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Abstract

The increasing significance of Adverse Drug Events (ADEs) extracted from social media, such as Twitter data,
has led to the development of various end-to-end resolution methodologies. Despite recent advancements,
there remains a substantial gap in normalizing ADE entities coming from social media, particularly with
informal and diverse expressions of symptoms, which is crucial for accurate ADE identification and reporting.
To address this challenge, we introduce a novel end-to-end solution called CONORM: Context-Aware Entity
Normalization. CONORM is a two-step pipeline. The first component is a transformer encoder fine-tuned for
entity recognition. The second component is a context-aware entity normalization algorithm. This algorithm
uses a dynamic context refining mechanism to adjust entity embeddings, aiming to align ADE mentions with
their respective concepts in medical terminology. An integral feature of CONORM is its compatibility with
vector databases, which enables efficient querying and scalable parallel processing. Upon evaluation with the
SMM4H 2023 ADE normalization shared task dataset, CONORM achieved an F1-score of 50.20% overall
and 39.40% for out-of-distribution samples. These results improve performance by 18.00% and 19.90% over
the median shared task results, 7.60% and 10.20% over the best model in the shared task, and 5.00% and
3.10% over the existing state-of-the-art ADE mining algorithm. CONORM’s ability to provide context-aware
entity normalization paves the way for enhanced end-to-end ADE resolution methods. Our findings and
methodologies shed light on the potential advancements in the broader realm of pharmacovigilance using
social media data.

The model architectures are publicly available at https://github.com/anthonyyazdani/CONORM.

Introduction

Adverse Drug Events (ADEs) are defined as unintended complications or injuries resulting from the use of
medication, accounting for a substantial portion of adverse events1,2. The economic burden they impose
is equally staggering, costing billions of dollars in outpatient settings in the U.S. alone, with these costs
showing an increasing trend3,4. The advent of machine learning and natural language processing technologies
has presented unprecedented opportunities for mining valuable insights from large-scale data sources. One
application that has received significant attention is the extraction of ADEs from various text corpora,
particularly social media platforms like Twitter5. These platforms offer a wealth of user-generated data that
can be exploited for real-time public health monitoring6.

The importance of the normalization process lies in its ability to structure a wide variety of textual data
into standardized concepts, thus enabling subsequent analysis for pharmacovigilance7. However, extracting
meaningful health related content from social media is challenging due to its informal and unstructured nature.
Factors such as slang, abbreviations, misspellings, and informal language are detrimental to automated
information extraction8.

While there have been traditional avenues for ADE detection such as clinical notes in electronic health
records9, these channels are not exhaustive. ADEs documented in electronic health records are poorly
reported to official ADE registries, such as the FDA Adverse Event Reporting System (FAERS)10,11. This
gap can be addressed by the exploration of alternative sources for capturing a more comprehensive view of
ADEs, thus providing impetus for leveraging social media platforms.

In response to existing gaps and challenges, this paper presents CONORM: Context-Aware Entity
Normalization, an end-to-end solution for ADE resolution. CONORM utilizes a fine-tuned BERT
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architecture12 for ADE entity recognition and leverages the power of Dynamic Context Refining (DCR)
for context-aware entity normalization. The method offers a straightforward and easily implementable
pipeline that achieves state-of-the-art performance. Additionally, it is designed to be compatible with vector
databases, enabling advantages such as efficient querying and scalable parallel processing.

Related work

Machine learning and natural language processing methods are widely used in pharmacovigilance for extracting
and normalizing ADEs from unstructured textual data such as social media content5. A leading approach
in this area is DeepADEMiner13. This method has three main steps. First, it uses a classifier based on
RoBERTa14 to filter tweets that likely contain ADEs. Next, a span extractor that incorporates BERT, gated
recurrent units15, and conditional random fields16 identifies ADE mentions. Finally, DeepADEMiner employs
a normalization component, which is trained on an augmented dataset comprising 265,000+ unique instances.
This dataset is generated by combining the SMM4H 2017 and 2019 datasets17,18 with terminology from
the Medical Dictionary for Regulatory Activities (MedDRA)19 and the Unified Medical Language System
(UMLS)20.

Another approach utilizes an hybrid pipeline21 that combines the DeepADEMiner span extractor model with
a specialized model known as mcn-en-smm4h18. In this merged approach, the output file generated from the
ADE extraction phase by DeepADEMiner is employed as the initial input for the ADE normalization task.
The mcn-en-smm4h model itself is initialized from BioBERT22 and pre-trained using SMM4H 2017 data, and
then further fine-tuned to predict MedDRA terms for each ADE mention.

Another notable approach is our previously developed two-stage pipeline for ADE normalization, as presented
in a separate study23. This approach ranked first in the SMM4H 2023 shared task 5 and demonstrated
comparable performance to DeepADEMiner. A two-stage process was adopted for ADE normalization.
The first stage involves fine-tuning BERTweet24 for named entity recognition to identify ADE mentions in
tweets. The second stage normalizes these recognized ADE mentions to corresponding MedDRA terminology
using a zero-shot approach. This normalization employs reciprocal-rank fusion25,26 of similarity rankings
from sentence transformers27. These sentence transformers are pre-trained on diverse text corpora, and the
reciprocal-rank fusion algorithm combines the similarity rankings from multiple sentence transformers to
achieve more accurate normalization.

Benchmark dataset

Our study makes use of the SMM4H 2023 shared task 5 dataset28, which is centered on the normalization of
ADEs in English tweets. This dataset acts as a standard benchmark for ADE resolution to their corresponding
MedDRA concept IDs. The task is designed to mine social media, specifically Twitter, for the early detection
of ADEs and the discovery of novel instances. Diverging from previous iterations of the challenge5, two
primary evaluation metrics are employed. The first assesses the system’s performance across all MedDRA
IDs in the test set, while the second aims to evaluate the model’s ability to generalize to ADEs that are out
of the training distribution. The dataset is composed of approximately 18,000 labeled tweets for training and
around 10,000 for testing. Each data entry presents the raw tweet, the ADE text span, and its associated
MedDRA ID. To maintain the integrity of the evaluation, the test set labels are kept undisclosed, with
participants submitting their predictions through CodaLab29 for assessment.

CONORM-NER: Named entity recognition

Named Entity Recognition (NER) is an essential component of end-to-end entity resolution. In the broader
CONORM pipeline, CONORM-NER serves as the sub-model specifically tasked with performing NER. In the
context of our study, it plays a key role in identifying ADEs from tweet data, contributing to more accurate
normalization, especially when a tweet contains multiple ADE mentions. This section details our approach for
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NER. The subsections that follow describe the stages of data preprocessing, modeling, training and inference
methods utilized in our study.

Data preprocessing

Data preprocessing serves as a pivotal stage in our study, designed to prepare the raw tweet data for effective
NER. Initially, the raw tweets underwent a word-based tokenization process, which divided tweets into
individual words and punctuations. This process utilized regular expressions to divide the text based on white
spaces and punctuation marks. Subsequently, to ensure compatibility with the embedding layer of our chosen
model, BERTweet, these pre-tokenized tweets were processed through the BERTweet wordpiece tokenizer30.
This two-stage tokenization strategy is used to closely align our labeling scheme with the annotations in the
dataset. Each tweet in the training set is labeled using the BIOX scheme. In this approach, "B" denotes the
beginning of an ADE mention, "I" the inside, "O" the outside, and "X" is used for sub-words, irrespective of
whether they are related to an ADE or not. Finally, the processed and tagged dataset was partitioned into
training and validation sets, using a ratio of 90% for training and 10% for validation.

Modeling, training & inference

We utilize the pre-trained BERTweet-Large31 model as the backbone for our token classification framework.
Given an input sequence x, CONORM-NER produces a sequence of hidden states. The hidden states can be
represented as:

h = BERTweet(x).

To reduce the risk of overfitting, we apply a 10% dropout layer to these hidden states, resulting in:

hdrop = D10%(h).

Sub-words present a unique challenge during the classification process. To address this, we introduce a
dummy variable s, which is assigned a value of 1 for sub-words and 0 otherwise. Before forwarding these
tokens to the classification layer, this dummy variables are concatenated to their embeddings. This can be
formulated as:

hconcat = concatenate(hdrop, s),

y = classification(hconcat).

Expanding upon conventional training techniques, CONORM-NER integrates a two-phase learning strategy
for rapid convergence. In the initial epoch, only task-specific parameters — namely the classification layer
weights — are trained, leaving the pre-trained parameters unchanged. This strategy allows CONORM-NER
to refine the randomly initialized layers before back-propagating errors to the pre-trained weights, which
promotes faster convergence. From the second epoch onward, every parameter becomes accessible for updates.

Input sequences are kept within a maximum limit of 130 tokens. During training, we employ mini-batches
of size 24. We utilized the AdamW optimizer32 for optimization. In the first phase, the learning rate was
set at 1 × 10−3, while in the second phase, it was reduced to 3 × 10−5. We adopted the cross-entropy loss
function throughout. To stabilize training, both phases incorporate a linear learning rate schedule with a
10% warm-up and gradient clipping set at 1.0. We trained CONORM-NER over 20 epochs, selecting the
weights that delivered the highest strict F1-score on the validation set, as evaluated by BRATEval33.

We employ a two-step heuristic during the inference phase to transform token-based predictions into span-based
mentions. In the first step, we remove all sub-word tokens predicted as "X". As a result, a sequence such as
[B, X, I, I, O, X, I] becomes [B, I, I, O, I]. In the subsequent step, we adjust the sequence to ensure continuous
ADE predictions. Consequently, the aforementioned sequence is further transformed into [B, I, I, I, I].
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CONORM-EN: Entity normalization

The challenge of extracting ADEs from textual data extends beyond recognizing these entities within the text.
It is crucial to ensure that the recognized entities map to standardized terminologies in medical databases,
enabling a unified understanding and further analysis. CONORM-EN is our dedicated sub-model for this
entity normalization task. This section details our approach for entity normalization applied to identified
ADEs in tweet data. The subsections that follow describe the stages of data preprocessing, modeling, training
and inference methods utilized in our study.

Data preprocessing

Our approach for entity normalization employs two transformer tokenizers: a context and a isolated entity
tokenizer. The two-tokenizer strategy stems from the inherent architecture of CONORM-EN. One sentence
transformer is tasked with interpreting the broader context surrounding the identified entity, while the second
focuses solely on the entity.

In our method, we introduce special tokens, denoted by [S] for starting and [E] for ending, to mark the
edges of target entities within a context. These tokens play a important role in highlighting the target entity,
steering the model to focus on one entity when multiple entities are present in the context. These special
tokens are integrated into the context tokenizer’s vocabulary and are allocated unique embeddings in the
embedding matrix of the context sentence transformer.

Consider a tweet stating, "Experiencing relentless headaches after taking XYZ". Using CONORM-NER, an
ADE is extracted, identified as "relentless headaches". Transitioning to CONORM-EN, the tweet undergoes
a transformation to encapsulate the identified entity with the special tokens: "Experiencing [S] relentless
headaches [E] after taking XYZ". The context tokenizer processes the entire transformed tweet, while the
isolated entity tokenizer concentrates on the extracted entity in isolation. Specifically:

xcontext = tokenizercontext("Experiencing [S] relentless headaches [E] after taking XYZ"),
xisolated = tokenizerisolated("relentless headaches")

Given the limited size of our dataset, which contains only 1,710 instances, we divided it into training and
validation sets consisting of 1,539 instances (90%) and 171 instances (10%) respectively.

Modeling, training & inference

CONORM-EN constructs a representation for a target entity through a mechanism that we call Dynamic
Context Refining (DCR). This process employs a late fusion that integrates contextual and isolated entity
embeddings. This fusion is supported by a simplified self-attention mechanism with constant O(d) time and
space complexity, where d is the embedding dimension.

Given a pair of token sequences from a context xcontext, and an isolated entity xisolated, we obtain there
embeddings by mean pooling hidden states from two sentence transformers Scontext and Sisolated:

econtext =
∑

Scontext(xcontext)
|xcontext|

,

eisolated =
∑

Sisolated(xisolated)
|xisolated|

.

Post this computation, DCR refines eisolated by incorporating insights from econtext:

e′
isolated = exp(a)

exp(a) + exp(b) · eisolated + exp(b)
exp(a) + exp(b) · econtext
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where
a = eT

isolated · MK · MQ · eisolated√
d

, b = eT
context · MK · MQ · eisolated√

d
.

In CONORM-EN, Scontext and all M matrices are set as trainable parameters. Conversely, Sisolated remains
frozen with its dropout layers deactivated. This configuration ensures that Sisolated operates in inference mode
throughout, irrespective of the training status of the model. This setup allows CONORM-EN to produce
context-free embeddings using the pre-trained Sisolated, even in the absence of surrounding context.
In the training regime of CONORM-EN where context is present, we employ balanced negative sampling
to generate dissimilar pairs. Specifically, negative examples are produced by pairing entities with MedDRA
terms that aren’t explicitly marked as similar. With this approach, there are inherent uncertainties in the
composition of negative pairs.
Given this backdrop, we utilize the cosine embedding loss rather than the mean squared error over cosine
similarities. The loss function is as follows:

L(e′
isolated, m) =

{
1 − cos(e′

isolated, m) if positive pair,
max(0, cos(e′

isolated, m)) if negative pair.

For positive pairs, the loss pushes e′
isolated to have a cosine similarity close to 1 with it’s corresponding

MedDRA lowest level term m. For the negative pairs, the loss function provides a significant degree of
freedom, contributing only for cosine similarities above 0. This is tailored to accommodate the unknown
quality of our negative samples, which are created by randomly selecting lowest level terms having a dissimilar
preferred term in MedDRA.
To determine the optimal pair of transformer encoders, we conducted a grid search on the validation set
across a range of candidates. This included all available sentence transformers27,34, BioClinicalBERT35,
general domain models12,14, and BERTweet. Based on our findings, we initialized Scontext using weights
from multi-qa-mpnet-base-dot-v127,34 and employed all-mpnet-base-v227,34 for Sisolated. During the
training phase, mini-batches of size 32 were utilized. The training leveraged the AdamW optimizer together
with a one-cycle learning rate policy36, setting both the learning rate and the upper learning rate boundary
at 3 × 10−4. To prevent exploding gradients, the gradient was clipped at a maximum magnitude of 1.0. We
trained CONORM-EN for 100 epochs, choosing the model’s weights that yielded the highest micro-averaged
F1-score on the validation dataset.
In the inference phase, each ADE mention identified by CONORM-NER was embedded using CONORM-EN,
resulting in the embeddings {e′

isolated,j}J
j=1, where J is the number of detected ADEs. For every detected

ADE, we computed its cosine similarity with the mean-pooled hidden states of all MedDRA lowest-level
terms derived from Sisolated. Formally, the cosine similarity for the jth ADE against each MedDRA term is:

c(e′
isolated,j , mk) =

e′
isolated,j · mk

∥e′
isolated,j∥2 · ∥mk∥2

,

where {mk}K
k=1 encompasses the embeddings for all K MedDRA lowest-level terms produced by mean-pooling

hidden states of Sisolated.
Each ADE yields a set of similarity scores:

scoresj = { c(e′
isolated,j , m1), c(e′

isolated,j , m2), ..., c(e′
isolated,j , mK) }.

Subsequently, for each ADE, the MedDRA lowest-level term with the highest cosine similarity is identified.
From this, the corresponding preferred term associated with the chosen lowest-level term is then selected as
the final prediction for that specific ADE.
In the inference phase, CONORM-EN capitalizes on the simplicity of the dot product between normalized
embeddings. This technique fits seamlessly into vector database architectures, leveraging their efficient
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features such as locality-sensitive hashing and random projection. This integration offers significant benefits
for real-time, large-scale ontology mapping.

Results

We compare CONORM’s performance against various systems designed for ADE resolution. Our primary focus
lies in comparing CONORM with four distinct entities: the top-performing system from the SMM4H 2023
ADE normalization shared task, the current state-of-the-art model known as DeepADEMiner, the mean, and
median performances of all shared task participants. Table 1 and 2 present the overall and out-of-distribution
performance metrics, respectively. In terms of overall performance, CONORM demonstrates a superior
balance between precision and recall, achieving an F1-score of 50.20%. In out-of-distribution cases, CONORM
maintains an F1-score of 39.40%, supported by its precision rate of 53.10%. Given that CONORM-NER
employs the same NER algorithm as the top-performing system, it can be inferred that CONORM’s enhanced
performance arises from CONORM-EN’s architecture, its training methodology, or a combination of both.

Table 1. Comparative table of the overall test set performance (F1-score, Precision, and Recall) for ADE
resolution. The compared systems are the proposed CONORM, the top-performing system from the SMM4H
2023 ADE normalization shared task23, DeepADEMiner13, as well as the median and mean performance of
all SMM4H 2023 ADE normalization shared task participants.

Metrics CONORM Top system DeepADEMiner Median Mean
F1-score % 50.20 42.60 45.20 32.20 32.94
Precision % 53.50 44.90 40.70 24.90 29.30

Recall % 47.30 40.50 50.80 40.50 42.24

Table 2. Comparative table of the out-of-distribution (OOD) test set performance (F1-score, Precision, and
Recall) for ADE resolution. The compared systems are the proposed CONORM, the top-performing system
from the SMM4H 2023 ADE normalization shared task23, DeepADEMiner13, as well as the median and
mean performance of all SMM4H 2023 ADE normalization shared task participants in OOD scenarios.

Metrics CONORM Top system DeepADEMiner Median Mean
F1-score % 39.40 29.20 36.30 19.50 20.16
Precision % 53.10 24.90 33.50 12.80 15.08

Recall % 31.40 35.40 39.50 35.40 36.02

Conclusion

ADEs extracted from social media, particularly platforms like Twitter, have grown in significance. Our solution,
CONORM: Context-Aware Entity Normalization, addresses the need for enhanced entity normalization
techniques. It operates in two stages: the first employs a transformer encoder for entity recognition, while the
second introduces a novel context-aware normalization algorithm. This normalization leverages a late fusion
technique — dynamic context refining mechanism — mapping ADE mentions to the medical dictionary for
regulatory activities terminology.

CONORM achieved an F1-score of 50.20% overall and an out-of-distribution score of 39.40%. When compared
with the median performance in the shared task, CONORM showed improvements of 18.00% for overall
and 19.90% for out-of-distribution ADEs. Against the top-performing system in the shared task, CONORM
exhibited gains of 7.60% and 10.20%. Notably, CONORM surpassed the current state-of-the-art algorithm by
5.00% and 3.10% respectively, despite relying on a significantly smaller dataset (1,710 vs 265,000+ instances).

One aspect that stands out with CONORM is its compatibility with vector databases, which offers efficiency
in querying and supports scalable parallel processing. However, there may be limitations that were not
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addressed in this study. Future work can consider a broader application scope for CONORM, including other
languages, more social media platforms, and clinical notes from electronic health records.

CONORM offers a promising approach to context-aware entity normalization for extracting ADEs from social
media data. As the importance of ADEs from digital platforms continues to grow, systems like CONORM
can play a crucial role in enhancing extraction and normalization methods for pharmacovigilance.
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