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Structured abstract 

Background: Plasma low-density lipoprotein (LDL)-cholesterol is positively associated with 

coronary artery disease risk while biliary cholesterol promotes gallstone formation.  

Objectives: We tested the hypothesis that different plasma LDL-cholesterol lowering 

pathways have distinct effects on biliary cholesterol and thereby risk of gallstone disease. 

Methods: This Mendelian randomization (MR) study used data from the UK Biobank 

(30,547 gallstone disease cases/336,742 controls), FinnGen (34,461 cases/301,383 controls) 

and Biobank Japan (9,305 cases/168,253 controls). First, drug-target MR and colocalization 

analyses were performed to investigate plasma LDL-cholesterol lowering therapies on 

gallstone disease. Second, clustered MR and pathway analyses were performed to identify 

distinct mechanisms underlying the association of plasma LDL-cholesterol with gallstone 

disease.  

Results: For a 1-standard deviation reduction in plasma LDL-cholesterol, genetic mimics of 

statins were associated with lower risk of gallstone disease (odds ratio 0.72 [95% confidence 

interval 0.62, 0.83]) but PCSK9 inhibitors and mipomersen were associated with higher risk 

(1.11 [1.03, 1.19] and 1.23 [1.13, 1.35]). The association for statins was supported by 

colocalization (posterior probability 98.7%). Clustered MR analyses identified variant 

clusters showing opposing associations of plasma LDL-cholesterol with gallstone disease, 

with evidence for ancestry-and sex-specific associations. Among variants predicting lower 

plasma LDL-cholesterol, those associated with lower risk of gallstone disease were mapped 

to glycosphingolipid biosynthesis pathway, while those associated with higher risk were 

mapped to pathways relating to plasma lipoprotein assembly, remodelling, and clearance and 

ATP-binding cassette transporters.  

Conclusions: Different plasma LDL-cholesterol lowering pathways may have opposing 

effects on risk of gallstone disease. Notably, statins may reduce risk of gallstone disease. 

 

Condensed abstract 

We hypothesized that different plasma LDL-cholesterol lowering pathways have distinct 

effects on risk of gallstone disease. We performed drug-target and clustered Mendelian 

randomization (MR) analyses, using data from the UK Biobank, FinnGen and Biobank Japan. 

Genetic mimics of statins were associated with lower risk of gallstone disease, but PCSK9 

inhibitors and mipomersen were associated with higher risk. Clustered MR identified variant 

clusters showing opposing associations of plasma LDL-cholesterol with gallstone disease.  

This genetic study supports that different plasma LDL-cholesterol lowering pathways have 

opposing effects on risk of gallstone disease and statins may reduce risk of gallstone disease. 

 

Keywords: LDL-cholesterol, gallstone disease, Mendelian randomization  
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Abbreviations: 

ABCG5/8 = adenosine triphosphate-binding cassette transporters G5/8 

ATP = adenosine triphosphate 

CAD = coronary artery disease 

eQTL = expression quantitative trait locus 

FUMA = Functional Mapping and Annotation 

GLGC = Global Lipids Genetics Consortium 

GWAS = genome-wide association studies 

ICD = International Classification of Diseases 

IVW = inverse variance weighting 

LDL = low-density lipoprotein 

MI = myocardial infarction 

MR = Mendelian randomization 

PCSK9 = proprotein convertase subtilisin/kexin type 9 

RCT = randomized controlled trial  
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Introduction 

Cholesterol plays an important role in the aetiology of coronary artery disease (CAD) 

and gallstone disease. Plasma low-density lipoprotein (LDL)-cholesterol is positively 

associated with CAD risk (1), whereas biliary cholesterol promotes cholesterol gallstones 

formation (2). A recent randomized controlled trial (RCT) showed lowering plasma LDL-

cholesterol with bempedoic acid, an adenosine triphosphate (ATP) citrate lyase inhibitor, 

increased risk of gallstones (3), but trial evidence for other lipid modifiers is limited (4). 

Therefore, it remains unclear whether the lithogenic effect is a general consequence of 

lowering plasma LDL-cholesterol or is unique to bempedoic acid. 

RCTs are not usually designed or powered to identify adverse effects or novel 

indications. Observational studies suggest statin use is associated with lower gallstone disease 

risk (5,6), but these studies could be biased due to residual confounding or selection bias. 

Mendelian randomization (MR), an instrumental variable analysis with genetic instruments, 

is more robust to confounding than conventional observational studies (7). However, 

previous MR studies have yielded contradictory results, suggesting a positive (8) or null (9) 

association of lower plasma LDL-cholesterol with gallstone disease risk. Understanding the 

causal association of plasma LDL-cholesterol with gallstone disease has implications for 

repurposing plasma LDL-cholesterol lowering therapies and identifying potentially adverse 

effects. 

Plasma LDL-cholesterol is regulated by different biological pathways (10), which could 

have distinct effects on biliary cholesterol and thereby gallstone disease. Statins reduce 
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plasma LDL-cholesterol by inhibiting cholesterol biosynthesis (11), which may decrease 

biliary cholesterol (12) and reduce gallstone disease risk. However, pathways reducing 

plasma LDL-cholesterol while elevating biliary cholesterol, such as activating adenosine 

triphosphate (ATP)-binding cassette transporters G5/8 (ABCG5/8), may increase gallstone 

disease risk (13).  

We hypothesized that different plasma LDL-cholesterol lowering pathways have distinct 

effects on risk of gallstone disease. First, we used MR to assess the associations of genetic 

mimics of current and emerging plasma LDL-cholesterol lowering therapies with gallstone 

disease risk. Second, we investigated distinct pathways underlying the association of plasma 

LDL-cholesterol with gallstone disease risk. Where possible, we assessed ancestry- and sex-

specific associations, because gallstone prevalence is higher in European than Asian ancestry 

individuals, and in women than men (2). 

 

Methods  

Ethical approval 

This study has been conducted using the UK Biobank Resource (Application number 

98032). The UK Biobank obtained ethical approval from the North West Multi-centre 

Research Ethics Committee, and the participants provided written informed consent. The 

analysis of publicly available summary statistics does not require ethical approval. 
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Study design  

We used individual-level data from UK Biobank (14) and summary-level data from 

FinnGen (15) and Biobank Japan (16) for gallstone disease. We selected genetic mimics of 

plasma LDL-cholesterol lowering therapies from genes encoding the molecular target of each 

therapy. We conducted drug-target MR analyses to assess the associations of genetic mimics 

of each therapy with gallstone disease risk. We performed colocalization analyses to examine 

whether any associations found were driven by a shared causal variant between exposure and 

outcome or were confounded by linkage disequilibrium (17). 

We extracted genetic predictors for plasma LDL-cholesterol from across the genome. 

We conducted clustered MR analyses to identify distinct clusters of genetic variants having 

similar causal estimates for plasma LDL-cholesterol on gallstone disease risk (18). We 

performed pathway analyses to investigate biological pathways relating to each cluster. A 

summary of the study design is shown in Supplemental Figure 1.  

 

Data sources 

The UK Biobank recruited approximately 500,000 people (intended age 40-69 years, 

94% self-reported European ancestry) between 2006 and 2010 from across the United 

Kingdom (14). Individual-level data used were under application 98032 (October 2021 

updated). Cases were defined based on self-reported history of gallstones, International 

Classification of Diseases (ICD)-9 and ICD-10 codes related to gallstones, and medical 
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treatment of gallstones, as previously (19). Both prevalent and incident cases were included. 

Controls were individuals without gallstone-related disease or treatment. Individuals who 

underwent cholecystectomy due to an alternative pathology (e.g., neoplasm) were excluded. 

We included 367,289 unrelated individuals of European ancestry (cases = 21,201 

women/9,346 men, controls = 177,478 women/159,264 men) with genomic data passing 

quality control as described previously (20). We used logistic regression to obtain sex-

combined and sex-specific genetic associations with gallstone disease.  

Summary-level data from FinnGen (R8 release) included 34,461 cases and 301,383 

controls (mean age 52 years, 55.7% women) (15). Cases were defined based on ICD-8, 9, 10 

codes related to gallstones (15). Summary-level data from Biobank Japan included 9,305 

cases and 168,253 controls (mean age 63 years, 46.3% women) (16). Cases were defined 

based on ICD-10 codes (16). Detailed definitions of gallstone disease are provided in 

Supplemental Table 1. 

 

Genetic instruments  

We used ancestry-specific summary-level data from the Global Lipids Genetics 

Consortium (GLGC) for plasma LDL-cholesterol (1,231,289/82,587 people of European/East 

Asian ancestry) (21). We selected genetic mimics of plasma LDL-cholesterol lowering 

therapies from genes encoding the molecular targets of each therapy (i.e., HMGCR for 

statins, PCSK9 for proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, NPC1L1 
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for ezetimibe, ACLY for ATP citrate lyase inhibitors, LDLR for targeting LDL receptors, and 

APOB for mipomersen). We used genetic mimics of targeting ABCG5/8 from ABCG5/8 as a 

positive control exposure, because ABCG5/8 is a well-established lithogenic gene (2). We 

included all variants within 100kb on either side of each target gene that were in low linkage 

disequilibrium (r2 <0.1) and were genome-wide significantly (p value <5×10-8) associated 

with plasma LDL-cholesterol. We used a less stringent cut-off for linkage disequilibrium (r2 

<0.1) to obtain more variants in each gene region to increase the power (22). We also 

extracted genetic predictors for plasma LDL-cholesterol from across the genome that were 

uncorrelated (r2 <0.001) and genome-wide significantly (p value <5×10-8) associated with 

plasma LDL-cholesterol. Estimates were expressed in 1-standard deviation (around 0.87 

mmol/L) reduction in plasma LDL-cholesterol.  

We used the F-statistic to assess instrument strength, approximated by the square of each 

SNP-exposure association divided by the square of its standard error (23). We used 

PhenoScanner, a database of genotype-phenotype associations (24,25), to check whether 

SNPs were genome-wide significantly (p value <5×10-8) associated with common 

confounders (i.e., socioeconomic status, smoking, alcohol drinking and physical activity). We 

included these SNPs in the main analysis, and excluded them in the sensitivity analysis. We 

also used positive control outcomes, i.e., CAD from CARDIoGRAMplusC4D Consortium 

(60,801 cases and 123,504 controls) (26) for people of European ancestry and myocardial 

infarction (MI) from Biobank Japan (14,992 cases and 146,214 controls) (16) for East Asians. 
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A summary of genome-wide association studies (GWAS) used is provided in Supplemental 

Table 2. 

 

MR analysis 

We aligned SNPs based on alleles and allele frequencies. We used proxy SNPs (r2≥0.8), 

where possible, when SNPs were not available in the outcome GWAS. We calculated MR 

estimates by meta-analyzing Wald estimates (the ratio of the genetic association with 

outcome to the genetic association with exposure) using inverse variance weighting (IVW) 

with fixed effects for three SNPs or fewer and random effects for four SNPs or more (27). To 

assess the robustness of the IVW estimates, we conducted sensitivity analyses using weighted 

median (28) and MR Egger (29). For the SNPs in low linkage disequilibrium (r2 <0.1), we 

calculated IVW and MR Egger estimates taking into account their correlations. 

We meta-analyzed MR estimates from the three biobanks using a fixed-effects model 

unless the Q-statistic suggested heterogeneity when random effects were used. We assessed 

differences by sex using a two-sided z-test (30).  

 

Colocalization analysis 

We performed colocalization analyses in a Bayesian framework to assess the posterior 

probability of a shared variant associated with both plasma LDL-cholesterol and gallstone 

disease (17). We included variants (minor allele frequency >0.1%) in or near (+/-100kb) the 
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target gene where any associations were identified. A posterior probability larger than 0.80 

provides evidence for colocalization (17). We set the prior probabilities as recommended, i.e., 

1.0e-4 for a variant associated with plasma LDL-cholesterol, 1.0e-4 for a variant associated 

with gallstone disease, and 1.0e-5 for a variant associated with both traits (17). We also 

calculated the posterior probability for a shared variant associated with both traits conditional 

on the presence of a variant associated with gallstone disease, as the power to detect 

colocalization is low when the variants are not strongly associated with the outcome (31). 

 

Clustered MR 

We used the MR-Clust method to identify distinct clusters of genetic variants having 

similar causal estimates for plasma LDL-cholesterol on gallstone disease, which might reflect 

distinct biological pathways (18). The MR-Clust accounts for differential uncertainty in the 

causal estimates, and includes a null cluster where SNP-specific estimates are centred around 

zero and a junk cluster where SNP-specific estimates are highly dispersed and are considered 

outliers (18). The presence of null and junk clusters requires substantial evidence of similarity 

to define a cluster, which avoids the detection of spurious clusters (18). We only included 

variants with inclusion probability >0.80 in each cluster, and only reported a cluster if at least 

four variants satisfy this criterion, as recommended (18).  

 

Pathway analysis 
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We performed pathway analysis to examine biological pathways relating to each variant 

cluster using the Functional Mapping and Annotation (FUMA) platform (32). We first 

applied the SNP2GENE function to map cluster-specific genetic variants to genes, where we 

used 100-kb positional mapping and expression quantitative trait locus (eQTL) mapping 

based on GTEx v8 (32). We then used the GENE2FUNC function to associate the mapped 

genes with biological pathways defined by KEGG and Reactome database (32).  

All statistical analyses were conducted using R version 4.2.1 and the packages 

“ieugwasr”, “TwoSampleMR”, “MendelianRandomization”, “metafor”, “coloc”, and 

“mrclust”.  

 

Results 

Baseline characteristics of UK Biobank participants 

Baseline characteristics of 367,289 UK Biobank participants (30,547 cases and 336,742 

controls) included in this study are shown in Table 1. Cases were older at baseline (mean age 

59.4 vs 57.0 years) and had higher body mass index (mean 29.6 vs 27.2 kg/m2) than controls. 

Cases had a greater proportion of women (69.4% vs 52.7%) and current lipid-lowering 

medication users (22.1% vs 16.5%) but had a smaller proportion of current alcohol drinkers 

(89.1% vs 93.6%) than controls.  

 

Genetic instruments 
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We extracted SNPs for plasma LDL-cholesterol lowering therapies in people of 

European and East Asian ancestry, respectively (Supplemental Table 3). We did not extract 

SNPs for ATP citrate lyase inhibitors in people of European or East Asian ancestry, or for 

ezetimibe and targeting ABCG5/8 in East Asians, because the SNPs in or near the target 

genes were not genome-wide significantly associated with plasma LDL-cholesterol (p 

values >5×10-8). We extracted 324 and 43 SNPs for plasma LDL-cholesterol in people of 

European and East Asian ancestry, respectively (Supplemental Table 4).  

The F-statistics for all SNPs were >10. Variance in plasma LDL-cholesterol explained 

by SNPs for each therapy and plasma LDL-cholesterol is provided in Supplemental Table 5. 

None of the SNPs for each therapy were genome-wide significantly associated with common 

confounders (p values >5×10-8), but four SNPs for plasma LDL-cholesterol were associated 

with smoking or alcohol drinking (Supplemental Table 6). As expected, SNPs for each 

therapy and lower plasma LDL-cholesterol were associated with lower risk of CAD and MI 

(Supplemental Figures 2-3).  

 

Drug-target MR  

After meta-analyzing MR estimates from the three biobanks, genetic mimics of statins 

were associated with lower gallstone disease risk, while genetic mimics of PCSK9 inhibitors, 

mipomersen, and targeting ABCG5/8 were associated with higher gallstone disease risk 

(Figure 1). We did not observe heterogeneity in IVW estimates across biobanks (p values for 
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heterogeneity >0.05). The weighted median and MR Egger gave similar interpretations 

(Figure 1). For a 1-standard deviation reduction in plasma LDL-cholesterol, associations for 

statins (odds ratio for women 0.76 [95% confidence interval 0.58, 1.00] vs men 0.99 [0.62 to 

1.58]), PCSK9 inhibitors (women 1.09 [0.95 to 1.26] vs men 1.36 [1.11 to 1.67]) and 

targeting ABCG5/8 (women 243.40 [114.10 to 519.26] vs men 58.39 [29.94 to 113.86]) 

slightly differed by sex (Supplemental Figure 4, p values for sex differences 0.332, 0.081 and 

0.006).  

 

Colocalization analysis 

Colocalization analyses were performed for plasma LDL-cholesterol with gallstone 

disease in or near (+-100kb) HMGCR, PCSK9, APOB, and ABCG5/8 using the UK Biobank 

and FinnGen. The posterior probabilities for a shared variant associated with both traits were 

98.7% for statins (rs12916 with the largest probability for both traits) but were <10% for the 

others (Figure 2). The posterior probabilities were >50% for a variant associated with plasma 

LDL-cholesterol only for PCSK9 inhibitors and mipomersen, and were >99.9% for 

independent variants associated with each trait for targeting ABCG5/8 (Supplemental Table 

7). 

 

Clustered MR  
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Using all SNPs for lower plasma LDL-cholesterol, there was a positive association with 

gallstone disease risk in the UK Biobank and FinnGen but a null association in Biobank 

Japan (Figure 3). However, we observed heterogeneity in SNP-specific estimates (p values 

for heterogeneity <0.001). Clustered MR analyses consistently identified variant clusters 

showing opposing associations of lower plasma LDL-cholesterol with gallstone disease risk 

(Figures 3-4). By contrast, these clusters were generally associated with lower risk of CAD 

and MI (Supplemental Figure 3). Sensitivity analysis excluding SNPs associated with 

smoking or alcohol drinking did not change the results substantially (Supplemental Figures 5-

6). 

Cluster patterns were consistent in the UK Biobank and FinnGen (Figures 3-4), with 

overlapping cluster-specific SNPs (Supplemental Table 8) and similar SNP-specific estimates 

(Supplemental Figure 7). Sex-specific clustered MR analyses also showed such opposing 

associations, but the pattern appeared more evident in women than men (Supplemental 

Figures 8-9).  

 

Pathway analysis 

We found clusters 2 and 3 in FinnGen, cluster 3 in the UK Biobank, and cluster 2 in 

Biobank Japan mapped to specific pathways (Supplemental Table 9). Cluster 2 in FinnGen 

showing an inverse association of lower plasma LDL-cholesterol with gallstone disease was 

mapped to glycosphingolipid biosynthesis pathway, while other clusters showing a positive 
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association were mapped to pathways relating to plasma lipoprotein assembly, remodelling, 

and clearance and ATP-binding cassette transporters. Correspondingly, cluster 3 in FinnGen 

and UK Biobank and cluster 2 in Biobank Japan had similar estimates as mipomersen; cluster 

5 in FinnGen and UK Biobank had similar estimates as targeting ABCG5/8 (Figures 1 and 3). 

 

Discussion 

Consistent with previous observational studies (5,6), this study provides genetic 

evidence suggesting statins may reduce gallstone disease risk. Our investigation has added to 

the evidence base by identifying distinct and opposing pathways underlying the association of 

plasma LDL-cholesterol with gallstone disease.  

Genetic evidence suggested statins may reduce the risk of gallstone disease, while 

PCSK9 inhibitors, mipomersen and targeting ABCG5/8 may increase the risk. These findings 

are consistent with observational studies showing long-term use of statins is associated with 

lower gallstone disease risk (5,6), and a previous MR study showing ABCG5/8 variants 

lowering plasma LDL-cholesterol are associated with higher gallstone disease risk (13). 

However, an RCT showed simvastatin plus ezetimibe did not affect gallstone risk during a 

follow-up of 4.9 years (4), although the small number of gallstone cases may have limited the 

detection of any possible effect. Meta-analyses of RCTs showed statins reduced the risk of 

pancreatitis, a common complication of gallstone disease (33). 
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Plasma LDL-cholesterol lowering therapies may have distinct effects on biliary 

cholesterol and thereby gallstone disease. Statins decrease hepatic cholesterol synthesis (11), 

and may decrease biliary cholesterol (12) and facilitate cholesterol gallstone dissolution 

(34,35). PCSK9 inhibitors increase LDL receptors and mipomersen decreases apolipoprotein 

B-containing particles (11), which may increase hepatic and biliary cholesterol (2). Targeting 

ABCG5/8 inhibits cholesterol absorption and facilitates biliary cholesterol secretion (2). 

Increased biliary cholesterol accelerates supersaturation of bile and promotes cholesterol 

gallstone formation (2).  

Colocalization analysis substantiated the association of statins with gallstone disease. A 

lack of colocalization for PCSK9 inhibitors and mipomersen is possibly due to insufficient 

power. However, colocalization analysis suggested the association of targeting ABCG5/8 

with gallstone disease was confounded by linkage disequilibrium. This could be explained by 

different lead variants for plasma versus biliary cholesterol in or near ABCG5/8. Such 

differences would also explain the implausibly high MR estimates for targeting ABCG5/8, 

which are presented in effect sizes of plasma LDL-cholesterol reduction. 

Using all SNPs for lower plasma LDL-cholesterol, there was a positive or null 

association with gallstone disease, as in previous MR studies (8,9). However, we identified 

variant clusters showing opposing associations of plasma LDL-cholesterol with gallstone 

disease. Among variants predicting lower plasma LDL-cholesterol, those associated with 

lower gallstone disease risk were mapped to glycosphingolipid biosynthesis pathway, while 

those associated with higher gallstone disease risk were mapped to pathways relating to 
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plasma lipoprotein assembly, remodelling, and clearance and ATP-binding cassette 

transporters. These findings are consistent with the evidence available and the mechanisms of 

plasma LDL-cholesterol lowering therapies. In vitro studies have showed statins affect 

glycosphingolipid profiles through inhibiting Rab prenylation (36), which could suppress 

gallstone formation (37). PCSK9 inhibitors and mipomersen are involved in plasma LDL 

assembly and clearance, and ABCG5/8 are key members of ATP-binding cassette 

transporters (11).  

Unlike the effects on CAD or MI, the lithogenic effect is specific to certain pathways 

rather than a general consequence of lowering plasma LDL-cholesterol. Similarly, previous 

MR studies showed plasma LDL-cholesterol lowering therapies differed in their associations 

with body mass index (38) and type 2 diabetes (39). These insights have implications for 

identifying repurposing opportunities and adverse effects of plasma LDL-cholesterol 

lowering therapies.  

The opposing associations of plasma LDL-cholesterol with gallstone disease seemed 

more evident in European than East Asian ancestry individuals and in women than men, 

consistent with different gallstone prevalence rates by ancestry and sex (2). Plasma LDL-

cholesterol lowering therapies may have distinct effects on biliary cholesterol and thereby 

cholesterol gallstones; however, pigment gallstones are more common in East Asians than 

Europeans (40), which may explain the difference by ancestry. Statins partially operate 

through sex hormones (41), which could be relevant to the more marked association in 
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women than men. Alternatively, statins decreasing calcium, another component of gallstones, 

specifically in women (42) might play a role. 

 

Study limitations  

This trans-ethnic study takes advantage of three large-scale biobanks. The association of 

genetic mimics of statins with gallstone disease is novel, as are the distinct and opposing 

associations of plasma LDL-cholesterol with gallstone disease. This study has several 

limitations. First, MR relies on three rigorous assumptions, that is genetic instruments should 

be strongly related to the exposure, share no common cause with the outcome, and be 

independent of the outcome given the exposure (7). We calculated the F-statistics, checked 

genetic associations with common confounders, and used CAD and MI as positive control 

outcomes to assess the validity of genetic instruments. Second, we were unable to assess the 

lithogenic effect of ATP citrate lyase inhibitors due to a lack of valid instruments. Third, we 

performed colocalization analyses for plasma LDL-cholesterol with gallstone disease, while 

biliary cholesterol likely underlies any effects on gallstone disease. The discrepancy between 

plasma versus biliary cholesterol may partly explain some lack of colocalization. Replication 

using biliary cholesterol would be ideal when relevant GWAS becomes available. Fourth, not 

all the variant clusters could be mapped to specific pathways, possibly due to the small 

number of SNPs with inclusion probability >0.80 in some clusters. However, such a 

conservative inclusion criterion avoids the generation of spurious clusters by chance (18). 

Fifth, gallstone disease studied here is not specific to cholesterol gallstones and the 
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definitions slightly vary across the three biobanks; however, we still observed consistent 

patterns. Finally, MR assesses lifelong effects, which cannot directly inform the quantitative 

effects of plasma LDL-cholesterol lowering therapies in the short term. 

 

Conclusions 

This genetic study supports that different plasma LDL-cholesterol lowering pathways 

have distinct and opposing effects on risk of gallstone disease. Notably, statins may reduce 

risk of gallstone disease.  

 

Data availability  

This study has been conducted using the UK Biobank Resource under Application 

number 98032. Summary-level data analyzed are available in the website 

http://csg.sph.umich.edu/willer/public/glgc-lipids2021/ for GLGC, 

https://www.finngen.fi/en/access_results for FinnGen, https://pheweb.jp/downloads for 

Biobank Japan, and http://www.cardiogramplusc4d.org/data-downloads/ for 

CARDIoGRAMplusC4D Consortium. The R code for data analysis is shared in the GitHub 

https://github.com/YANGGYEMMA/LDL_and_gallstones.  
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Perspectives 

Competence in medical knowledge 

Genetic evidence supports that different plasma LDL-cholesterol lowering pathways 

have opposing effects on risk of gallstone disease. Genetic mimics of statins are associated 

with lower risk of gallstone disease. 

 

Translational outlook 

Additional research is needed to elucidate the mechanisms underlying the opposing 

associations of different plasma LDL-cholesterol lowering pathways with gallstone disease, 

and to investigate the short-term effect of statins on gallstone disease.    
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Table 1. Baseline characteristics of gallstone disease cases and controls in the UK Biobank. 1 

Characteristics Cases (N=30,547) Controls (N=336,742) 

Age at recruitment, years 59.4 (7.4) 57.0 (8.0) 

Sex   

Men 9,346 (30.6) 159,264 (47.3) 

Women 21,201 (69.4) 177,478 (52.7) 

LDL-cholesterol, mmol/L 3.5 (0.9) 3.6 (0.9) 

BMI, kg/m2 29.6 (5.5) 27.2 (4.6) 

SBP, mmHg 138.8 (18.4) 137.6 (18.6) 

Smoking   

Current 3,118 (10.2) 34,712 (10.3) 

Other 27,429 (89.8) 302,030 (89.7) 

Alcohol drinking   

Current 27,204 (89.1) 315,226 (93.6) 

Other 3,343 (10.9) 21,516 (6.4) 

Lipid-lowering medication   

Current 6,751 (22.1) 55,467 (16.5) 

Other 23,796 (77.9) 281,275 (83.5) 

BMI, body mass index; LDL, low-density lipoprotein; SBP, systolic blood pressure. Data are 2 

mean (standard deviation) for continuous variables or N (%) for categorical variables. 3 
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 1 

Figure 1. Mendelian randomization estimates for genetic mimics of plasma LDL-cholesterol lowering therapies on risk of gallstone disease. 2 

Estimates are expressed in odds ratio per 1-standard deviation (around 0.87 mmol/L) reduction in plasma LDL-cholesterol. * denotes p value 3 

<0.05; ** denotes p value <0.001.4 
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Figure 2. Colocalization analyses for plasma LDL-cholesterol with gallstone disease in or 1 

near (+-100kb) the target gene of each therapy. 2 

Prior probabilities were set to 1.0e-4 for a variant associated with plasma LDL-cholesterol, 3 

1.0e-4 for a variant associated with gallstone disease, and 1.0e-5 for a variant associated with 4 

both traits. Probability for colocalization means the posterior probability for a shared variant 5 

associated with both traits; conditional probability means the posterior probability for a 6 

shared variant associated with both traits conditional on the presence of a variant associated 7 

with gallstone disease. The variant with the largest posterior probability for both traits is 8 

highlighted with a label.9 
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 1 

Figure 3. Mendelian randomization estimates for genetically predicted lower plasma LDL-cholesterol on risk of gallstone disease using all SNPs 2 

and cluster-specific SNPs (inclusion probability >0.80). 3 

Estimates are expressed in odds ratio per 1-standard deviation (around 0.87 mmol/L) reduction in plasma LDL-cholesterol. * denotes p value 4 

<0.05; ** denotes p value <0.001. 5 
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 1 

Figure 4. Genetic associations with plasma LDL-cholesterol reduction (standard deviation) and risk of gallstone disease (log odds) for SNPs with 2 

inclusion probability >0.80 in clustered Mendelian randomization analyses.  3 

Points represent SNPs; dotted lines are cluster means; error bars are 95% confidence intervals for genetic associations. 4 
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 1 

Central Illustration. Drug-target and clustered Mendelian randomization analyses identify distinct and opposing pathways in the association of 2 

plasma LDL-cholesterol with gallstone disease.  3 

ABCG5/8, adenosine triphosphate (ATP)-binding cassette transporters G5/8; LDL, low-density lipoprotein; PCSK9, proprotein convertase 4 

subtilisin/kexin type 9. * denotes p value <0.05; ** denotes p value <0.001. 5 
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