorly represented (under 40%) by the available samples, the workflow automatically
applies the SMOTE oversampling technique to treat the imbalance [23, 24].

2.2.3 Weights optimization for the calibrated scoring matrix

This procedure uses an optimization strategy to get the best values of the three weights
for a maximum of 100 rounds of evaluation using the optuna optimization framework
[29]. The optimization experiment is configured to setup the three weight values rang-
ing from 1 to 30 as integer values., using the trial values of the round it computes the
modified version of the sample pathway scores, following a user specified gold-standard
drug list. This list may be composed of approved drugs (using Drugbank identifiers) or
drugs that are being evaluated in clinical trials for the disease inherent to the dataset.
The evaluation function builds the score of each trial by firstly calculating, for all gold
drugs, the number of original disease samples that were classified in the opposite class
(healthy) by the trained model in relation to all disease samples. This ratio is then
used to compute the number of drugs in the list that changed at least 70% of the dis-
ease sample labels, forming the final score based on the ratio between this number and
the total number of drugs. The goal is maximizing this score with the weight values,
since these drugs were approved or passed to the final phases for the disease treatment.
The final values of the best solution are saved to be loaded in the previous procedure
or the next procedures of drug or drug combination ranking and prioritization.

2.2.4 Evaluation and prioritization of individual drugs

The first step of this procedure is calibrating the samples pathway scores according to
the drug influence in these pathways through their target genes. Although the math-
ematical method remains the same, we used algorithm strategies of data indexation
to efficiently compute with a fair memory and cpu usage, for a considerable number
of drugs. Before the calibration, two pieces of information are calculated, which are
the mean score of the influence of the drug in the pathways present in the samples
pathway score matrix. We use the table with the positive or negative correlation3 of a

3https://raw.githubusercontent.com/drug2ways/results/master/networks/data/custom network.tsv
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drug on modulating a specific gene, and get the mean from the genes in the intersec-
tion of the two sets. The second information is generated summarizing the pathway
scores by sample class groups using the average and taking the absolute value of the
mean difference among healthy and disease samples.

One of the new features is the possibility to use models trained from another
experiment, skipping the training step, that is activated only when the mapping file
connecting the sample identifier and the respective class is available. The transfer
learning mode, the absolute mean differences are inherited from a previous experiment
to perform the calibration. The calibrated matrix does for a given pathway of a sample
only occurs if the drug score for that pathway is distinct from zero, otherwise its signal
(positive or negative) is used to modulate the weights assigned to the sample original
score. There are three possible weights that depend on the position of the current
pathway absolute mean difference (pdfmean) in relation to the quartile values from
all the absolute mean difference list. In case the user provides a file specifying the
values of each weight, it is applied in this step, otherwise, it uses 20 (pdfmean above
third quartile), 5 (pdfmean above second and under third quartile) and 10 (pdfmean
under second quartile). By default, as this step occurs prior the optimization and the
trained model is required for weights optimization, it computes for all drugs available
in the drug-gene relation file using the default weight values.

Then, all the drugs that have a positive or negative modulation in a certain gene
that belongs to one or more enriched pathways for the provided dataset are evaluated
according to the trained model. From the second procedure, the calibrated pathway
scores for a specific and single drug were already ready to be applied as features in the
model. We use a similar evaluation criteria mentioned in the weights optimization, but
it computes only the ratio of disease samples whose modified scores lead to change the
model decision for each drug being evaluated. This score is then applied to generate
the ranking report ordering the drugs from the highest to the lowest ratio. The second
report is a binary matrix indicating whether a specific sample obtained a favorable
response to a certain drug in the list.

In the transfer learning mode, the workflow requires the samples pathway score
of the original experiment of the model used, so that it can calculate the number of
features expected by the model. The original experiment of the model and the target
experiment must use the same gene set to calculate the features correctly. In case
some pathways of the target experiment are not found, the features array is cut to
fit the number required by the model, otherwise, it completes with zeros. To leverage
the maximum information, a mapping is made from the target enriched pathways and
the model original experiment ones, those that are not found receives a respective
pathway that contains the highest intersection of genes in common.

2.2.5 Drug combination evaluation

The last procedure allows the user performing a similar screening as explained in the
previous procedure, using the same evaluation criteria, but with a customized list of
drug combinations. To accelerate the calculus of the calibrated sample pathway scores,
we redesigned the algorithm strategy, splitting the signal identification from drug
scores by pathway and the identification of which weight to use based on the absolute
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mean differences to atomic functions so that the computation of the modification is
mapped for all drugs used for each combination and then later aggregated into the
original sample score. This computation method forms each sample numerical features
that are evaluated by the model. It generates the same above mentioned reports but
accounting for the grouped drugs instead of single drug identifiers.

2.3 Datasets for evaluation

2.3.1 Disease outcome prediction task

We used two publicly available gene expression datasets in the experiments correspond-
ing to the Leukemia (accession GSE4254) and Ovarian (accession GSE1400825) cancer
types. These datasets were extracted from the GEO DataSets (GDS) database [30]
from the National Center for Biotechnology Information (NCBI), while the leukemia
cancer dataset used the micro array sequencing technology, the ovarian cancer one
dataset was generated through RNA-Seq high-throughput technology. Both dataset
contains labels informing the sample outcomes (dead or alive) and were previously
applied in survival analysis [31, 32].

The ovarian cancer dataset contains 380 samples, which are subdivided into four
groups according to the cell sub type (mesenchymal (39 treated / 34 control), pro-
liferative (47 treated / 50 control), immunoreactive (70 treated / 54 control) and
differentiated (43 control and treated)), and in each group a portion ranging from
48.45% to 56.45% of the samples were treated with the Bevacizumab drug while the
other half corresponded to the control samples. The raw read counts table were avail-
able for all the samples and the genes were provided using the illumina platform
identifiers, that were mapped accordingly to the protein identifiers in the Uniprot
database [33]. We performed the differential gene expression analysis using the DeSeq2
tool [34] in these four groups and extracted the log 2 fold change measure to apply to
the patient sample networks. The experimental design matrix was derived from the
metadata provided in the information page of the GEO dataset as well as the raw
counts for each sample and genes. The raw gene expression counts were normalized
using the FPKM (Fragments Per Kilobase Million) upper quartile technique as it is
the standard normalization provided in databases such as TCGA [35].

The Leukemia dataset contains 119 samples from 65 peripheral-blood samples and
54 bone marrow specimens from 119 adult patients with Acute Myeloid Leukemia
provided by the AML Study Group Ulm (Ulm, Germany) [31]. The patients underwent
to two treatment protocols (AMLSG-HD98A and AMLSG-HD98B) described in [36]
and the original study performed a gene expression profiling to find out though the
screening of supervised and unsupervised learning strategies predictive genes that
account for survival. They established a correlation among the gene expression and
survival outcome. The gene identifiers were mapped according the GEO platforms
tables related to the samples that provides the HUGO Gene Nomenclature Committee
(HGNC) symbol for each gene id of the individual sample expression information. The
raw gene expression values used to build the patient networks for each gene in this

4https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE425
5https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140082
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case was the log2 ratio found in the last column of the sample matrices (provided
according to their GSM (GEO Sample) accessions) containing the quantitative data
for the micro array, indicating the log2 ratio of the mean among the channels. As
this dataset was derived from microarray technique, we obtained the normalized fold
change of the differential gene expression using the limma tool [37].

From these two strategies, three standard files are derived to be used in the in
the methods proposed along this article, which are the matrix containing the raw
normalized expression of the genes for each sample, a masked matrix containing only
the differentially expressed genes identified with their values of fold change filtered
according to p-value under 0.05, the last file is a table with two columns informing the
sample identifiers and their true outcome. All the gene identifiers from these datasets
were transformed to Uniprot identifiers.

2.3.2 Drug response simulation task

The original version of the method for drug response simulation [14] tested the strategy
on four TCGA datasets that comprehends four types of cancer, which are Breast Inva-
sive Carcinoma (TCGA-BRCA), Prostate Adenocarcinoma (TCGA-PRAD), Liver
Hepatocellular Carcinoma (TCGA-LIHC), and Kidney Renal Clear Cell Carcinoma
(TCGA-KIRC). In this paper, we focused the experiments on two ICGC datasets
concerning liver cancer that are LIRI-JP6 and LIHC-US7. Besides the type of data
analysis is the same as the first task, the experimental design of the datasets used in
the first task are not divided in normal and disease samples, this fact would lead to
a misinterpretation about the predictions, since some tissues of those that survived
could also be extracted from disease samples. The LIRI-JP project contains 243 dis-
ease samples and 202 healthy liver tissue samples. Although we focused specifically in
the gene expression dataset, this dataset publicly provides other omic types of datasets
such as simple and structural somatic mutations. copy number variations. We used
the samples metadata to build the labels file to build the model in the drecas work-
flow. We only used one type of cancer to illustrate and discuss in details the behavior
of the model and drug ranking according to the pathway gene sets and types of nor-
malization. The LIHC-US project contains 297 healthy and only 48 disease samples
present in the gene expression file, so this dataset has a huge imbalance. This dataset
was then applied as the target to test the transfer learning function of our workflow
and to test the performance applying the oversampling strategy. In this case, simple
somatic mutations, copy number variation, methylation, micro RNAs datasets were
also available.

6https://dcc.icgc.org/releases/current/Projects/LIRI-JP
7https://dcc.icgc.org/releases/current/Projects/LIHC-US
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3 Results

3.1 Disease outcome prediction

3.1.1 DEGs analysis in the datasets

According to the limma tool results, there was 6686 differentially expressed genes
with a significance under 0.05 in the leukemia dataset. While in the ovarian dataset,
combining all the DEGs resulting form the DESeq2 tool for the four cell subtypes
experiments, the total number of DEGs was 1842. In each dataset, a considerable
number of protein interactions were reduced from the original HINT network, from
the total number (119526) of positive PPIs from HINT, the leukemia base interac-
tome filtered with the the differentially expressed genes contained only 28573 (23.9%)
protein pairs. The loss observed in the ovarian cancer dataset was larger than the one
in leukemia dataset, maintaining only 1382 protein interactions (1.16%).

3.1.2 Sample networks characteristics

To evaluate the first strategy based on the features generated from the sample protein
networks, we calculated the distribution of node and edge labels across each dataset
since the kernel functions applied take this information into account. In both scenarios,
the summary of the network analysis of the samples showed that the 99% of the
complexes or protein pairs were formed by proteins that were up regulated at the
same time and this proportion is equal in the two classes of samples. However in the
leukemia dataset 34% of the node labels were down regulated and the rest was up
regulated. In the ovarian cancer dataset, using the same cutoff parameter, all the nodes
were up regulated as its edges.

The number of nodes (5590) and edges (28485) were the same for all the samples
since that were only one outcome of DEGs. In the ovarian cancer scenario, there were
four design matrices according to each subcell type, that generated distinct number
of nodes and edges for the samples belonging to each subcell type (Table 1), but in
general the variation for nodes (9) and edges (64) were small (64 for edges and 9 for
nodes), specially for the number of nodes.

Table 1 Number of nodes and edges derived from each
experimental design matrix in the ovarian cancer dataset.

Subcell Type Number of Nodes Number of edges
Immunoreactive 807 1369
Proliferative 806 1365
Differentiated 798 1305
Mesenchymal 803 1350

The other attribute aggregated into the sample networks is the weight and can also
be used alone or combined with the label in the kernel functions. The distribution of
node and edge weights showed in figure 1 indicates that the raw expression values was
not enough to create a variance among the samples belonging to distinct classes, apart
from the outliers, the major portion of the data points are concentrated equally along
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the quartiles for the ovarian cancer. However, in the leukemia dataset, the outliers were
also observed but in the dead class samples instead of the both classes as observed in
the ovarian cancer ones. Although the majority of data points were slightly changed
around the mean values comparing the two classes, there was an improvement in the
weight variance in relation to the ovarian cancer dataset. Interestingly, limma and
DeSeq2 showed that both datasets have the majority of the pairs with positive weights
for the edges. The dataset derived from microarray shows that the raw normalized
expression values (the weights assigned to the nodes) are mostly negative.

Fig. 1 Comparison of the node and edge weights distribution in each scenario. Scenario A represents
the Ovarian cancer data (blue bar is the alive class and the red one identifies dead class) and B
presents the leukemia data (in this case, the order changed, so blue bar is the dead class and the red
one means the alive samples).

Other studies have proposed the integration of gene expression data to enrich
networks with protein interactions from the DEGs found [38] to understand the mod-
ulation in disease scenarios. Here, we created a framework that allows the systematic
simulation of sample-specific protein interaction architecture to understand the mod-
ulation using multiple combinations of node and edge attributes. These networks may
be used to combine the treatment/control information on pruning the networks and
allows represent the sample specific expression levels on the nodes, amplifying the rep-
resentation of sample information. The existing approaches [38–40] creates a general
protein interactions network and the proceed to enrich with other functional databases
such as KEGG or Gene ontology, without taking into account the individual sample
networks.

3.1.3 Performance evaluation of the network-based strategy

As expected from the variations found among the attributes in the Leukemia and
Ovarian cancer datasets, the performance evaluation metrics of the models achieved
up to 80% of precision in the Leukemia. The best parameters found for the classifier
grid search in this dataset were gamma equivalent to 1, and the C parameter depended
on the kernel function, being 0.01 for EdgeHistogram and 10 for WeisfeilerLehman
[18]. These two kernel functions obtained the best results for all main metrics (f1,
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precision, recall and accuracy), but the highest values remained in the precision and
f1. Still in the leukemia dataset, the top ranked results of the screening showed that
the attribute weight for the node was predominant and, among these, the combination
with the edge label was mostly found.

However, in the ovarian cancer dataset this strategy was not successful, as the
network analysis showed that the attributes have almost the same distribution in both
classes, this was reflected in the performance metrics, the model was not able to learn
how to differentiate the samples. The values chosen for the C and gamma parameters
were 0.01 and 1 for all combinations in the screening, although there were occurrences
of accuracy above 65%, the other three metrics did not achieve values above 34%.
The best values reached followed the same pattern found in leukemia, with the weight
attribute for node and edge combined with the EdgeHistogram and WeisfeilerLehman
kernel functions.

A previous work also proposed the combination of gene expression and protein
interaction into a network and the usage for disease outcome prediction for cancer
disease using kernel matrices [13]. We not only allowed transparency on the features
engineering but allowed flexibility on the samples network architecture, but we also
handled the data processing extending their application to gene expression data from
RNA-Seq technology.

We also investigated the hypothesis of bypassing the grid search and classifier
application and derive the most the sample neighbors using only calculated similarity
values from the kernel matrix. Using the specified cutoff of 0.7, as expected the exper-
iments using only label as node attribute values, could not discriminate the samples
from a different or same class, it marked all the samples as similar. Using the weights,
the separation among those from the opposite class were more accurate, agreeing with
the best models for the leukemia scenario. In the ovarian cancer scenario, 66% of the
experiments generated kernel matrices whose pairwise similarity were greater than 0.8,
while the weight contributed to enhance the prediction in leukemia scenario, in the
ovarian cancer all the experiments (33%) produced similarity values under 0.6 even
for those graphs from samples of the same class. These results demonstrate that the
similarity matrix alone is not a good source to rank the sample graphs. A similar anal-
ysis was performed by [41] that used the comparison among the patient graphs using
kernel function based similarity matrices, and then proposed ranking these patients
according to the phenotype under investigation. Their goal was classifying those that
will follow to a deep evaluation to assess the correct prognosis, they do not rely com-
pletely in the kernel matrix to check the patients that group together with those from
the same phenotype.

The experiments execution log showed that this strategy took a total of 5 seconds
to run all the steps for the leukemia dataset and 15 seconds for the ovarian cancer
that has about three times leukemia samples number. Apart from the first step, all
the other were executed in less than 0.7s for leukemia and 1.4s for ovarian cancer.
The most consuming task was the generation of the personalized sample networks,
that took 5.46s for the ovarian cancer and 3.6s for leukemia dataset. This task is also
the one that required at most 55.33Mb and 41.25Mb, for ovarian cancer and leukemia
datasets respectively.
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A recent review describes in details the role of the variety of graph-based machine
learning methods for disease prediction [42], including the ones based on kernel func-
tions and support vector machine that was used in our strategy. They pointed as a
future direction strategies to create an effective graph as a potential research direction,
by allowing the automatic simulation of samples networks with distinct weights and
attributes we move a step towards attending this research direction. We allow these
simulations in computationally efficient manner while performing a screening easily
configured by the user.

3.1.4 Performance evaluation of the GSEA pathway scores strategy

We first evaluated the fifteen most enriched pathways identified for each Scenario, in
order to access the score distribution of the pathways across the distinct classes (Figure
2). The Leukemia case obtained 278 enriched pathways, and the top 15 pathways were
coherent to the since most of these are related to diseases in involving immune system
aspects, such as Diabetes mellitus, autoimmune diseases and immunodeficiency. The
values of these top pathways were similar among the two classes and for Autoimmune
Thyroid disease the mean values were the same. In the ovarian cancer scenario, some
general pathways like ribosome, spliceosome and RNA degradation among the most
enriched ones. There were two interesting cases in this scenario, the nicotine addiction
pathway was negatively enriched in the alive group while in the dead group it was
almost zero. The maturity onset diabetes pathway was negatively enriched for both
groups of samples, still the dead group value (-350) was higher than the alive one
(about -500). While the ribosome pathway were positively enriched in the alive group,
it was negatively represented in the dead group.

We evaluated the prediction comparing the performance evaluation metrics using
the oversampling balancing method before passing to the 10-fold dataset split, and
passing only the original samples. According to the grid search parameter tuning for
Adaboost, the best accuracy (reaching 80%) were yielded by learning rate values set
in 1 and 500 estimators for the ovarian cancer scenario and all the top ranked param-
eters came from the balancing experiments. The other balancing strategy yielded a
better result (64.7%) for the leukemia scenario, in this case the favorable learning
rate was 10−3 combined with 50 or 100 estimators. Regarding the performance eval-
uation metrics (Figure 3), while the model was clearly improved by the usage of the
SMOTE technique, not only for the accuracy but mainly for the equilibrium among
the other three metrics (precision, recall and f1), in the leukemia dataset, the balanc-
ing decreased the values of all these metrics, being the greatest reduction observed in
recall (-0.36) and f1 (-0.21).

In this strategy, we introduced the representation of the gene expression profile
using pathway scores from gene set enrichment analysis to test the ability to predict
disease outcome as a domain-agnostic predictive method. Other published works pro-
posed methods that are highly domain-dependent and require human intervention for
curation [43], this method also uses GSEA but only as a post processing analysis tool.
Other methods also used network-based approaches for outcome prediction with gene
set enrichment [44, 45] but their focus was using the gene set enrichment as a post
processing strategy to validate the findings across other biological data sources. Our
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Fig. 2 Comparison of the fifteen most enriched pathways of each disease scenario, grouping the
values obtained by the samples according to their class (dead or alive) according to the average score.

purpose with the strategy presented is using the pathway scores from gene expres-
sion to directly predict the prognosis, while the gene network built by these methods
aims to extract individual gene signatures that could potentially improve prognosis
prediction.

Concerning the computational efficiency (Table 2), this strategy steps take more
time to execute in relation to the first strategy presented in the previous section. In
the leukemia scenario, the step that trains the model and performs the parameter
tuning took the longest time (99s), while the features generation (step 1) took 15s, it
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Fig. 3 Comparison of the performance evaluation metric values in the leukemia and ovarian cancer
scenarios using or not the SMOTE balancing technique in the samples’ data.

used the highest amount of memory (6.8Mb). In the ovarian cancer scenario, the first
and fastest step took 40.4s and promoted a memory usage of 166Mb, and the most
time-consuming was the report generation (step 3) spending 770s (almost 13 minutes).

Table 2 Comparison of memory usage and execution time among the datasets for each step of the
GSEA-based strategy.

Step
Leukemia Ovarian cancer

Time (s) Memory (Mb) Time (s) Memory (Mb)
1 - Features generation 15 6.8 40.4 166.9
2 - Model training and evaluation 99.63 0.073 240.9 2.4
3 - Report of PPI vs Correlation 42.78 1.18 770.78 7.62

Following the report generated by the third step, in both scenarios, the net-
work based in negatively or positively correlated proteins from the raw normalized
expression values almost no overlapping with the physical complexes of the protein
interaction network. Indeed, it is known that proteins that interact to each other
tend to present stronger correlation in in the gene expression analysis [46], however
there were few neighbors of the proteins from PPI in the correlation matrix from
gene expression, explaining the poor overlapping observed. Only around 7% of the
proteins obtained at least one neighbor which was also present in the protein inter-
action network in both disease scenarios. Table 3 shows that in both scenarios, the
highest concentration of correlated genes occurred in the the sample set of the dead
outcome. Only in this outcome there were negatively correlated genes for the ovar-
ian cancer scenario. This report was designed to understand the relationship among
the enriched pathways and the gene expression correlation across phenotype-specific
sample groups, and extract possible interesting deviations. As we showed in the table
the bad outcome yields expressive increase of genes correlated to each other showing
potential dependencies from each other to guide personalized medicine [47].
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Table 3 Comparison of the number of positively and negatively
correlated genes considering three sample sets: all, only dead, only
alive.

Sample set
Leukemia Ovarian cancer

Corr. (+) Corr. (-) Corr. (+) Corr. (-)
All 1211 18 4530 0

Dead 2986 398 7414 46
Alive 1885 44 4856 0

3.2 Drug response calibration simulation

3.2.1 Assessment of normalization types and pathway gene sets
effects

Since the core method for drug response simulation was already extensively tested in
[14], we evaluated the new functionalities proposed in this paper. Firstly, we made
two experiments in the LIRI-JP dataset to test (1) all the types of normalization and
(2) all the recent versions pathway gene sets. The evaluation criteria was based on
two aspects: the roc auc and precision metrics to evaluate the model training; the
distribution of the changed label ration when testing with current drugs that are on
clinical trials for liver cancer. While changing the gene set, we fixed the normalization
type as the one used in TCGA datasets (FPKM UQ) with the default weights proposed
in [14] (20, 5 and 10). The same protocol was adopted while changing the normalization
type, using the KEGG 221 Human as default.

The results for normalization type (Figure 4) show that all the tested methods
had a mean precision close to one, however their performance following roc auc metric
varied around 0.75, with a great variance around the mean for cpm, tmm and tpm.
The least variance occurred using fpkm uq, with a mean value of 0.74. The methods
with the minor values of mean for roc auc were the same that also have the lowest
values of changed label ratio. Besides all the methods yielded rations above 0.8, fpkm
uq and tmm obtained similar mean values around 0.93. Indeed, fpkm uq provides the
most robust result.

Fig. 4 Evaluation of all types of normalization (fpkm, fpkm uq, cpm, tpm, tmm) according to the
roc auc and precision metrics for the model quality criteria, and following the changed label ratio on
calibrating by clinical trial drugs.
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The gene sets evaluation results (Figure 5) demonstrated that except for the pfocr,
all the gene sets obtained a mean value of roc auc above 70%. Wikipathways obtained
a great variance around this mean value besides being similar to kegg (around 0.75).
Combining the results of changed label ratio, only kegg and wikipathways obtained
a mean value above 80%, while the elsevier and pfocr obtained an unsatisfactory
performance above 0.6.

Fig. 5 Evaluation of all types of pathway gene sets (pfocr, kegg, elsevier, wikipathways) according
to the roc auc and precision metrics for the model quality criteria, and following the changed label
ratio on calibrating by clinical trial drugs.

3.2.2 Transfer learning evaluation

We trained the model in LIRI-JP and applied this model to evaluate on the LIHC-
US samples and processed both datasets using the fpkm uq normalization type and
the kegg geneset, taking advantage of the screening results presented in the previous
section.

We extracted a list of 150 drugs that went on clinical trials for liver cancer neoplasm
(mesh identifier 68008113) 8, uniting this list with approved drugs9 for this type of
cancer. This list was used to calibrate and optimize the scoring matrix weights, after
100 trials, the best highest percentage of these drugs that changed 80% of the disease
sample labels were around 12%, found in the second trial, resulting in the final weights
of 1, 27 and 20.

An important point for transfer learning application is the compatibility of the
enriched pathways. Although we projected the workflow to treat the possible gaps
among the features in the target data and those that form the original model, we
checked the enriched pathways in common among these two datasets and 304 out of
305 pathways in LIHC-US were contained among the 305 pathways in LIRI-JP. The
Pathways in cancer pathway was only found in LIRI-JP.

Firstly, we evaluated the transfer learning mode using the models of the two exper-
iments (LIRI-JP and LIHC-US) to predict the class of their own samples and each
other ones. Figure 6 shows that even though the LIHC-US model was built partly
using synthetic data to handle healthy class under representation, its performance was

8https://raw.githubusercontent.com/drug2ways/results/master/validation/data/DrugBank-MeSH-slim-
counts.tsv

9https://www.cancer.gov/about-cancer/treatment/drugs/liver
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very similar mainly for accuracy in relation to the complete model trained on LIRI-
JP. The roc auc and precision, however, illustrates that indeed LIRI-JP obtained a
satisfactory behavior when transferred to other unseen data from other experiment,
reaching a precision of around 98%. Both models obtained metric values closer above
90% on predicting their own sample classes, but LIRI-JP based model generalized the
learning better than the LIHC-US.

Fig. 6 Evaluation of the model performance in a pairwise combination of original models and the
targets, considering LIRI-JP and LIHC-US experiments.

As the workflow produces a report about the computational efficiency concern-
ing the execution, table 4 demonstrates that the most time-consuming tasks are the
weights optimization and the full screening of 1350 drugs in an individual mode, these
tasks reached the maximum values of 5̃5 minutes (LIRI-JP) and 4̃9 minutes (LIHC-
US in transfer mode). In relation to the memory usage, the only step that requires
more than 1GB of ram memory space is the data processing because the raw expres-
sion values data loading, in the first step of the data processing it is transformed and
discharged from memory, only occupying a large size for a few seconds.

In relation to the individual drugs evaluation, we continued comparing the three
experiments (LIRI-JP, LIHC-US transfer and LIHC-US model) cutting the derived
ranked list using a threshold of 80% of the changed label ratio. The agreement results
among the drugs in these filtered lists across the experiments pairwise combination
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Table 4 Execution time and memory usage for each of the five steps contained in DReCaS workflow. We tested the
execution for LIHC-US in two modes, which were generating its model by oversampling the healthy samples and using the
model generated by the LIRI-JP experiment. We skipped the steps 2 and 3 for the second LIHC-US experiment and only the
weights optimization step for the first.

Steps
LIRI-JP LIHC-US [trans-

fer]
LIHC-US [own
model]

Time (s) Memory (Mb) Time (s) Memory (Mb) Time (s) Memory (Mb)
1 - Data processing 80.95 1084 65.26 1203 62.29 1511.64
2 - Model training 26.19 6.1 - - 31.77 1.27
3 - Scoring weights
optimization

3304.84 31.02 - - - -

4 - Individual drug
batch evaluation

1962.30 0.28 2942.90 17.04 2290.88 16.57

5 - Drug combina-
tion evaluation

330.71 11.66 458.66 3.94 359.41 1.03

showed that the model trained on LIRI-JP found 221 top ranked drugs out the origjnal
1350, while the model trained in the adapted set in LIHC-US only found 71. Using
the LIRI-JP model in the lIHC-US samples, the model increased the original number
to 130. Even though, more than 90% of the top ranked drugs for both LIHC-US
experiments were the same found in LIRI-JP list.

A detailed analysis exploring the ATC (Anatomical Therapeutic Chemical) classes
(Supplementary figure 1) represented by the drugs in these lists showed the pres-
ence of two drugs classified as antineoplastic agents which are the Arsenic trioxide10

(drugbank id: DB01169) and Gilteritinib11 (drugbank id: DB12141), the last one is
also classified as protein kinase inhibitor. Both drugs are indicated and used to treat
Accute Myeloid Leukemia, however recent studies have shown that the Arsenic tri-
oxide induces apoptosis and inhibits the growth of human liver cancer cells [48]. [49]
corroborates these findings by demonstrating that inhibits liver cancer stem cells dif-
ferentiation and metastasis targeting the SRF/MCM7 complex, while the work [50]
confirmed this result through inhibition of LIF/JAK1/STAT3 and NF-kB signaling
pathways. Gilterinib correlation with liver cancer is not straightforward, according
to [51] this medication is used specifically for FLT3-mutated by FLT3 inhibition in
Accute Myeloid leukemia, but this work also demonstrates evidence of an off label
usage of the liver cancer’s approved drug sorafenib. The mono therapy with this drug
in a group of patients induced durable remissions presenting allo-immune effects.

We tested the drug combination evaluation using the same methods and the
changed label ratio metric, among the true positive pairs of drugs, we used 1 combi-
nation cited in [14], eight proposed by [52], and the combination formed by Arsenic
trioxide and sorafenib. This last combination is found to promote the apoptosis by
upregulating a TNF-related ligand [53]. We randomly generated one hundred distinct
drug pairs and all the drug combinations in the true positive set obtained a ratio above
80%.

10https://go.drugbank.com/drugs/DB01169
11https://go.drugbank.com/drugs/DB12141
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A previous published method also took advantage of specific cancer cell lines
curated information and applied the model trained on this data to evaluate unseen new
samples to test transfer learning on drug response in the test set [54]. Although they
evaluated using a wide range of parameters and classifiers, our approach is disease-
agnostic, since it relies only on the raw gene expression values, and also returns reports
of the drug intervention for the pathways of each sample. Furthermore our approach
also allows the screening of drug combinations.

4 Discussion

We have presented two workflows (ScreenDOP and DReCaS) that handles efficiently
and uses only transcriptomic data based on gene expression profile to tackle two
biomedical research tasks, which are disease outcome prediction (DOP) and drug
response simulation. The ScreenDOP provides two strategies for DOP, and both strate-
gies can be customized allowing the users to perform distinct experiment setups with
their own gene expression data. Their parameters for node and edge attributes in the
first strategy as well as the balancing option of the second one was tested in two sce-
narios, using micro array and RNASeq data sources. The DReCaS workflow extended
the methodology proposed in [14] by allowing the scoring matrix optimization and
transfer learning from one experiment to another. We also standardized the proce-
dure in a reproducible manner dealing since the raw expression values processing till
the individual drug screening or custom drug combination response simulation. Both
workflows are publicly available with a documentation of the configuration file needed
and running examples. They are easily configurable and all the analysis datasets are
organized in order to contribute with the data flow transparency and traceability.

In the disease outcome prediction, We showed the relationship among the distri-
bution of features derived from both strategies (samples’ weighted ppi network and
enriched pathway scores) and the later prediction evaluation results. The leukemia
dataset derived from microarray technique was favored by the first strategy while the
ovarian cancer dataset (derived from RNA-Seq) obtained its best performance results
using the GSEA-based strategy. The usage SMOTE technique to treat imbalance lever-
aged the model in the ovarian cancer scenario for all the evaluation metrics, while in
the other scenario it was observed a small reduction of these metrics. In both strate-
gies, the accuracy values for the Leukemia scenario surpassed the prediction obtained
in [13]. We also showed that our two proposed strategies are fast and robust, spend-
ing at most 15 minutes to handle all the procedure. We added two proof-of-concepts,
demonstrating that it is not enough using only the graph similarity matrix to check the
closest samples and then derive a classification. And we also showed that the neigh-
bors of the gene correlation network have few but most of the times no overlapping
with their neighbors in the protein interaction network, in these two scenarios.

Concerning the second task of drug response simulation, we took advantage of
the custom configuration to handle multiple experiments in the DReCaS workflow
architecture, and performed an experiment screening to demonstrate the behavior
of the approved drug indication following distinct normalization types and pathway
gene sets. We chose the best combination of normalization (FPKM UQ) and gene set
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(KEGG), and presented the results of the weights optimization and the influence of
the model built in a complete liver cancer dataset (LIRI-JP) in a dataset contain-
ing mostly disease samples (LIHC-US), illustrating the transfer learning functionality.
The best model could successfully predict the disease samples of the LIHC-US dataset
with an accuracy close to 70%. The features could be adapted and the drug prior-
itization for datasets concerning the same disease were in agreement. We found a
promising drug originally used to treat leukemia as a top ranked drug from our screen-
ing results and validated as a potential liver cancer therapy [48–50]. Our workflow
can be applied to test multiple drug combinations enhancing drug repurposing and
leveraging personalized medicine application.

Code availability. The ScreenDOP code is available in a Github public repos-
itory at https://github.com/yascoma/screendop while the DReCaS is available at
https://github.com/YasCoMa/caliscoma pipeline/tree/developer
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Normalization in Python. https://github.com/genialis/RNAnorm

[27] Hans, C.: Elastic net regression modeling with the orthant normal prior. J. Am.
Stat. Assoc. 106(496), 1383–1393 (2011)

[28] Ogutu, J.O., Schulz-Streeck, T., Piepho, H.-P.: Genomic selection using regu-
larized linear regression models: ridge regression, lasso, elastic net and their
extensions. BMC Proc. 6 Suppl 2(Suppl 2), 10 (2012)

[29] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-
generation hyperparameter optimization framework. In: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Min-
ing. KDD ’19, pp. 2623–2631. Association for Computing Machinery, New York,
NY, USA (2019)

[30] Barrett, T., Suzek, T.O., Troup, D.B., Wilhite, S.E., Ngau, W.-C., Ledoux, P.,
Rudnev, D., Lash, A.E., Fujibuchi, W., Edgar, R.: NCBI GEO: mining millions
of expression profiles–database and tools. Nucleic Acids Res. 33(Database issue),
562–6 (2005)
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