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1 Abstract

Esophageal carcinoma (EC) ranks among the top six most prevalent malignancies worldwide with 

a recent surge in incidence. An innovative integrated omics technique is presented for discerning 

the two primary types of esophageal carcinoma (EC) AND Squamous cell carcinoma and 

adenocarcinoma. Utilizing The Cancer Genome Atlas (TCGA) data via Bioconductor, the research 

integrated DNA methylation and RNA expression analyses for esophageal cancer (ESCA). Key 

findings revealed DNA methylation's pivotal role in ESCA progression and its potential as an early 

detection biomarker. Significant disparities in methylation patterns offered insights into the 

disease's pathogenesis. A comparison with the TCGA Pan-Cancer dataset using Bioconductor 
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tools enriched the understanding of ESCA genomics. Specifically, 131,220 hypomethylated 

probes were detected in tumors compared to 6,248 in healthy tissues. Additionally, 42,060 probe-

gene pairs linked methylation variations to expression alterations, with 768 hypomethylated motifs 

identified. Thirteen of these motifs emerged as potential diagnostic markers. Transcription factor 

analyses spotlighted crucial regulators, including NFL3, ATF4, JUN, and CEBPG, revealing 

intricate regulatory networks in ESCA. Survival statistics further correlated clinical factors with 

patient longevity. This research recommends an innovative approach to identifying oesophageal 

abnormalities through DNA methylation and gene expression mechanisms. Research suggests 

DNA methylation may serve as an early detection biomarker, aiding in identifying esophagus 

cancer prior to more advanced stages.

Keywords: Esophageal cancer, Early detection, DNA methylation, Innovative approach, survival 

analysis, clinical implications
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Figure 1.1 Graphical abstract of Unlocking Esophageal Carcinoma’s Secrets: An Integrated Omics 

Approach Unveils DNA Methylation as a Pivotal Early Detection Biomarker with Clinical 

Implications

2  Introduction

Esophageal cancer is one of the foremost global causes of mortality [1].  There are two types of 

ESCA cancer: EAC (esophageal adenocarcinoma ( and squamous cell carcinoma (ESCC) [2]. EAC 

prevails in Western populations, whereas ESCC predominates in Asian nations, particularly China, 

with an incidence rate of 88.84 [3]. 
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At the core of esophageal cancer is DNA methylation, a pivotal epigenetic modification in 

mammalian genomes renowned for its manifold applications, including genome identification and 

gene expression control[3], probing transcriptional enhancers, and other cis-regulatory modules 

(CRMs). While DNA methylation analyses conventionally focused on gene promoter regions [4]. 

The exploration of the influence of enhancer regions was initially a less-trodden path. Only through 

systematic and impartial analyses of DNA methylation in human cells did enhanced regions reveal 

themselves in a cell-specific context. The advent of target bisulfite sequencing corroborated the 

cell-type-specific demethylation of enhancers in ENCODE project[5]. Recent investigations into 

cancer tissues have revealed the potential of DNA methylation profiles to identify cancer-specific 

enhancers and binding sites for transcription factors. Notably, current studies have indicated that 

enhancements in DNA methylation within enhancer elements exhibit a significantly stronger 

predictive power for changes in target gene expression in cancer than those observed within 

promoters 3. Encouraged by the recognition and discovery of tumor enhancers, transcription factor 

binding sites (TFBSs), and other cis-regulatory modules (CRMSs) in DNA methylation 

information and the positive association between DNA methylation and objective gene expression 

in tumors, the Enhancer by Linking Methylation/Expression relationship package has been 

developed 4–6. Advanced tools, such as TENET and RegNetDriver, have been employed within 

this package, along with codes for conducting cancer network analyses[6]. The latest iteration, 

Enhancer by Linking Methylation/Expression relatiosnhip V.2, introduces advanced statistical 

features, including integration with the TCGABiolinks package  to facilitate cohort selection and 

data import from the NCI Genome Data Commons, utilization of the MultiAssayExperiment 

(MAE) gold standard data structure to support both Infinium HMR450 and RNA-seq arrays, 

integration with the TCGABiolinksGUI tool, enhanced testing and exception handling, and 
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comprehensive presentation of results in an HTML file containing data tables, source code, and 

figures [7]

The emerging Elmer package presents a remarkable capability to dissect TCGA cancer data to 

unravel distinctive molecular networks. We harnessed TCGA ESCA cancer data to meticulously 

probe the methylation and expression datasets within the scope of our project. This potent package 

finds its home in the Bioconductor R environment establishing a user-friendly avenue for accessing 

its features. Elmer's conceptualization centers on the comprehensive exploration of DNA metadata 

and gene expression data derived from tissues. This tailored framework facilitates the detection of 

distant probes situated apart from genes and subsequently compares them with neighboring genes. 

Through this dynamic process, Enhancer by Linking Methylation/Expression relationship, unveils 

an array of transcriptional targets, illuminating a web of regulatory interactions that might 

otherwise remain concealed using conventional methods. By embracing the Elmer package, 

researchers can navigate the complexities of TCGA cancer data with heightened efficiency. This 

innovative tool catalyzes a streamlined analysis process, aiding in exploring the intricate molecular 

landscapes that characterize cancer. [8].

Demonstrating survival predictions using TCGA clinical data is pivotal as it sheds light on patient 

prognosis and outcome metrics [11]. These survival predictions can be contingent on factors such 

as disease progression, mortality, or even encompassing cases without disease specificity. 

Identifying potential therapeutic targets and enhancing prognostic accuracy are essential for 

medical practitioners. Genome-wide assessment of messenger RNA transcripts has emerged as a 

potent approach for identifying gene expression. This discerning capability positions these genetic 

markers as indispensable indicators of clinical outcomes, particularly within the domain of survival 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 28, 2023. ; https://doi.org/10.1101/2023.09.26.23296198doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.26.23296198
http://creativecommons.org/licenses/by/4.0/


6

analysis in cancer research [9]. This significant breakthrough equips researchers and physicians 

with tools to delve deeper into patient survival dynamics, facilitating informed medical decisions 

and customizing patient care strategies.[9, 10]

3 Material and method

Figure 3.1 Pathway Diagram of Esophageal Cancer (ESCA)
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The flowcharts outlined the methodology from DNA collection to using R-based unsupervised 

machine learning for identifying methylation patterns in tumors versus normal tissues. They 

highlighted hypo and hypermethylated probes and key transcription factor motifs within enhancer 

regions. These charts not only visualized our process but also enhanced the study's credibility and 

clarity, illustrating the role of DNA methylation in esophageal cancer.

3.1 Data Nexus and R Code Library

The open-source Bioconductor repository at http://bioconductor.org/packages/ELMER/ provides 

access to source code versions for R, particularly R version 4.3.1 or higher. This package relies on 

two main dependencies: (I) TCGA, which simplifies the retrieval of cancer data (specifically 

ESCA) from the NCI's Genomic Data Common (GDC), and (II) MultiAssayExperiments, which 

offers a structured and organized data framework within the R environment. It is recommended 

that a minimum of 16 GB of RAM be allocated for the optimal analysis of cancer data. Notably, 

no definitive model for DNA methylation and RNA expression analysis exists, but following these 

suggested specifications can significantly enhance the efficiency and accuracy of data 

processing[6]. The Enhancer Linking by Methylation/Expression Relationships package is an 

algorithmic Bioconductor tool that integrates DNA methylation profiles and gene expression 

patterns to infer multilevel cis-regulatory networks in human tissues[11]. ELMER identifies 

transcriptional target sites linked to distant probes and local gene expression, thereby unveiling 

changes in transcriptional enhancers and cis-regulatory modules in tumor cells and primary disease 

tissues [6]When applied to TCGA cancer datasets as well as DNA and gene expression datasets, 

Enhancer linking by methylation/expression relationship illuminates intricate regulatory 

interactions within molecular data.
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3.2  Data Preprocessing and Implementation

The Enhancer Linking by Methylation/Expression Relationships analysis was carried out primarily 

in five steps in R using the Bioconductor package [12]. In this study, we aimed to examine DNA 

methylation-gene connections using distant probes on the HM450K array in a multi-assay 

experiment. Our focus was on the identification of distinct distant probe clusters with varying 

levels of DNA methylation [12, 13]. We combined methylation and expression data to identify 

genes associated with diverse methylation patterns in remote studies. We also identified 

enrichment motifs for individual probes to reveal the regulatory elements in gene methylation 

dynamics[13]. Finally, we aimed to uncover a novel transcription factor that governs DNA 

methylation by overseeing regulatory region expression. Following these steps, we can uncover 

the intricate relationships between distant probes, DNA methylation changes, gene expression, and 

regulatory mechanisms.

3.3 Data sets

The TCGAbiolinks package includes the "get-TCGA" feature, which provides an updated method 

for obtaining TCGA data from various samples, including ESCA and other relevant cancer datasets. 

[14].The Genome Browser feature operates in two modes, with "hg19" retrieving data from the 

legacy GDC database and "hg38" acquiring data from the latest GDC harmonized data portal[15].

3.4  DNA methylation data

The amalgamation of TCGAbiolinks and Enhancer linking by methylation expression realtionship 

has enabled the scrutiny of ESCA cancer by employing the most recent TCGA datasets. The 

acquisition of DNA methylation datasets and their conversion into SummarizedExperiment objects 
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was executed by the "getTCGA" function [16]. In addition, gene expression quantification datasets 

were obtained. This unsupervised machine learning facilitates the mechanization of extracting 

relevant information from the GDC website and converting it into a matrix format. The research 

discovered noteworthy M(M+U) values, which represent methylated and unmethylated allele 

intensities, augmenting our comprehension of ESCA cancer and demonstrating the advantages of 

combining TCGAbiolinks and Enhancer Methylation/expression relationship [17, 18].

3.5 Gene Expression Data

To precisely evaluate the ESCA cancer information obtained from TCGA, we utilized the 

TCGAbiolinks R package in R for importing the top-notch Expression data (HTSeq-FPKM-UQ) 

furnished by the Cancer Genome Atlas (TCGA). We meticulously transformed the data into 

ELMER matrices, ensuring accuracy at every step, and eventually stored the resultant matrix as 

an RDA file named "RNA.rda" [19].

3.6  Integration with Downstream Tools and statistical Modeling inference

The Bioconductor team created the Summarized Experiment class to aid in the analysis of multiple 

samples; however, it was limited in its ability to store data from multiple experiments with shared 

samples. To overcome this, the MultiAssayExperiments class was developed by the 

MultiAssayTrial group to cater to the pre-processing requirements for integrated genomic analysis 

tests.  [16]. Consequently, the create-MAE service generated a data configuration for Unsupervised 

machine learning, linking methylation/expression analysis. So this analysis, a MultiAssay 

experiment containing a DNA methylation matrix or a summary experiment object from the 

HM450K or EPIC platform was utilized. When TCGAbiolink imported TCGA and other GDC 

data, an automated data structure was created to empower unsupervised machine learning to handle 
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diverse datasets, including metadata for DNA methylation probes. These metadata comprised 

aggregated genomic coordinates based on the sample genome and gene annotations sourced from 

the ENSEMBL database [8].

3.7  Choosing distal probes.

The utilization of default filtering, as presented in , led to the removal of specific probes from the 

HumanMethylation (EPIC) and Infinium HumanMethylation450 (HM450 array) platforms [20].  

default filtering manifests itself. Samples that contained both SNPs near the 3' ends were classified 

as masked and, as a result, were excluded from the analysis. Elmer provides access to 

comprehensive probe metadata. Specifically, when analyzing the distal component, probes located 

within the +2 kb region surrounding the transcription start sites (TSSs) were disregarded [21].

3.8  Unleashing Insights via Unsupervised Data Analysis

This research delves into ESCA cancer data analysis, emphasizing leveraging unsupervised 

techniques to reveal the underlying patterns. This study initiated a meticulous phase of hard 

coding, facilitating the distinction between cancerous and non-cancerous samples. Subsequently, 

the focus transitions to unsupervised analysis aimed at uncovering nuanced variations within 

specific tumor subgroups  [10](). Notably, integrating ELMER version 2 is a pivotal component, 

presenting a versatile framework applicable to paired datasets [10]. This framework facilitates 

comprehensive comparisons, encompassing disease versus health scenarios across diverse 

conditions and differences between untreated and treated specimens. In essence, this investigation 

stands as a significant stride in ESCA cancer research, employing a synergy of techniques to 

decode intricate data patterns and potentially catalyze further scientific inquiry.
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3.9  Proteins' Impact on Survival: An Extensive Data Analysis Exploration

 The ESCA cancer datasets were obtained from the MD Anderson Cancer Center's TCPA 

database[20]. Level four of the data analysis involved sourcing pertinent clinical and survival data 

for the ESCA cancer dataset [22]. This included essential information such as overall survival, 

disease-specific survival, disease-free intervals, and progression periods, which were then linked 

to primary RPPA tumor identifiers specific to ESCA cancer 21. To further explore the ESCA 

survival data, R version 4.3.1. Interactive graphics were created using ggplot2 (v3.2.1) and shiny 

(v1.4.0) 23. Kaplan–Meier survival curves were used to visualize survival trends [23]. These were 

generated by selecting the relevant ESCA subtypes, survival rates, and specific protein(s) of 

interest. This comprehensive analytical approach provides valuable insights into the survival 

dynamics of patients with ESCA [24]. Our study focused on critical proteins analyzed via 

immunohistochemistry, which is vital in breast cancer research [25]  Specifically, we focus on the 

ESCA study. We employed Kaplan-Meier analysis to analyze the survival data and utilized R's 

survival (v3.1-7) and survminer (v0.4.6) packages. Multiple protein survival analysis was aligned 

with average protein probe standards, which is similar to gene expression methods [14, 26].

To compute hazard ratios for two-group comparisons, we used Cox proportional hazard regression 

from the survival package [27]. We used median or optimal cutoffs and Survminer’s optimal cutoff 

function, based on the log-rank test and tailored for 15% variance, to identify significant 

biomarkers[28].
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4  RESULTS

4.1  Decoding Epigenetic Changes: Recognizing Differentially Methylated CpGs (DMCs)

The initial stage utilized the (get.diff.meth) function to identify differentially methylated CpGs. In 

the Unsupervised Machine Learning approach, samples were segregated into groups 1 and 2 based 

on the DNA methylation beta values for a particular probe. The lowest 20 percent of samples with 

minimal methylation were handpicked from each group to compare the hypomethylation of Group 

1 with that of Group 2. In Unsupervised Machine Learning mode, each selected probe was centered 

on a distinctive subset of samples, representing an array of molecular subtypes. The unsupervised 

method functioned with sample sets encompassing 20%  [29]. This selection of 20 percent ensured 

a sufficient number of samples for precise identification of a specific molecular subtype while 

generating t-test p-values significant for multiple hypothesis corrections[30].

Hypomethylated differentially methylated CpG sites (DMCs) were identified, and a one-tailed t-

test was employed to test the Null Hypothesis (μgroup1 μgroup2). The raw p-value represents a 

fixed number for multiple hypothesis testing procedures that demonstrate a significant p-value and 

adhere to the Benjamini-Hochberg approach with a default p-value of 0.01[31]. Moreover, only 

probes with a methylation difference Δ = μgroup1 − μgroup2 greater than 0.03 were chosen 3,28. 

The approach used to discover hypermethylated DMCs, apart from the different tails in the t-test, 

was selected and employed in the upper quintile.
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Figure 4.1 Probes hypomethylation in primary solid tumors in comparison to normal solid tissue

The presented visual representation depicts a volcano plot that effectively highlights 

hypomethylation probes in primary solid tumors when compared to normal solid tissue. The plot 

features a scatter plot with an x-axis labeled as "DNA Methylation Difference (β-values)" and a y-

axis labeled as "-Log10 (FDR Corrected P-values) [One-Tailed Test]." The plot's data points are 

color-coded, with green points indicating significant hypomethylation in primary solid tumors and 

black points representing non-significant probes. Moreover, the plot includes reference points 

through the inclusion of dashed vertical (x = 0) and horizontal (y = 1.5) lines.
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Table 4.1 Data table containing crucial information regarding the probe.

Probe p-value Primary.
Solid.Tumor_Minus
Solid.Tissue. Normal

adjust.p

cg00002749 1.53E-25 -0.592 9.15E-22
cg00014484 1.08E-08 -0.407 2.81E-07
cg00016481 6.98E-13 -0.385 5.90E-11
cg00018696 1.49E-05 -0.302 1.47E-04
cg00019997 1.03E-12 -0.330 8.24E-11
cg00022145 0.00114 -0.387 0.0053
cg00026776 3.69E-10 -0.340 1.45E-08
cg00028598 0.00120 -0.503 0.0055
cg00030476 5.86E-04 -0.319 0.0031
cg00033490 1.21E-04 -0.392 8.66E-04
cg00035220 1.26E-12 -0.373 9.88E-11
cg00039129 7.77E-04 -0.333 0.0039
cg00050692 2.31E-07 -0.464 4.03E-06
cg00066854 4.67E-04 -0.421 0.00263
cg00069815 9.48E-17 -0.552 2.55E-14
cg00085256 3.16E-13 -0.305 2.94E-11
cg00088507 2.40E-15 -0.367 4.27E-13
cg00091146 1.09E-04 -0.385 7.96E-04
cg00107916 1.28E-04 -0.406 9.09E-04
cg00108617 7.87E-07 -0.439 1.16E-05
cg00108938 1.32E-18 -0.365 6.35E-16
cg00128695 0.00136 -0.312 0.006
cg00134787 0.00103 -0.434 0.004
cg00134934 2.02E-13 -0.304 1.97E-11
cg00136968 2.05E-05 -0.315 1.93E-04
cg00138710 2.30E-17 -0.347 7.24E-15
cg00145093 1.38E-05 -0.387 1.38E-04
cg00145961 3.79E-07 -0.417 6.17E-06
cg00146565 4.81E-24 -0.401 1.62E-20
cg00180684 3.82E-16 -0.393 8.60E-14
cg00186580 0.002557 -0.368 0.009
cg00190835 3.50E-21 -0.335 3.76E-18
cg00192819 0.00121 -0.414 0.0055
cg00205332 6.99E-18 -0.350 2.64E-15
cg00205786 0.00191 -0.300 0.0078
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Table 4.1: The data table comprises crucial information regarding the probe p-value, p-value 

adjustment, beta value, and primary. Notably, the rows in the table featuring a p-value below 0.05 

hold significance, as they provide robust evidence against the null hypothesis and point towards 

the truth of the alternative hypothesis. Among the top 19 probes, cg00002749 and cg00020003 

had the highest adjusted p values. In contrast, probes cg00016481, cg00020001, and cg20007 

yielded high p-values.

4.2  Uncovering Potential Probe-Gene Pairs: A Quest for Identification

The initial step involved employing the get function to link target genes with altered expression to 

distal probes with altered methylation. Default target genes were established for the samples in 

question. It is possible to regulate the reverse correlation between methylation of a specific distal 

probe and the expression of the 10 neighboring upstream and downstream genes. This approach is 

similar to the primary strategy utilized in ELMER version 1; however, we are presently 

systematically utilizing the Biomart package to import all gene annotations. [32]. This 

methodology affords the ability to employ any preferred annotations, with the default Ensemble 

annotations employed. The M group lacking supervision exhibited the highest methylation of 20%, 

while the U group exhibited the lowest 20%. We chose the selected genes and the distance between 

the probe gene, which is defined as the distance from the transcription start site indicated by the 

ENSEMBL gene-level annotation through the R version/Bioconductor package [33]. Statistical 

tests were subsequently applied to each probe. For the probe-gene pairs, we utilized the Mann-

Whitney U test, with the null hypothesis of total gene expression being equal to group U. As such, 

we selected solely those x random samples from an interpreted transcription start site that was 

distal to 2 kb to draw the null hypothesis probes from a similar set as the sample tested [6]. 

Therefore, we tested the unsupervised model for each pair of probe genes. The raw p-value (Pr) 
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was balanced by the Benjamin-Hochberg method for the hypothesis. We generated a schematic 

diagram for a probe containing the next 20 adjacent genes, and the gene significantly bound to the 

probe was labeled in red. Additionally, we produced a table to indicate information about probes.

Figure 4.2  Scatter diagrams were employed to establish a correlation between the methylation of 

the cg00002749 and Gene expression.
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Figure 4.3 Scatter diagrams were employed to establish a correlation between the methylation of 

the cg00005258 an d Gene expression.

Figure 4.4   scatter plots were employed to illustrate the methylation of the different probes in 

ESCA samples.
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Figure 4.5   Scatter diagrams were employed to establish a correlation between the methylation 

of the cg0000687 and Gene expression.
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Figure 4.6 scatter plots were employed to illustrate the methylation of the different probes in 

ESCA samples.

The study utilized scatter diagrams to elucidate the correlation between the methylation of the 

cg00002749 probe in ESCA samples and the expression of the adjacent gene. In parallel, the 

diagrams showcased the methylation of the cg00002749 in ESA samples juxtaposed with the 

A091271.1 gene expression. Notably, the visualization adeptly portrayed the expression patterns 

of twenty genes, including CLTC, PTHR2, VMP1, RPS6KB1, RNF1, TBC1D3P1-DH, RNF1-

DT, DHX40P1, MIR4737, HEATR6, and more across diverse tissue types. Each sub-chart 

dedicated to a gene mapped the x-axis to DNA methylation and the y-axis to gene expression. This 

representation shed light on the interplay between DNA methylation and gene expression in 
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various tissues, offering valuable perspectives into ailments like cancer and paving the way for 

precision medicine. Moreover, the plots were enriched with lines labeled with gene IDs such as 

"ACO2102.1", "RNU6-430P", and "ANKRD11". With axes labeled "log2 fold change" and 

"expression level", the diagram efficiently juxtaposed gene expression across distinct conditions.

3.2.1 Proximal Genes

A
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        B

Figure 4.7 A schematic plot was generated by A and B for a single probe, cg07325246, which 

included approximately 20 adjacent genes.

A schematic plot was created for probe cg07325246, showing nearby genes. The plot highlights 

the gene linked to the probe in red and the probe in blue. It offers a comprehensive view of DNA 

microarray analysis, with a chromosome map, DNA methylation levels, and a gene information 

table. A red line on the map marks the probe data's location. The table lists gene names with 

corresponding probe data. The image is labeled "cg07325246".
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3.3 Performing motif enrichment analysis on the specific probes and identifying master 

regulator transcription factors (TFs)

 A motif enrichment analysis was conducted on probe-gene pairs using HOMER (Hypergeometric 

Optimization of Motif EnRichment) with HOCOMOCO v11. This analysis identified enriched 

motifs and potential upstream transcription factors (TFs) within ±250bp around each probe. The 

Fisher test was used to determine the enrichment level, and multiple test correction was performed 

using the Benjamini-Hochberg method. Sets of probes were considered enriched if the 95% 

confidence interval of the probability ratio was less than 1.1 and if the number of enriched probes 

was more significant than ten or the false discovery rate was less than 0.05.34
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Figure 4.8 A and B depiction of the predominant motifs utilized for unsupervised analysis of 

TCGA ESCA cancer.

A figure 4.8 displaying the motifs used for unsupervised analysis of TCGA ESCA cancer data sets 

is shown. The figures present ratios of probabilities for specific attributes that meet certain criteria. 

The scales and numbers indicate the corresponding confidence intervals for odds ratio. Motifs with 

a confidence interval lower boundary exceeding the number by more than 1 are considered 

enriched. The most significant motifs, including NFL3, ATF4, JUN, CEBPG, and CDX1, have 

been identified via unsupervised mode analysis of ESCA.
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Table 4.2 Indicates the top 24 hypo methylated enrichment motifs, their statistical values, and the 

Transcription family.

Table 4.2 showcases motif enrichment analysis results, revealing DNA sequence motifs' links to gene 

regulation. Rows contain details on enriched gene probes, odds ratio range, transcription factor family, and 

p-values. Notable motifs like NFIL3_HUMAN H11MO.0.D, ATF4_HUMAN H11MO.0.A, and 

JUN_HUMAN H11MO.0.A, among others, suggest strong gene regulation connections and potential 

master regulator roles. These insights shed light on gene regulatory mechanisms and disease associations 

and offer avenues for further exploration and therapy.

Table 4.3 Table indicates the 20 hypo methylated enrichment motifs along with their statistical 

values and Transcription family.

Motif No 

of 

Probes

% Of

Probes

lowerOR upperOR OR p.value FDR TF family

NFIL3 39 0.105 1.647 3.301 2.361 4.1826E-06 0.00026 C/EBP

ATF4 40 0.108 1.561 3.102 2.227 1.5442E-05 0.00066 ATF-4

JUN 65 0.176 1.518 2.647 2.017 2.0007E-06 0.00022 Jun-related factors

FOSL1 65 0.176 1.463 2.551 1.944 6.804E-06 0.00034 Fos-related factors

CEBPG 40 0.108 1.443 2.868 2.059 8.7204E-05 0.00224 C/EBP-related

RUNX3 66 0.179 1.426 2.478 1.892 1.0577E-05 0.00050 Runt-related factors

FOSL2 62 0.168 1.415 2.495 1.892 1.877E-05 0.00075 Fos-related factors

FOSB 61 0.165 1.395 2.469 1.869 2.7424E-05 0.00096 Fos-related factor

CDX1 37 0.100 1.379 2.810 1.995 0.00025159 0.00436 HOX-related factor

HXD13 45 0.122 1.361 2.610 1.905 0.00016517 0.00363 HOX-related factor

SIX1 42 0.114 1.340 2.622 1.896 0.00025462 0.00436 HD-SINE factors

RUNX1 67 0.182 1.325 2.295 1.755 9.2012E-05 0.00226 Runt-related factors

FOS 59 0.160 1.309 2.336 1.762 0.00019854 0.00405 Fos-related factors

DDIT3 40 0.108 1.285 2.553 1.833 0.00073152 0.01038 C/EBP-related

CEBPB 29 0.078 1.249 2.776 1.896 0.00192018 0.02001 C/EBP-related
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PO6F1 31 0.084 1.242 2.693 1.860 0.00192114 0.02001 POU domain factor

TWST1 67 0.182 1.241 2.149 1.644 0.00049607 0.00796 Tal-related factors

PIT1 38 0.103 1.236 2.496 1.779 0.00146004 0.01705 POU domain factors

JUND 58 0.157 1.218 2.182 1.643 0.0009959 0.01301 Jun-related factors

DBP 31 0.084 1.215 2.633 1.818 0.00309502 0.02807 C/EBP

A B

           

C D
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F

Figure 4.9  Transcription factors are classified through a comparative DNA methylation and TF 

expression analysis.

The NFIL3, JUN, and CEBPG motif exhibits a robust negative correlation, with NFIL3 being a 

promising candidate. Graphical representations in Figures A, B, and C emphasize transcription 

factors (TFs) in the same family (blue), subfamily (red), and NFIL3, JUN, and CEBPG (orange), 

respectively. Figure D illustrates the DNA methylation pattern of NFIL3 and ATF4 around TF 

expression. Plot E features the x-axis "TP53" and y-axis "SOX2", with three-point types: 

"Metastatic tumor" (green circles with black outline), "Primary solid tumor" (solid green circles), 

and "Solid tissue normal" (green circles with white outline). The gray lines depict the best-fit trend 
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among points. Scatter plot (F) compares TF expression and average DNA methylation across tissue 

types, with separate panels for Nfil3 and ATF4. The x-axis displays average DNA methylation, 

whereas the y-axis shows TF expression. The points are color-coded: green for metastatic tissue, 

blue for primary solid tumor, and gray for solid tissue normal. Each panel features a black trend 

line, demonstrating the effect of DNA methylation on gene expression across tissues.

Table 4.4 indicates the top 5 percent of the transcription family, potential transcription family, 
and top potential TF family, along with essential motifs obtained during analysis.

Motif Top. 
Potential.TF. 

family

Top. 
Potential.TF. 

subfamily

Totential. 
TF. family

Potential. 
TF. subfamily

Top 5 %.
 TF

NFIL3 NA NA NA NA ZFP64; HOXD10

ATF4 NA NA NA NA POU6F2; ZFP64

JUN NA NA NA NA BNC1; DPF1

FOSL1 NA NA NA NA BNC1; DPF1

CEBPG CEBPB CEBPB CEBPB CEBPB POU6F2;HOXD11

RUNX3 NA NA NA NA DLX5;TBX1;

FOSL2 NA NA NA NA BNC1;DPF1;

FOSB NA NA NA NA DPF1;HOXD10

CDX1 POU6F2 NA POU6F2; NA POU6F2;HOXD1

HXD13 POU6F2 HOXD11 HOXD11 HOXD11;HOXD10;
HOXD13,HOXD9

POU6F2;HOXD11

SIX1 NA NA NA NA POU6F2;ZFP64

RUNX1 NA NA NA NA DLX5;HOXD11

FOS NA NA NA NA BNC1;DPF1;

DDIT3 CEBPB CEBPB CEBPB CEBPB POU6F2;SP9;

CEBPB NA NA NA NA HOXD11;POU6F2

PO6F1 HOXD11 POU6F2 HOXD10 POU6F2 FOXK2;HOXD11

TWST1 MSGN1 NA MSGN1 NA DLX3;HOXD11

PIT1 HOXD10 NA HOXD11 NA HOXD10;HOXD11

JUND NA NA NA NA BNC1;DPF;TP63;

DBP NA NA NA NA DLX3;HOXD11
;

HMX3 DLX3 NA DLX3;DLX4;DLX5 NA HOXD11;POU6F2

BACH2 NA NA NA NA POU6F2;DLX3

CDX2 HOXD11 NA HOXD11;POU6F2; NA HOXD11;POU6F2

CEBPA NA NA NA NA POU6F2;HOXD11

PO4F1 POU6F2 NA POU6F2;HOXD10 NA POU6F2;HOXD10
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Table 4.5 displays the top 20 Human motifs from ESCA analysis, each linking to potential TF 

families and the top 5% of TFs. This aids researchers in more accessible ESCA analysis. The table 

lists enriched motifs, their corresponding TFs, family, and the highest-ranked TF within the family. 

TF subfamilies and top potential subfamilies align with TF subfamily classification. The analysis 

resulted in 35 TF motifs. The presented table discloses perceptive correlations between motifs and 

prospective TF families and subfamilies. To illustrate, motifs such as CEBPG_HUMAN 

H11MO.0.B and DDIT3_HUMAN H11MO.0.D are linked to the CEBPB TF family. Furthermore, 

the motif HXD13_HUMAN H11MO.0.D is affiliated with the HoxD11 and HoxD10 TF 

subfamilies. These associations suggest potential regulatory mechanisms that involve the motifs 

and the corresponding TF families and subfamilies. These findings are instrumental in untangling 

the intricate gene regulation networks and possible transcriptional control.

SIX2 NA NA NA NA HOXD10;HOXD11;

BARX2 DLX3 NA DLX3;DLX5;DLX6 NA ZFP64;POU6F2;

PAX2 NA NA NA NA POU6F2;HOXD10

BARX1 DLX5 NA DLX5;DLX2;EN1 NA HOXD10;HOXD11\

HXC10 HOXD11 HOXD11 HOXD11;HOXD10 HOXD11,HOXD10;
HOXD13,;HOXD9;

HOXD11;HOXD10\

FOXC2 FOXK2 NA FOXK2;FOXE1 NA DLX5;HOXD11\

FOXO4 FOXE1 NA FOXE1;FOXK2
FOXL2

NA DLX5;HOXD11;\

JUNB NFE2L1 NA NFE2L1 NA BNC1;HOXD13;\

ZN547 ZFP64 ZFP64 ZFP64;ZIC4;ZIC1 ZFP64 POU6F2;ZFP64;

FOXQ1 FOXE1 NA FOXE1;FOXN1 NA DLX5;HOXD10
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5  Survival analysis across multiple variables of ESCA

Pathologic_tumor_stage

age

Histological_type
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Histological_grade

Figure 5.1 The graph illustrates the evolving survival probabilities at different cancer stages.

Fig: 5. 1 provides a visual illustration using Kaplan-Meier survival curves to illustrate the survival 

probabilities based on tumor stage, histological type, and pathological anatomy. Color-coded lines 

distinctly mark the different stages of diminishing survival probability, while an accompanying 

table enumerates the decreasing at-risk population. A striking difference in survival rates between 

stages becomes evident and is deemed statistically significant when the p-value is 0.0001 or lower. 

A highly significant p-value of less than 0.0001 is observed for the pathological tumor stage curve. 

In contrast, the survival probabilities for the histological type and patients' pathological anatomy 

are p = 0.97 and p = 0.39, respectively, indicating non-significant differences.
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6 Multivariate Analysis of ESCA Clinical Variables

The Cox proportional hazard model is utilized to conduct ESCA clinical variable analysis and 

determine the predicted survival function. The following section outlines the Cox regression of 

death time against the constant time variable, as demonstrated in Model 1 below.

Model 1

Table 6.1 A tabular presentation of coefficients and statistical measures about variables linked to 

the analysis of esophageal cancer.

Esophagus cancer coef exp(coef) se(coef)         z Pr(>|z|)
ajcc_pathologic_tumor

_stageStage II
1.860 1.198e+08 6.619e+03 0.003 0.99

ajcc_pathologic_tumor
_stageStage III

1.970 3.595e+08 6.619e+03 0.003 0.99

ajcc_pathologic_tumor
_stageStage IV

2.141 1.990e+09 6.619e+03 0.003 0.99

Esophagus Squamous 
Cell Carcinoma

-2.067 8.133e-01 4.874e-01 -0.42 0.67

histological_grade
G2

1.856 1.204e+00 1.114e+00 0.16 0.86

histological_grade
G3

2.739 1.315e+00 1.140e+00 0.24 0.81

histological_grade
GX

3.126 1.367e+00 1.241e+00 0.25 0.80
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Table 6.2 tabular presentation of coefficients and statistical measures about variables linked to 

the analysis of esophageal cancer.

Esophagus cancer exp(coef) exp(-coef) lower .95 upper .95

ajcc_pathologic_tumor

_stageStage II

1.198 8.349e-09 0.00 +Inf

ajcc_pathologic_tumor

_stageStage III

3.595 2.782e-09 0.001 +Inf

ajcc_pathologic_tumor

_stageStage IV

1.990 5.025e-10 0.001 +Inf

esophagus Squamous 

Cell Carcinoma

8.133 1.230e+00 0.3129 2.114

histological_gradeG2 1.204 8.306e-01 0.1356 10.690

histological_gradeG3 1.315 7.604e-01 0.1408 12.282

histological_gradeGX 1.367e+00 7.315e-01 0.1200 15.568

A presentation of coefficients and statistics for variables related to esophageal cancer is depicted 

in a table. Noteworthy significance is observed in Stages II, III, and IV, where hazard ratios 

increase. While the risk for esophageal squamous cell carcinoma decreases, G2, G3, and GX 

grades exhibit minimal impact. The significance is indicated by p-values, and exponentiated 

coefficients are used to determine risks. Stages II, III, and IV demonstrate advantageous effects 

with exponentiated coefficients ranging from 1^8 to 1^9. Specific categories of Histological Grade 

show minor positive effects. The Cox proportional model for ESCA clinical variables is presented 

in the table, where positive coefficients suggest an amplified mortality probability, except for 

Esophagus Squamous Cell Carcinoma, indicating a reduced risk. The risk increases from Stage II 

to IV, with exponential coefficients indicating risk ratios. The confidence intervals range from 
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0.3129 to 2.114. P-values are crucial for probability, Wald, and score tests, and in model 1, p-

values of 0.009, 0.07, and 8e-04 signify its significant impact.

 

Figure 6.1 Alen regression additive model

The Aareg function, Alen regression additive model, is used to analyze the correlation between 

histologic tumor stages and histologic grade in Esophageal Squamous Cell Carcinoma. Examining 

the graph helps medical professionals and researchers make better treatment decisions and predict 

patient outcomes.
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6.1  Assessing proportional Hazards assumption.

The study elaborates on the Cox risk model's techniques for validating hypotheses. Three 

diagnostic forms for the Cox model are analyzed: assessing the proportional hazard hypothesis, 

identifying adequate perception, and detecting nonlinearity. The assumption is evaluated via 30 

and visual checks with Schoenfeld residuals. Schoenfeld residue measurements and ggcoxzph can 

Table 6.3 Chi-square test for association about the various ESCA clinical variables

Table 6.3: The values presented herein reveal the results of utilizing a chi-square test for 

association with the various ESCA clinical variables. Upon conducting the said test, it has been 

detected that there exists a marked and remarkable association between the histological_grade and 

GLOBAL variables, as evidenced by the p-values that are initiated to be less than 0.05. Conversely, 

no statistically significant association between the ajcc_pathologic_tumor_stage and 

histological_type variables can be established.

ESCA clinical variables Chisq df p

ajcc_pathologic_tumor_stage 4.797 3 0.187

histological_type 0.612 1 0.434

histological_grade 11.331 3 0.010

GLOBAL 15.887 7 0.026
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Figure 6.2 Schoenfeld Individual Test

The graphs presented in the study have been furnished with descriptive titles, which are as follows: 

"Schoenfeld Individual Test: p = 0.1873," "Individual Test: p = 0.434," and "Schoenfeld Individual 

Test: p = 0.0101." These diagrams symbolize the results derived from diverse iterations of a 

Schoenfeld individual test, each bearing unique and linked p-values. The compilation of 

illustrations effectively showcases Schoenfeld's evaluations, with each evaluation corresponding 

to a distinct p-value. The horizontal axis is representative of duration, while the vertical axis is 

aligned with the beta coefficient for the logarithm of HR and its standard error. Red indicators 

strategically placed along the dotted lines have facilitated the identification of significant points.
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6.2 Testing influential observations

A

B 

Figure 6.3 Cox Regression beta Plot for Modeling Time to Death
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Figure 6.3 shows a plot for Cox Regression beta for time-to-death modeling. The index diagram 

displays dfbeta values for Cox regression over time. Deviance residuals are highlighted in Figure 

6.3 B to show differences between observations and deviance. Index 6.3: A showcases beta values 

for Cox's time-to-death regression involving Pathological_tumor_stage, histological_type, and 

histological_grade. Figure 6.3 A displays residuals on the Y-axis and linear estimates or 

observation indices on the X-axis. The high-index (6.3: A) graph reveals incongruities in specific 

dfbeta values that impact regression coefficients. Diagram 6.3: B displays the likelihood of 

detecting abnormal values via deviation residues, suggesting a hypothesis for survival predictions.

7  Leveraging Reverse Phase Protein Array (RPPA) Protein-Level Data for 

In-depth Analysis

Clinical variables are straightforward once derived from multivariate analysis; they are categorical. 

We must recognize the proteins of interest, identify the pieces, and convert them into categorical 

variables. We selected proteins tested before through immunohistochemistry, a part of the standard 

procedure for diagnosing breast cancer and treatment. However, we used these three types of 

proteins to analyze ESCA clinical variables.  These proteins are ERALPHA, PR, and HER2.
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Table 7.1 (RPPA) Protein-Level Data for In-depth Analysis

ID                               DSS.time                    DSS ERALPHA       PR       HER2
TCGA-2H-A9GF      784   1     low  high  high
TCGA-2H-A9GI      435    1     low high  high
TCGA-2H-A9GL      180  1    high     high  high
TCGA-2H-A9GQ      128     1     low high  high
TCGA-2H-A9GR      987    1     low, low, high
TCGA-IC-A6RE      234    0     low low  high
TCGA-IC-A6RF      477    0     low high  high
TCGA-IG-A3I8     1012    0     low  high  high
TCGA-IG-A3QL     1071    0     low high  high
TCGA-IG-A3Y9       26    0     low high  high
TCGA-IG-A3YA      632    0     low high  high
TCGA-IG-A3YB       80    0    high                   high  high
TCGA-IG-A3YC      612     0    high                  high  high
TCGA-IG-A4P3      567     1    high                   high  high
TCGA-IG-A4QS      118    0     low high  high
TCGA-IG-A4QT      283  0    high     high  high
TCGA-IG-A50L       16    0    high high  low
TCGA-IG-A51D      518    0     low high  high
TCGA-IG-A5B8       24      0     low, low  high
TCGA-IG-A5S3      712  0    low low  high

Table 7.1 displays protein expression with ESCA clinical variable. A study examines various 

elements in distinct samples. Columns demonstrate time measurements and outcomes. Protein 

markers disclose marker levels. Each row corresponds to a unique sample. HER2 consistently 

manifests a high level across samples. Anticipating the implications of the HER2 marker could 

yield valuable insights.
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Table 7.2 A Prognostic Model for Esophageal Cancer (ESCA).

coef exp(coef) se(coef) z Pr(>|z|)

ERALPHA (low) 8.092e-01 4.452e-01 4.962e-01 1.631 0.103

PR (low) 5.825e-01 5.585e-01 6.697e-01 0.870 0.384

HER2 (low) 1.412e+00 2.436e-01 1.046e+00 1.350 0.177

tumor_stageStage II 1.884e+01 1.522e+08 6.638e+03 0.003 0.998

tumor_stageStage III 1.994e+01 4.572e+08 6.638e+03 0.003 0.998

tumor_stageStage IV 2.124e+01 1.681e+09 6.638e+03 0.003 0.997

histological type Esophagus

Squamous Cell Carcinoma

3.391e-01 7.124e-01 4.431e-01 0.765 0.444

Table 7.3 B Prognostic model for Esophageal Cancer (ESCA).

exp(coef) exp(-coef) lower .95 upper .95

ERALPHA (low) 4.452e-01 2.246e+00 0.16834 1.177

PR (low) 5.585e-01 1.791e+00 0.15030 2.075

HER2(low) 2.436e-01 4.105e+00 0.03134 1.894

tumor_stageStage II 1.522e+08 6.569e-09 0.00000 +Inf

tumor_stageStage III 4.572e+08 2.187e-09 0.00000 +Inf

tumor_stageStage IV 1.681e+09 5.947e-10 0.00000 +Inf

histological_type Esophagus 

Squamous Cell Carcinoma

7.124e-01 1.404e+00 0.29893 1.698

The tables provide profound insights into a prognostic Esophageal Cancer (ESCA) model. 

Specifically, Table 7.3A proffers coefficients and significance levels for pertinent factors, such as 

protein markers (i.e., ERALPHA, PR, and HER2), tumor stage categories (II, III, and IV), and 
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histological type (Esophagus Squamous Cell Carcinoma). Tumor stage categories carry substantial 

coefficients, suggesting their potential impact. Table 7.3: B also provides exponentiated 

coefficients and confidence intervals, which aid direct odds ratio interpretation. The significant 

outcomes observed in both tables emphasize strong associations with ESCA prognosis, 

particularly those pertaining to tumor stage categories. 

Table 7.4 Statistical test

Concordance            = 0.8 (se = 0.051)

Likelihood ratio test = 25.41  on 7 df,   p=6e-04

Wald test             = 17.77    on 7 df,  p=0.01

Score (log rank) test  = 30.74    on 7 df,   p=7e-05

Table 7.4 presents noteworthy discoveries: the moderate agreement between anticipated and 

observed outcomes (0.8), the superiority of the intricate model demonstrated by the Likelihood 

Ratio Test (25.41 statistics, p < 0.001), the importance of the coefficient affirmed by the Wald Test 

(17.77 statistics, p = 0.01), and apparent differences in survival distribution uncovered by the Score 

Test (30.74 statistics, p < 0.0001). These outcomes emphasize significant relationships and 

contradictions within the study.
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4. Discussion

Esophageal cancer (ESCA) remains a significant worldwide health issue, necessitating a profound 

comprehension of its genetic complexities to enhance diagnosis and treatment approaches. 31 

Consequently, Early diagnosed patients with ESCA cancer will have a longer life expectancy and 

lower mortality. This research sheds light on the genetic mechanisms governing ESCA and 

highlights the potential clinical impact of early diagnosis [34]. The study's central aim was to 

decipher ESCA's genetic underpinnings by meticulously analyzing gene expression quantification, 

RNA expression, DNA methylation, mutation, and clinical data from the TCGA database through 

the Bioconductor repository[35]. The researchers utilized an assortment of analytical 

methodologies to reveal valuable perceptions, comprising the recognition of expressed genes 

through the utilization of the edgeR application, controlling multiple testing using the Benjamini 

& Hochberg methodology[36], and employing diverse R-based visualization tools, such as cluster 

plots and heat maps, for data representation [29]. These tools collectively enhanced the 

understanding of intricate genetic patterns that underpin ESCA. The study's influence of changed 

DNA methylation on gene expression is a crucial finding. Our research team uncovered that 

changed DNA methylation in tumors can influence gene behavior, silencing suppressor genes 

while activating oncogenes through hyper/hypomethylation. This shift in gene expression 

dynamics potentially plays a crucial role in ESCA progression. The study utilized the unsupervised 

machine-learning Bioconductor packages, leveraging unsupervised machine-learning techniques 

to unravel DNA methylation and RNA expression patterns) By employing this approach, the 

researchers successfully identified hypo/hypermethylated regions of interest associated with 

ESCA, discriminating between tumor and regular groups and highlighting significant probe-gene 
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pairs. This methodological innovation enhances our understanding of ESCA's intricate genetic 

makeup and its implications for patient outcomes.

A notable contribution of this study lies in its innovative use of statistical methodologies. Through 

a statistical 20-n test approach, the researchers dissected the regulatory mechanisms behind 

enhancer probes exhibiting differential methylation patterns in ESCA. By investigating 

downstream and upstream genes linked with each probe-gene pair, they could pinpoint specific 

hypomethylated values, shedding light on the regulatory pathways driving ESCA's genetic 

aberrations. Moreover, Fisher's confidence test was employed to identify enriched motifs 

associated with these regulatory mechanisms, yielding significant insights into transcription factor 

interactions. The study's clinical relevance is underscored by its prognostic analyses. Utilizing the 

Cox proportional hazard statistical model, the researchers were able to make predictive forecasts 

for clinical variables in ESCA. The Schoenfeld analysis test and Reverse Phase Protein Array 

(RPPA) analysis provided additional layers of insight into the clinical implications of the genetic 

findings [37]. This holistic approach not only expands our understanding of the genetic basis of 

ESCA but also has the potential to guide personalized treatment decisions and prognosis.

In summary, this investigation thoroughly investigates the hereditary terrain of esophageal cancer, 

highlighting the significance of DNA methylation modifications in molding the dynamics of gene 

expression. By utilizing an assortment of innovative analytical methods and statistical approaches, 

the team of researchers exposes pivotal genes, pathways, and regulatory mechanisms that 

contribute to the advancement and progression of ESCA. These discoveries enhance our 

comprehension of illness and offer the potential for creating targeted therapies and improved 

clinical outcomes for patients diagnosed with ESCA.
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Conclusion

This research elucidates the crucial association between DNA methylation and esophageal cancer 

(ESCA), highlighting its significance as a pivotal biomarker for predictive and diagnostic purposes. 

Through implementing an unsupervised machine learning algorithm based in R, the study reveals 

distinct DNA methylation patterns in ESCA tumors compared to normal tissue, providing a 

promising avenue for effective cancer diagnosis. The investigation's identification of enriched 

transcription factor binding motifs associated with target genes illuminates gene expression 

mechanisms and classification within ESCA, thereby offering deeper insights into its underlying 

dynamics. This study underscores the potential of DNA methylation analysis, in conjunction with 

advanced artificial intelligence techniques and methylome-based approaches, to enhance early 

detection and prediction of ESCA, consequently leading to novel biomarkers and improved patient 

outcomes for esophageal cancer and beyond.
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