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Abstract24

Current predictive models for survival following immune-checkpoint inhibition in non-small cell25

lung cancer typically use baseline or tumor kinetics data. We propose a novel kinetics-machine26

learning (kML) integrative model of overall survival following anti-PDL1 treatment. It incorporates27

eleven baseline markers and four on-treatment blood markers: albumin, C-reactive protein,28

lactate dehydrogenase and neutrophils. The kinetics of the latter were modeled using nonlinear29

mixed effect modeling. The kML model was developed on three phase 2 trials (862 patients) and30

validated on a phase 3 trial (553 patients). It outperforms the current state-of-the-art for31

individual predictions with a test set c-index of 0.79, a 12-months AUC of 0.86 and a hazard ratio of32

17.3 (95% CI: 8.11 – 36.7, 𝑝 < 0.0001) for identification of long-term survivors. kML was also able to33

anticipate the success of the phase 3 trial by utilizing only 25 weeks of on-study data. It34

constitutes a valuable approach to support personalized medicine and drug development.35

36
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Introduction37

Lung cancer is the leading cause of cancer death worldwide1, with non-small cell lung cancer38

(NSCLC) being the most prevalent type, representing 80% – 85% of case2. Immune-checkpoint in-39

hibitors (ICI) (e.g., atezolizumab (ATZ)) have led to significant improvements in survival rates for40

patients with advanced cancers such as NSCL3,4. However, there is still a large variability in clinical41

response and progression eventually occurs in a majority of patient5. Additionally, drug develop-42

ment in immuno-oncology is highly challenging, with a 95% attrition rate6. Current approaches43

for go/no-go decisions are based on interim endpoints (e.g., progression-free survival, overall re-44

sponse rate) that have often been found to be poor predictors of the primary endpoint of most45

clinical trials in oncology, overall survival (OS)7. This calls for better surrogate markers at interim46

analyses. Altogether, there is a need for better and validated predictive models of OS for both47

personalized health care (individual predictions) and drug development (trial predictions).48

Currently, PDL1 expression is the only routine biomarker used for NSCLC patients5,8 despite49

being controversial9,10. Tumor mutational burden8,11,12 and transcriptomic data5,13,14 have also50

been investigated but did not reach clinical practice. Here we posit that such static and single51

marker approach is intrinsically limited and that substantial additional predictive performances52

could be gained by: 1) using multi-modal integrative analyses relying on a combination of markers53

and machine learning algorithms5,12,14,15 and 2) including dynamic markers obtained from early54

on-treatment data15,16. The nonlinear mixed-effects (NLME) modeling approach is well suited for55

the latter17, and tumor kinetics (TK) model-based metrics have been shown to carry significant56

predictive value for OS in oncology, including ATZ monotherapy in advanced NSCLC18–20. The first57

main novelty of the current study is to establish the predictive value of model-based parameters58

of simple blood markers kinetics (BK), in addition to TK.59

The second main novelty is to apply machine learning (ML) algorithms, increasingly used in60

biology and medicine21 but only rarely for TK-OS modeling22, instead of classical survival mod-61

els. Extensions of classical ML models to survival data have been proposed (e.g., random survival62

forests23), but their actual superiority over standard approaches remains controversial24.63

Here, we coupled the strengths of NLME modeling with ML to derive a predictive model of64

OS from baseline and on-treatment data, called kinetics-Machine Learning (kML). We leveraged65

extensive training and testing datasets to achieve robust results. Subsequently, we tested the66

operational predictive capabilities of kML in two relevant scenarios: 1) individual prediction of OS67

and 2) prediction of the outcome of a phase 3 trial from early on-study data.68

Results69

data70

The data consisted of individual measurements of NSCLC patients treated with ATZ monotherapy.71

Three phase 2 trials were pooled into a training dataset3,25,26 (𝑁 = 862 patients, Appendix 1—figure72

1). The external validation (test) set comprised data from the OAK phase 3 trial (𝑁 = 553)27.73

Variables comprised baseline (pre-treatment) and longitudinal (on-treatment) data (Figure 1A).74

The former included: patients and disease characteristics (𝑝 = 63 variables, 43 numeric and 2075

categorical, denoted BSL) and transcriptomic (“RNAseq”, 𝑝 = 58, 311 transcripts) data. The latter76

included: longitudinal investigator-assessed sum of largest diameters (SLD) of lesions as per the77

RECIST criteria28, denotedby tumor kinetics (TK, 𝑘 = 5, 473/3, 015 timepoints in the train/test sets, re-78

spectively, median 5/4 data points per patient, range 2/2 —24/20); and longitudinal measurements79

of four blood markers (albumin, C-reactive protein (CRP), lactate dehydrogenase (LDH) and neu-80

trophils), denoted together as blood markers kinetics (BK, 𝑘 = 60, 779/38, 460 data points, median81

11–7–11–11/9–9–9–10 data points per patient, range 3–3–3–3/3–3–3–3 —60–63–63–78/82–47–77–89 for82

albumin–CRP–LDH-neutrophils in the train/test sets, respectively). See Figure 1B and Appendix83

1—figure 2–4 for details of the data and overall algorithmic procedures.84
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Figure 1. Study schematic A. Baseline and longitudinal data were combined into a machine learning algorithm in order to predict individual
survival prognosis. Longitudinal data were modelled using nonlinear mixed-effects modelling, whereas machine learning-based feature
selection was applied to the baseline data to derive a minimal signature. Tumor kinetics and biological kinetics parameters were combined with
the minimal signature to predict survival. Predictive performances were assessed using survival metrics (c-index and survival at horizon times).
B. Algorithm used to develop the model on the train data and carry it to the test set for external validation. Each step — preprocess, learning of
the Bayesian priors, dimensionality reduction, feature selection, choice, tuning and training of the machine learning algorithm — were
calibrated on the training set and then applied to the test set.
TK: tumor kinetics; BK: blood markers kinetics; ML: machine learning; NLME: nonlinear mixed-effects modelling
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Table 1. Parameters from nonlinear mixed-effects modeling of tumor and blood marker kinetics

K CRP LDH Neutrophils Albumin

KGpop (week
−1) 0.004 92 (6.80) 0.008 14 ( 9.38) 0.002 38 (10.48) 0.004 36 ( 8.69) ppop (g/l) 29.4 (3.82)

KGpop (week
−1) 0.007 78 (8.22) 0.0137 (14.14) 0.001 84 (13.73) 0.000 987 (21.16) lpop (log (day)) 8.09 (2.74)

𝜔KG 1.36 (3.80) 1.61 ( 4.25) 1.55 ( 5.36) 1.41 ( 4.48) 𝜔p 0.476 (7.48)
𝜔KS 1.41 (4.66) 1.81 ( 6.29) 1.92 ( 5.34) 2.46 ( 5.82) 𝜔l 0.359 (6.42)
error1 6.82 (1.15) 0.559 ( 1.23) 0.138 ( 0.79) 0.207 ( 0.82) error1 0.0549 (0.77)

Parameter value (relative standard error (%)). TK: constant error, others: proportional error. CRP : C-reactive protein; LDH : lactate deshydroge-
nase.

Nonlinear mixed-effects modeling (NLME) of longitudinal markers85

The TK structural model was the sum of an increasing and a decreasing exponential function (dou-86

ble exponential model)29. It was able to accurately describe the data with no goodness-of-fit mis-87

specification (Figure 2A and Appendix 1—figure 5). Population parameters were estimated with88

good accuracy (all relative standard errors smaller than 9%, Table 1).89

To analyze the BK data, we first investigated whether significant kinetic patterns could be ob-90

served beyond random noise (due to, e.g., measurement errors, see raw data in Appendix 1—91

figure 6–9). The latter was considered as the null hypothesis, described by a constant model. It92

was tested against three alternative empiric models: linear, hyperbolic (monotonous but nonlin-93

ear and saturating) and double-exponential (nonlinear and non-monotonous). For all four BKs,94

we found significant kinetics compared with the constant model, as shown by lower corrected95

Bayesian information criterion and relative error betweenmodel fits and data (Appendix 1—figure96

10). Best descriptive models were hyperbolic for albumin and double-exponential for the other97

BKs. Individual fits to patient kinetics with the best models showed substantial descriptive power98

(Figure 2A), which was confirmed by data versus model fits plots (11–14). Parametric identifiability99

of population parameters was excellent for all models (Table 1).100

We further assessed the stratification value of the individual model-based kinetic marker for101

OS prognosis (Figure 2B). The TK parameter KG (growth rate) exhibited good stratifying ability102

(HR = 4.39 (2.8 – 6.89)), which was similar to the CRPKG parameter (HR = 4.37 (2.76 – 6.91)). Ranked103

by HR importance, the following four best parameters were albuminp (HR = 3.17 (2.11 – 4.78)),104

neutrophilsKG (HR = 3.07 (2.04 – 4.63)), neutrophilsKS (HR = 2.33 (1.6 – 3.39)) and TKKS (HR = 2.02105

(1.42 – 2.89)). All kinetic parameters carried substantial prognostic power (𝑝 < 0.0001, log rank test).106

For TK and BKs we complemented the initial model parameters with an additional metric that107

was considered valuable for early prediction: the model-predicted ratio of change over baseline at108

cycle 3 day 1.109

Overall survival prediction using kinetics-machine learning (kML):110

model development111

Four feature sets resulted from the analysis above: BSL, RNAseq, TK and BK (Figure 1B). The devel-112

opment of a kinetics-machine learning (kML) comprised two main steps: choice of the algorithm113

and derivation of a minimal signature. They were performed using cross-validation on the training114

set. The first was achieved by benchmarking four models that used all variables (𝑝 = 119, 𝑁 = 553).115

The random survival forest (RSF) model was selected as it exhibited the best performances (Ap-116

pendix 1—figure 15). Notably, we found significantly better predictive performances of RSF over a117

Cox proportional hazard regression model (𝑝 = 0.0006).118

Feature selection on BSL variables was performed building incremental RSF models based on119

LASSO importance-sorted variables (Figure 3A). The model using all of them achieved the best120

score. Nevertheless, keeping in mind the objective to ultimately support decision making and pa-121

tient stratification, a minimal (11 features), near-optimal, set of BSL variables was selected and122

denotedmBSL. It was defined as the first seven variables reaching the plateau (CRP, heart rate, neu-123
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Figure 2: Goodness-of-fit metrics and plots of dynamic BK models

Best Overall Response
CR + PR + SD
PD

A.

B.

Figure 2. Goodness-of-fit metrics and plots of dynamic BK models A. Representative individual fits for the TK and BK best empirical models
showing non-trivial kinetic parameters well captured by the dynamic models. Survival is indicated by a vertical line (solid = death, dashed =
censored). B. Stratified Kaplan-Meier curves at the 20th percentile level on the test set, for TK and BK model-based parameters. Missing values
were removed in this univariable analysis, explaining the difference of initial number of patients for albumin that had 9 patients in this case.
CR: complete response; PR: partial response; SD: stable disease; PD: progressive disease.
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Table 2. Contingency table for OS prediction at 12 months

TRUTH
Alive (0) dead (1) Total

MODEL
Alive (-) 182 30 212 (58.7%)
Dead (+) 48 101 149 (41.3%)
Total 230 (63.7%) 131 (36.3%) 361

Note: 16/377 censored patientswith survival time≤ 12months removed for computation of accuray.
sensitivity, specificity, PPV and NPV don’t correspond exactly to the numbers because they are
computed from KM estimate, thus adjusting for censoring bias.

trophils to lymphocytes ratio, neutrophils, lymphocytes to leukocytes ratio, liver metastases and124

ECOG score), complemented with four variables with established prognostic or predictive value125

and available in routine care: PD-L1 expression (50% cut-off)3, hemoglobin30, SLD22 and LDH31,32.126

Applying stringent criteria to the RNAseq data (see methods), we selected 167 transcripts as127

candidates for final variable selection using Bolasso regression model to identify the optimal set128

of predictors33. Finally, we ended up with 52 RNAseq variables that corresponded to the highest129

average c-index of 0.64.130

Performing incremental models with BKs, the first four LASSO-based most important features131

were LDHKG, neutrophilsKG, albuminp and CRPKG parameters were the four most important fea-132

tures (not shown). This indicated that the combination of all BKs was required to achieve signifi-133

cant predictive performances. Nevertheless, we kept all sets of three model-based parameters in134

the TK and BK signatures (15 parameters in total) because each set depends only on one marker135

(per time point).136

We then compared the cross-validated c-index of each feature set on the train data (Figure137

3B). Because of negligible discrimination performances (c-index = 0.62 ± 0.050) and non-systematic138

availability of those data, the RNAseq set was removed from the model. The selected set of clinical139

data at baseline (mBSL) exhibited moderate discrimination performances (c-index = 0.710 ± 0.038),140

which was slightly outperformed by the TK set (c-index = 0.723 ± 0.025). Interestingly, the BK set141

significantly outperformedboth baseline clinical and TK (c-index = 0.793±0.038, 𝑝 = 0.0004 and 0.0005142

respectively, Student’s t-test). Jointly, mBSL, TK and BK performed significantly better than any143

feature set alone (c-index = 0.824 ± 0.050, 𝑝 = 0.00007, 0.0002 and 0.055), as well as any combination144

of two sets among the three (mBSL + TK: c-index = 0.77 ± 0.026, mBSL + BK: c-index = 0.81 ± 0.027,145

TK + BK: c-index = 0.80 ± 0.049). The resulting model combining mBSL, TK and BK was denoted kML146

(kinetics-machine learning).147

During cross-validation on the training set, kML exhibited excellent predictive performances148

across multiple metrics, with minimal between-folds variability (AUC = 0.919 ± 0.056, accuracy =149

0.873 ± 0.052, Figure 3C).150

External validation151

The predictive performance of the final kML model (mBSL, TK and BK) was assessed on the test152

set (377 patients). At the population level, the model-predicted survival curve was in excellent153

agreement with the observed data (Figure 4A). Notably, the prediction interval from the model154

was narrow, indicating high precision. At the individual level, consistent with the cross-validation155

results, substantial discrimination performances were observed (c-index = 0.789, Figure 4B, AUC156

for 12-months survival probability = 0.874). All classification metrics for prediction of survival at 12157

months were high (≥ 0.78), except PPV. Although smaller, they were similar to the cross-validation158

results.159

In addition, calibration curves revealed good performance, at multiple horizon times (Figure160
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Figure 3: Minimal baseline (mBSL) signature and kinetics-ML (kML) model 

B. C.

A.

Figure 3. Minimal baseline (mBSL) signature and kinetics-ML (kML) model A. Cross-validated (CV) performance scores on the training set
(c-index and AUC, mean ± standard deviation) for incremental random survival forest (RSF) models using an increasing number of baseline
clinical and biological variables sorted by LASSO importance. The dashed blue line shows the minimal number of variables reaching the plateau.
Blue-colored variables correspond to the minimal clinical signature (mBSL). B.Comparative CV c-indices of RSF models based either on RNAseq,
mBSL, TK, BK and mBSL + TK + BK (final model, kML) variables showing increased predictive performances over baseline when using
model-based parameters of kinetic markers. Numbers on the bars indicate the number of variables. C. CV performances of the kML model for
discrimination (c-index) and classification (survival prediction at 12-months OS).
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4C). Model-predicted probabilities were concordant with the observed KMestimates of the survival161

probabilities, over the entire range of the binned predicted probabilities. This is further illustrated162

by the contingency Table 2. For instance, among 149 patients predicted to be dead at 12 months,163

101 (67.8%) were actually deceased. Predictive AUCwas good at other horizon times (0.846 and 0.910164

at 6 and 24 months, respectively, Appendix 1—figure 16). However, PPV and sensitivity were very165

low at 6 months.166

Notably, the kML mortality score derived from the model and learned on the training set was167

able to accurately stratify OS in the test set (HR = 25.2 (10.4 – 61.3), 𝑝 < 0.0001, Figure 4D), indicat-168

ing excellent ability to identify the 20% of long-term survivors. It outperformed all single kinetic169

markers (Figure 2C).170

Variables importance was assessed by running a post-hoc multivariable Cox regression (Figure171

4F). Interestingly, the top two variables were BKs (CRPKG and CRP ratio C3). In addition, TK and172

BK made up for six out of the seven top important features and were found more important than173

PD-L1.174

Given the large sample size of our data, we further assessed the model performances when175

trained on smaller data sets (Appendix 1—figure 17). The learning curve revealed that approx-176

imately 200 patients were necessary to reach similar performance to the ones obtained with the177

full training set (𝑁 = 533), for both cross-validation and external validation on the test set (c-index =178

0.82 ± 0.056 vs c-index = 0.82 ± 0.050 in cross-validation, 0.78 vs 0.79 on the test set, models trained179

with 200 vs 533 patients, respectively). Trained with only 60 patients, kML reached already good180

performances (c-index = 0.76 ± 0.15 and 0.74 in cross-validation and test, respectively).181

Together, these results demonstrate important predictive performances of overall survival fol-182

lowing ATZ treatment using the kML model.183

Application to individual survival prognosis from early on-treatment data184

Results above required full on-treatment time-course data to compute TK and BK markers, thus185

cannot be used to make early predictions of future survival. To investigate the operational appli-186

cability of our methodology, data from the test set were truncated at the beginning of treatment187

cycles number three, five or ten, respectively corresponding to 1.5, 3 and 6.75 months. We found188

that integrating longer on-treatment data in kML, the predictive performances steadily increased189

(Figure 5A and Appendix 1—figure 18). Using the baseline variables only (mBSL), the stratification190

ability was significant but moderate (HR = 1.74 (1.24 – 2.46), 𝑝 = 0.0014, Figure 5B). In contrast, kML191

exhibited increasing stratification ability from data at 1.5 months (HR = 2.19 (1.53 – 3.12), 𝑝 < 0.0001),192

3 months (HR = 3.51 (2.33 – 5.3), 𝑝 < 0.0001) and 6.8 months (HR = 5.01 (3.16 – 7.95), 𝑝 < 0.0001), see193

Figure 5C.194

Further investigation of the predictive performances of individual kinetic markers revealed195

that TK parameters were the most informative at 6 weeks (1.5 months, first imaging assessment).196

Adding BKs to TKs brought additional predictive value starting at 3 months, and BKs outperformed197

TK from 6.75 months on (Appendix 1—figure 19A). Among BKs, neutrophils kinetics appeared to198

be the most predictive, followed by CRP, albumin and LDH. However, the combined BK signature199

outperformed each individual BK, indicating that their collective predictive capabilities were not200

driven by any single biomarker alone.201

Interestingly, the most important variable at 1.5 months was a kinetic one, TK ratio C3 with202

following variables being from mBSL (e.g., liver metastases, PDL1 and ECOG). When more on-203

treatment variables become available, this shifted to TK and BK (TK ratio C3, TKKS, TKKG, CRPKG,204

LDHKG), see Appendix 1—figure 19B.205

Application to clinical trial outcome prediction from early on-study data206

The kML model can also be applied for the prediction of the outcome of a clinical trial (survival207

curves and associated hazard ratio), from early on-study data. To this respect, a different trunca-208

tion needs to be performed. Indeed, the quantity of data available is not determined by the time209
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Figure 4: Predictive performances on the test set
A. B.

6 months 12 months 24 months

C. D. E.

Figure 4. Predictive performances on the test set A. Comparison of the population-level survival curves between the data (KM estimator) and
the model prediction. B. Scores of discrimination metrics. Classification metrics were computed for prediction of OS at 12 months. C. Calibration
curves at 6, 12 and 24 months, showing the observed survival probabilities (with KM 95% confidence interval) versus the predicted ones in 10 bins
corresponding to the model-predicted survival probability deciles. Dashed line is the identity. D. Dichotomized KM survival curves based on the
ML model-predicted score (high versus low), at the 20th percentile cut-off. E. Variables importance (multivariable hazard ratios) in the full
time-course kML model.
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Figure 5: Individual-level predictions from cycle-truncated data

A.

C.

B.

Figure 5. Predictive value from cycle-truncated data A. Predictive power (c-index) of ML models using baseline (BSL) or truncated data at 1.5,
3 and 6.8 months as well as the full time-course. B. Stratified KM survival curves using a RSF model trained on the minimal baseline (mBSL)
variables. C. Stratified KM survival curves using kML from 1.5 months (2 cycles), 3 months (4 cycles) and 6.8 months (9 cycles) truncated data.
Truncation time is indicated by the vertical line.
TK: tumor kinetics; BK: biological kinetics; LDH: lactate dehydrogenase; CRP: C-reactive protein.
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a given patient has received the treatment, but rather by the recruitment rate and the number210

of patients and associated data available at a given on-study landmark time. We thus performed211

such truncations on the test set based on a number of weeks after the date of the first patient212

recruited. Predictions of the kMLmodel applied to each arm (atezolizumab and docetaxel) yielded213

very accurate results when using data from the entire study (predicted HR = 0.784 (0.7 – 0.842)),214

versus data HR = 0.778 (0.65 – 0.931), Figure 6A–B). Notably, the model prediction intervals were215

narrower than the data Kaplan-Meier confidence intervals. Using only early data, the model was216

already able to detect a (non-significant) tendency at 10 weeks, with only 23 and 30 patients in each217

arm, and very small follow-up. Starting from data available at 25 weeks (6.25 months), the model218

correctly predicted a positive outcome of the study, with a 95% prediction interval of the HR below219

1. Of note, the available data at this time (dashed lines, Figure 6A and red HR CIs in Figure 6B) was220

far from being conclusive. The model prediction was stable from 25 weeks on whereas the data221

only exhibited significant HR from 60 weeks and required more than 300 patients in each arm to222

be conclusive.223

Methods224

Data225

For both training and external validation (testing) sets, patients from French centers were excluded226

for legal reasons (𝑁 = 118, not included in the numbers above). The training set comprised the227

FIR (NCT01846416)25, POPLAR (NCT01903993)3 and BIRCH (NCT02031458)26 phase 2 clinical trials.228

The testing set was the atezolizumab arm of the OAK phase 3 trial (NCT02008227)27. These studies229

were conducted in accordancewith theDeclaration ofHelsinki after approval by institutional review230

boards or independent ethics committees. All patients provided written informed consent.231

The outcome considered was overall survival (OS), defined as the time between treatment start232

and death or last follow-up, in which case the data was right-censored. The median follow-up was233

35.2 months (95%CI:34.5–35.7) in the training set and 26.8 months (95%CI:26.3–27.5) in the test set.234

Preprocessing235

Baseline data236

The baseline data consisted of 63 variables spanning demographic and biological data, clinical in-237

formation and disease status (see Appendix 1—figure 1–4 for a description of the main variables).238

PD-L1 expression on tumor cells was measured by immunohistochemistry or quantitative poly-239

merase chain reaction, with four possible levels (0: < 1%; 1: ≥ 1%; 2: ≥ 5% and 3: ≥ 50%)3. We refer240

to the above-mentioned identifiers and references for further details on the other variables. Data241

were measured in accordance to the studies principles.242

Missing values (1.6% total, maximum 12% in one variable) were imputed with median for nu-243

meric variables and mode for categorical variables, learned on the training set, even when apply-244

ing the model to the testing set. Following preprocessing, all numeric variables were centered and245

scaled. Means and standard deviations was learned on the train and carried to the test set.246

Dimensionality reduction for RNAseq247

Initial expression data from RNAseq consisted of 715 patients and 58, 311 transcripts. The first step248

of data filtering removed all transcripts with less than 10 read counts for all patients, then selected249

genes with highest variability between patients (top 15, 000 transcripts most variable). Then, data250

were normalized using upper quartile normalization which consisted in dividing each read count251

by the 75th percentile of the read counts of the corresponding sample and the final expression252

values were log2 transformed. Subsequently, a univariable Cox regression model was employed253

to statistically assess the correlations between the expression levels of the transcripts and overall254

survival. Bonferroni correction was used to adjust p-values from multiple univariate tests. This255

step was performed using the RegParallel R package. We selected transcripts with high predictive256
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Figure 6: Use of kML for early prediction of the outcome of a clinical trial

A.

B.

10 weeks
(2.5 months)

25 weeks
(6.25 months)

60 weeks
(15 months)

Full kinetics
(end of study)

Data HR (95% CI) NA (NA - NA) 0.486 (0.0863 - 2.73) 0.697 (0.496 - 0.979) 0.778 (0.65 - 0.931) 

Predicted HR 
(95% PI) 0.836 (0.547 - 1.4) 0.814 (0.64 - 0.994) 0.849 (0.746 - 0.934) 0.784 (0.7 - 0.842)

Number of patients 
(DTX - ATZ) 23 - 30 125 - 127 342 - 368 354 - 377

Data points
(TK/Alb/CRP/LDH/

Neutrophils)
1/3/3/2/2.5 - 1/2/2/2/2 2/4/4/4/4 - 2/4/4/4/4 3/6/5/6/7 - 3/7/6/7/7 4/8/6/7/8 - 4/9.5/9/9/10

C.

Figure 6. Use of kML for early-prediction of the outcome of a clinical trial A. Survival curves model-based predictions and prediction
intervals versus actual data from on-study data at multiple horizon times after study initiation. Note that the model is able to predict full survival
curves even if based on early kinetics. B. Compared data and kML-predicted hazard ratios. C. Description of hazard ratios, number of patients
and number of data points available in each arm, at the landmark on-study time points.
PI: prediction interval, CI: confidence interval, DTX: docetaxel arm, ATZ: atezolizumab arm.
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values using following criteria: adjusted log rank < 0.01 and HR < 0.85 or HR > 1.2. The remaining257

transcripts were used to perform a bootstrap Lasso Cox regression33 with cross-validation using258

mainly the glmnet R package. Finally, the smallest number of transcripts with best predictivemodel259

(highest c-index) was selected for further analysis.260

Tumor kinetics (TK)261

Patients with only one baseline SLDmeasurement and no SLDmeasurement during the treatment262

period were excluded (𝑁 = 110).263

Blood markers kinetics (BK)264

Only patients with at least two observations on-treatment, pre-cycle 5 (3 months) were considered.265

Time points prior to treatment start were discarded. Five rules were established to exclude irrel-266

evant data points or patients from the BK dataset. First, lower (LB) and upper (UB) physiological267

bounds were established after discussion with a clinical oncologist. Outliers (observations outside268

these bounds) were discarded using the following bounds: albumin, LB = 10g/l, UB = 100g/l; CRP,269

no LB, UB = 300mg/l; LDH, LB = 50U/l, UB = 2000U/l; neutrophils, no LB, UB = 20G/l. Second,270

duplicate time points were removed, keeping the first one recorded. Third, aberrant outliers were271

identified. Denoting BK𝑘
𝑛 the value of the k-th BK at time 𝑡𝑛 for a give patient, we excluded values272

such that: BK𝑘
𝑛 ∉ (𝐵𝐾𝑘

𝑛−1, 𝐵𝐾𝑘
𝑛+1), and |BK

𝑘
𝑛 − BK𝑘

𝑛−1| > 3 × sd𝐵𝐾𝑘 , and |BK
𝑘
𝑛 − BK𝑘

𝑛+1| > 3 × sdBK𝑘 ,273

where sdBK𝑘 is the standard deviation of {BK𝑘
𝑛}. Fourth, for each patient, only the BK value at the274

closest time point to treatment initiation was kept, provided this time point was no more than 40275

days before or 10 days after treatment initiation (otherwise, patient was disregarded). Fifth, in or-276

der to have sufficient data for Bayesian parameter estimation with early data, patients with less277

than three data points before cycle five were removed.278

Nonlinear mixed-effects modeling279

Population approach280

Statistical hierarchical nonlinear mixed-effects modeling (NLME) was used to implement a popula-281

tion approach for the kinetic data34. Briefly, denoting by 𝑀 (𝑡; 𝜃) a structural dynamic model that282

depends on time 𝑡 and a set of parameters θ, longitudinal observations 𝑦𝑖
𝑗 in patient 𝑖 at time 𝑡𝑖

𝑗283

were assumed to follow the observation model284

𝑦𝑖
𝑗 = 𝑀 (𝑡𝑖

𝑗 ; 𝜃𝑖
) + 𝜀𝑖

𝑗 ,

where 𝜀𝑖
𝑗 ∼ 𝒩 (0, 𝜎𝑖

𝑗) is the gaussian-distributed error model. The latter was either constant (𝜎𝑖
𝑗 =285

𝑎, ∀𝑖, 𝑗) for TK or proportional (𝜎𝑖
𝑗 = 𝑏𝑀 (𝑡; 𝜃) , ∀𝑖, 𝑗) for BK. To describe inter-individual variability,286

individual parameters 𝜃𝑖 were assumed to follow log-normal distributions:287

ln(𝜃𝑖) = ln (𝜃pop) + 𝜂𝑖, 𝜂𝑖 ∼ 𝒩 (0, 𝜔2)

with population-level parameters 𝜃pop and𝜔. Estimation of thesewas performed using the stochas-288

tic approximationof expectationmaximization algorithm implemented in theMonolix software35,36.289

Structural models290

Following previous work, the TK structural model was assumed to be the sum of two exponen-291

tials19,29:292

𝑦𝑖
𝑗 =

⎧⎪
⎨
⎪⎩

𝑦𝑖
0𝑒KG𝑖𝑡 𝑡 ≤ 0

𝑦𝑖
0(𝑒−KS𝑖𝑡 + 𝑒KG𝑖𝑡 − 1) 𝑡 > 0

where 𝑡 = 0 corresponds to treatment initiation and 𝑦0, KG and KS are three parameters. This293

model was also considered for BK, together with three other models: constant (𝑦𝑖
𝑗 = 𝛼𝑖, ∀𝑗), linear294

(𝑦𝑖
𝑗 = 𝛼𝑖 + 𝛽𝑖𝑡𝑖

𝑗 , ∀𝑗) and hyperbolic (𝑦𝑖
𝑗 = 𝑝𝑖 + 𝑒𝑙𝑖 (𝑞𝑖−𝑝𝑖)

𝑡𝑖
𝑗 +𝑒𝑙𝑖 ). Quantitative comparison of goodness-of-fit295

between models was assessed using the corrected Bayesian information criterion37.296
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Identification of individual model-based parameters297

The population parameters identified on the training set were used to define prior distributions of298

the TK and BKmodel parameters. These “training” priors were used for Bayesian estimation (maxi-299

mum a posteriori estimate) of the individual TK and BKmodel parameters, in both the training and300

testing sets. To avoid biased comparison with baseline variables, the model-estimated baseline301

parameters (𝑦0
𝑋 for X = TK, CRP, LDH and neutrophils, and albuminq for albumin) were not kept in302

the TK and BKs feature sets. We additionally considered the ratio of the model-predicted value at303

cycle 3 day 1 to the model-estimated baseline parameter, denoted Xratio for marker X. Altogether,304

there were three individual parameters for each marker: XKG, XKS and Xratio for 𝑋 = TK, CRP, LDH305

and neutrophils; and albuminp, albuminl and albuminratio for albumin. Once centered and scaled306

(frommeans and standard deviations derived from the training set), these individual model-based307

parameters constituted the TK and BKs feature sets.308

Truncated data: individual-level309

Individual-level truncated datasets were derived from the longitudinal TK and BK data at the follow-310

ing treatment cycle horizons: cycle 3 day 1 (C3D1, 1.5 months), C5D1 (3 months) and C10D1 (6.75311

months). That is, for each patient, post-CXD1 values were discarded, for both the training and test-312

ing sets. New training priors were estimated from each CXD1 training set and used for Bayesian313

estimation of the individual parameters in the CXD1 training and testing sets. The resulting TK and314

BK truncated model parameter Y for marker X at cycle horizon 𝑖 were denoted by XY, 𝑖 (e.g., ldhKG, 5).315

Truncated data: study-level316

To assess the ability of kML to early predict the final outcome of a clinical trial, we considered the317

two arms of the OAK phase 3 study. That is, not only the atezolizumab arm (testing set) but also318

the docetaxel arm (unused previously). For each arm, the data was truncated at multiple on-study319

landmark times 𝑙𝑡 (𝑙𝑡 = 10, 25 and 60weeks) after study initiation (first patient recruited). That is, only320

the patients enrolled before this time and only the data collected up to lt was used. For both arms321

the NLME population priors estimated from the training set (atezolizumabmonotherapy) was used322

for Bayesian estimation of the individual model parameters, for each on-study-truncated dataset.323

For example, for a patient 𝑖 recruited at 12 weeks, it was absent from the 𝑙𝑡 = 10 weeks data set,324

had model parameter values 𝜃𝑖
𝑙𝑡=25 derived from 13 weeks of on-study data in the 𝑙𝑡 = 25 weeks325

data set and different model parameter values 𝜃𝑖
𝑙𝑡=60 derived from 48 weeks of on-study data in the326

𝑙𝑡 = 60 data weeks set.327

Machine learning328

Models329

Model elaboration and development was performed exclusively on the training set, using 10 folds330

cross-validation for predictive performances evaluation. Due to censoring in the data, survival331

models were used: proportional hazards Cox regression38, extreme gradient boosting (XGB) with332

either Cox or accelerated failure time (AFT) models39 and random survival forests23. Nested cross-333

validation with inner bagging in each 10-fold cross-validation outer loop was used to evaluate the334

benefit of tuning the hyperparameters40. Improvement of the performances was negligible with335

hyperparameter tuning, that has higher computational cost (Appendix 1—figure 15). Therefore,336

we used the default values of the hyperparameters (that is, number of trees ntree = 500, number337

of variables to possibly split at each node mtry = 5 (rounded up square root of the number of338

variables), minumum size of terminal node nodesize = 15, non-negative integer specifying number339

of random splits for splitting a variable nsplit = 10 for the RSF model).340

Evaluation341

Predictive performances were assessed for either discrimination (c-index and classification met-342

rics at horizon times 𝜏), calibration (calibration curves) or stratification (dichotomized KM survival343

curves). For each individual, the RSF model gives two prediction outputs: a scalar value termed344
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“mortality” that we will refer to as “ML score”, and time-dependent predicted survival curves23. The345

former was used to compute the c-index using the rcorr.cens function of the hmisc R package41,42.346

For classification (prediction of survival at a horizon time 𝜏), we used the latter to compute347

model-predicted probabilities of death at 𝜏. Unless otherwise specified, 𝜏 = 12 months. Survival-348

adapted metrics of predictive performance were used for sensitivity, specificity, area under the349

receiver-operator curve (ROC AUC) and negative and positive predictive value (NPV and PPV) to ac-350

count for censoring43,44. For computation of accuracy, censored patients before 𝜏 were discarded351

(𝑁 = 17/396 in the test set at 12 months). Event was defined as death. Therefore, e.g., PPV cor-352

responds to the ability of the model to correctly predict death. The optimal cut-points used for353

individual OS predictions on the test set were defined as the Kaplan-Meier estimated OS in the354

training set at 𝜏 (0.257 at 6 months, 0.437 at 12 months, 0.634 at 24 months).355

For patient stratification (dichotomized KM curves), theML score was used, withmodels trained356

on the training set and predicted on the test set. In order to assess stratification abilities to capture357

the 20% of long-term survivors, cut-points were set at the 20th percentiles for each variable/score358

evaluated. For fair comparisons, the population was also restricted to the patients with enough359

data to be predicted by the MLmodel (see preprocessing above). Significance of differences in KM360

curveswas established using the logrank test, and hazard ratioswere computed using proportional361

hazards Cox regression.362

Variable selection and minimal signature363

Three strategies were investigated to account for the multi-modal nature of the data: 1) variable364

selection on all the variables together, 2) variable selection per feature set (clinical, RNAseq, TK365

and BK) or 3) variable selection on the pooled sets resulting from 2). The general method for366

variable selection in a feature set was based on two steps: i) sorting the variables by importance367

and ii) building incremental models including increasing numbers of variables. For i), multiple al-368

gorithms were tested: Cox-sorting based on either univariate p-values or absolute hazard ratios,369

backward/forward stepwise selection, variable importance from RSF, or least absolute shrinkage370

and selection operator (LASSO)-based importance45. The latter was the one ultimately selected.371

It was defined as the sorting resulting from coefficients gradually becoming non-zero during like-372

lihood maximization, when the regularization parameter 𝜆 decreases. For ii), the algorithm used373

for incremental models was RSF. Resulting c-indices and AUCs were plotted against the number374

of variables. Selected variables were defined as the minimal subset of variables able to reach the375

maximum c-index. Minimal signatures were defined as theminimal set of variables able to achieve376

a c-index larger than 0.75 and an AUC larger than 0.8.377

Survival simulations and computation of predicted HRs378

For each patient 𝑖, one output of the kML model is a survival curve 𝑆 𝑖 (𝑡). This gives the cumulative379

distribution function 1 − 𝑆 𝑖 (𝑡) of the random variable 𝑇 𝑖 of the time to death for patient 𝑖, which380

was used to simulate 100 replicates of 𝑇 𝑖. Pooling all patients together, we thus obtained 100 repli-381

cates of {𝑇 𝑖, 𝐴𝑇 𝑍 , 𝑇 𝑗, 𝐷𝑇 𝑋} for 𝑖 and 𝑗 being the patient indices within the ATZ and docetaxel arms,382

respectively. Each replicate then led to 1) a predicted survival curve in each arm and 2) a Cox pro-383

portional hazard HR between the two arms. Taking themean and the 5th and 95th percentiles over384

all replicates yielded the reported point estimate and corresponding 95% prediction interval. The385

same procedure was used for study-truncated data.386

Discussion387

Blood markers from hematology and biochemistry are routinely collected during clinical care or388

drug trials. They are cost-effective and easily obtained both before and during treatment. There389

is limited exploration regarding the predictive capabilities of the kinetics of such data. Combining390

BSL variables with on-treatment data (TK and BK), we addressed this question using a novel hy-391

brid NLME–ML methodology. The resulted kML model demonstrated excellent predictive perfor-392
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mances for OS in two aspects: 1) patient-level predictions (discrimination, calibration and patient393

stratification) and 2) trial-level predictions. The kML model outperformed current state-of-the-art394

methods based on either baseline or on-treatment data alone, utilizing only routine clinical infor-395

mation, with a c-index of 0.79 and an area under the curve (AUC) of 0.87 on the test dataset. Overall,396

kML incorporates 26 features, out of which 15 features require monitoring five quantities over time397

(tumor size, albumin, CRP, LDH and neutrophils).398

Regarding baseline markers, the predictive value of PD-L1 expression, commonly used in clini-399

cal care, is controversial9,10. Previous studies reported an AUC for durable response of 0.601 and400

a PFS HR of 1.90 (PD-L1 ≥ 1% vs 0%)8. Baseline tumor mutational burden showed similar predictive401

value initially (AUC = 0.646)11, but led to disappointing results in a recent prospective study46 and402

others found it to be more prognostic than predictive47. Baseline blood counts were previously403

reported to predict overall survival31,48–50 and treatment response (AUC = 0.74)30. The ROPRO404

score, derived from a large pan-cancer cohort and incorporating baseline clinical and biological405

data (27 variables) achieved a c-index of 0.69 and a 3-months AUC of 0.743 for prediction of survival406

in the OAK clinical trial51. Here, we confirmed these findings and established a minimal signature407

of such data composed of only 11 variables (CRP, heart rate, neutrophils to lymphocytes ratio, neu-408

trophils, lymphocytes to leukocytes ratio, liver metastases, ECOG, PD-L1 ≥ 50%, hemoglobin, SLD409

and LDH), yet with similar predictive performances (c-index = 0.678) and significant stratification410

ability (HR = 1.74, 𝑝 = 0.0014). Altogether, our kML model demonstrated substantially better predic-411

tive performances than these baseline models.412

The main novelty of our work lies in the use of on-treatment blood markers kinetics (BK). We413

first further confirmed the established predictive value of TK model-based parameters19,20. Blood-414

or serum-derived longitudinal markers kinetics have to date rarely been modeled. Gavrilov et al.415

proposed tomodel NLR kinetics and demonstrated improvedOS predictions over TK alone52. Here416

we extended to four BKs: albumin, CRP, LDH and neutrophils. This choice was not only motivated417

by observed statistical associations, but also from biological considerations. Albumin is associated418

with nutritional status (cachexic state) and is known to evolve with time in responders. CRP is a419

marker of systemic inflammation32. Increased CRP, decreased albumin level, and increased CR-420

P/albumin ratio have been reported to be associated with poor survival53. Neutrophils play a role421

in inflammation by promoting a favorable microenvironment for cancer cell growth and spread,422

and activation of carcinogenic signaling pathways54. Elevated LDH levels are a marker of cancer423

cells turnover rate, and LDH has a potential role for prediction of potential invisible metastases32.424

We found that all these markers had non-trivial on-treatment kinetics. However, data fits were not425

perfect, possibly due to the simplicity and empiric nature of the models we used. Further mecha-426

nistic modeling of the joint kinetics of BKs and TK could bring relevant biological information and427

yield more accurate predictive parameters. We found that all four BKs were contributive to the428

model and that, combined, they outperformed TK performances.429

We analyzed the RNAseq data using standard methods and found only negligible predictive430

performances. Such result could be explained by the fact that the tissue of origin that was used431

was heterogeneous across the patients (primary tumor or metastasis), was limited to a local area432

of the tumor, and could come from tissue sampled long before treatment initiation. Given that433

our main objective was to derive a predictive model frommarkers available in routine practice, we434

excluded it from our minimal signature. A refined analysis, especially focusing on immune-based435

signatures, could improve our results5.436

Machine learning models, although increasingly used in pharmacological studies —including437

recently for TK-OSmodeling and variable selection22,55—have yet rarely been rigorously compared438

to classical statistical models24. Here, such comparison revealed significantly better performance439

of the nonlinear random survival forest RSF model compared to the linear proportional hazards440

Cox model. In our approach, we did not use the propagation of standard statistical quantification441

of the parameters’ estimates uncertainty to evaluate the accuracy of themodel predictions. Rather,442

we relied on the RSF-outputted individual survival curves to sample virtual individuals and compute443
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prediction intervals.444

A drawback of classical TK–OS studies is that they make use of the full observed kinetics to445

predict overall survival, which can lead to time-dependent covariate bias56 and limit their practical446

applicability at bedside. We used individual-truncated data sets and found that kML was already447

improving predictions over mBSL using data at 1.5 months, which corresponds to the first imag-448

ing assessment of the treatment effect. At later times, stratification abilities increased to highly449

significant levels (e.g., HR = 5 at 6.8 months).450

A strength of our study is that we relied on well-curated data with high number of patients from451

clinical trials. However, when extrapolating to other settings— earlier trial phases, real-world data452

— limited number of patients might be available. Yet, we found that using only 60 patients to train453

kML was sufficient to reach near-optimal performances.454

Not only kML has value for personalized health care, but it revealed also useful for prediction of455

a phase 3 trial using early on-study data. Our predictions compared favorably with previous work,456

being able to predict the study’s positive outcome from 25 weeks onwards, versus 40 weeks using457

TK only19 and 60 weeks if relying on the observed data alone. Of note, in a recent evaluation based458

on resampling the first-line NSCLC ATZ study IMpower150 to mimic small, short follow up early459

Phase Ib studies, TK model-based metrics had better operating characteristics to predict Phase460

III success compared with RECIST endpoints ORR and PFS55. Extension of such results with the461

addition of BKs is thus a promising line of research. In addition, kML, trained on ATZ data, yielded462

excellent predictive abilities for the docetaxel (control) arm. This suggests that the relationships463

between TK / BK and OS might be drug-independent. In turn, this opens future perspectives in464

terms of testing kML on drugs with different mechanism of action, or combinations.465

Further avenues of research comprise the development of integrative models from advanced466

multi-modal data such as the one collected during the PIONeeR clinical study (NCT03833440)57,58467

that include quantitative image analysis frommultiplex immune–histochemistry staining of tumor468

tissue, genomic and transcriptomic data, biological and clinical markers. In addition, mechanistic469

modeling of quantitative and physiologically meaningful longitudinal data (immune-monitoring,470

vasculo-monitoring, circulating DNA12,59–61, soluble factors62, pharmacokinetics, TK and a large471

number of BKs from either hematology or biochemistry) paves the way to an improved under-472

standing and prediction of mechanisms of relapse to ICI63. Furthermore, the predictive abilities of473

kML — at the both individual and study levels — should be evaluated in model-based prospective474

trials64.475

In conclusion, our study shows that integrating model-based on-treatment dynamic data from476

routine biological markers shows great promise for both personalized health care and early pre-477

diction of the outcome of late-phase trials during drug development.478
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Appendix 1674

Supplementary figures675

1

Study Description Population N

FIR
GO28625

Phase 2 study for the efficacy and safety of ATZ in 
advanced NSCLC

PD-L1 positive locally advanced or metastatic NSCLC 
(lines 1 and 2+)

133

POPLAR 
GO28753

Phase 2 randomised controlled trial of ATZ  versus 
docetaxel in NSCLC

Locally advanced or metastatic NSCLC who failed
platinum therapy (line 2)

134

BIRCH
GO28754

Phase 2 study of ATZ in advanced or metastatic 
NSCLC

Locally advanced or metastatic NSCLC (lines 1, 2 or 3) 595

Train 862

Test - OAK
GO28915

Phase 3 RCT of ATZ  versus docetaxel (DTX)  in 
patients with previously treated NSCLC

Stage IIIB or IV, previously chemo treated
553 

Train + Test 1415

Four monotherapy studies of atezolizumab in advanced NSCLC. NSCLC: Non-Small Cell Lung Cancer; p = number of parameters, N: number of 
patients treated with atezolizumab (patients from French centers were excluded for legal reasons (N=118); In total, data from 1074 patients from 
OAK were used as Test set (553 from the ATZ arm, 521 from the DTX arm); PD: Pharmacodynamic; SLD: Sum of the Largest Diameters. CRP: C 
Reactive Protein; LDH: Lactate Dehydrogenase. 

676

Appendix 1—figure 1. Train and test data sets677678

Characteristic Total, N = 14151 FIR, N = 1331 POPLAR, N = 1341 BIRCH, N = 5951 OAK, N = 5531 p-value2

Heart rate 81 (71, 92) 80 (70, 94) 84 (74, 96) 80 (70, 90) 81 (72, 93) 0.049

Systolic blood pressure 122 (111, 133) 122 (113, 132) 122 (112, 131) 120 (110, 133) 123 (113, 135) 0.13
1Median (IQR); n (%)
2Kruskal-Wallis rank sum test; Pearson's Chi-squared test

Characteristic Total, N = 14151 FIR, N = 1331 POPLAR, N = 1341 BIRCH, N = 5951 OAK, N = 5531 p-value2

Age 64 (57, 70) 67 (60, 73) 62 (55, 69) 65 (57, 71) 64 (57, 70) <0.001
Sex 0.3

Female 568 (40%) 57 (43%) 47 (35%) 251 (42%) 213 (39%)

Male 847 (60%) 76 (57%) 87 (65%) 344 (58%) 340 (61%)

Weight 72 (61, 82) 70 (60, 83) 73 (63, 84) 72 (61, 82) 71 (60, 82) 0.3
BMI 24.9 (22.1, 28.1) 24.8 (21.9, 27.6) 25.2 (22.8, 28.7) 25.0 (22.1, 28.2) 24.7 (22.0, 28.1) 0.4

Unknown 65 8 5 30 22

Race <0.001

Asian 228 (16%) 6 (4.5%) 23 (17%) 77 (13%) 122 (22%)

Others, unknown or missing 73 (5.2%) 9 (6.8%) 9 (6.7%) 23 (3.9%) 32 (5.8%)

White 1,114 (79%) 118 (89%) 102 (76%) 495 (83%) 399 (72%)

Smoking history 0.13

Current 171 (12%) 18 (14%) 22 (16%) 60 (10%) 71 (13%)

Never 248 (18%) 16 (12%) 27 (20%) 102 (17%) 103 (19%)

Previous 996 (70%) 99 (74%) 85 (63%) 433 (73%) 379 (69%)

679

Appendix 1—figure 2. Patient characteristics: demographics and clinics680681
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Characteristic Total, N = 14151 FIR, N = 1331 POPLAR, N = 1341 BIRCH, N = 5951 OAK, N = 5531 p-value2

Disease type 0.4
Locally advanced 77 (5.4%) 3 (2.3%) 8 (6.0%) 32 (5.4%) 34 (6.1%)
Metastatic 1,338 (95%) 130 (98%) 126 (94%) 563 (95%) 519 (94%)

Line <0.001
≥2 1,255 (89%) 102 (77%) 134 (100%) 466 (78%) 553 (100%)
1 160 (11%) 31 (23%) 0 (0%) 129 (22%) 0 (0%)

Histology <0.001
Non-squamous 1,016 (74%) 95 (100%) 87 (65%) 427 (72%) 407 (74%)
Squamous 361 (26%) 0 (0%) 47 (35%) 168 (28%) 146 (26%)
Unknown 38 38 0 0 0

Stage <0.001
I 123 (8.9%) 11 (8.7%) 4 (3.0%) 73 (12%) 35 (6.5%)
II 140 (10%) 11 (8.7%) 9 (6.8%) 73 (12%) 47 (8.7%)
III 367 (27%) 30 (24%) 37 (28%) 165 (28%) 135 (25%)
IV 753 (54%) 75 (59%) 82 (62%) 273 (47%) 323 (60%)
Unknown 32 6 2 11 13

Number of metastases 0.4
1 386 (28%) 35 (27%) 34 (26%) 158 (27%) 159 (29%)
2 655 (48%) 55 (42%) 61 (47%) 289 (50%) 250 (46%)
3 334 (24%) 41 (31%) 34 (26%) 128 (22%) 131 (24%)
Unknown 40 2 5 20 13

Liver metastases 272 (19%) 29 (22%) 33 (25%) 105 (18%) 105 (19%) 0.3
Number of met. loc. 0.3

Four sites 70 (4.9%) 13 (9.8%) 6 (4.5%) 27 (4.5%) 24 (4.3%)
One site 426 (30%) 37 (28%) 39 (29%) 178 (30%) 172 (31%)
Three sites 264 (19%) 28 (21%) 28 (21%) 101 (17%) 107 (19%)
Two sites 655 (46%) 55 (41%) 61 (46%) 289 (49%) 250 (45%)

Tumor size 59 (43, 95) 59 (57, 59) 70 (43, 107) 60 (37, 96) 70 (43, 102) 0.001
1n (%); Median (IQR)
2Pearson's Chi-squared test; Kruskal-Wallis rank sum test682

Appendix 1—figure 3. Patient characteristics: disease683684

Characteristic Total, N = 14151 FIR, N = 1331 POPLAR, N = 1341 BIRCH, N = 5951 OAK, N = 5531 p-value2

PD-L1 tumor cells <0.001

0 606 (43%) 4 (3.0%) 40 (30%) 212 (36%) 350 (64%)

1 209 (15%) 21 (16%) 56 (42%) 69 (12%) 63 (11%)

2 381 (27%) 105 (79%) 37 (28%) 160 (27%) 79 (14%)

3 217 (15%) 3 (2.3%) 1 (0.7%) 154 (26%) 59 (11%)

Unknown 2 0 0 0 2

PD-L1 immune cells <0.001

0 252 (18%) 3 (2.3%) 40 (30%) 16 (2.7%) 193 (35%)

1 398 (28%) 5 (3.8%) 56 (42%) 122 (21%) 215 (39%)

2 439 (31%) 25 (19%) 19 (14%) 297 (50%) 98 (18%)

3 322 (23%) 99 (75%) 19 (14%) 159 (27%) 45 (8.2%)

Unknown 4 1 0 1 2

ECOG 0.6

Status 0 505 (36%) 42 (32%) 44 (33%) 215 (36%) 204 (37%)

Status 1 or 2 909 (64%) 90 (68%) 90 (67%) 380 (64%) 349 (63%)

Unknown 1 1 0 0 0

1n (%)
2Pearson's Chi-squared test

685

Appendix 1—figure 4. Patient characteristics: PD-L1 and ECOG686687
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Individual goodness-of-fit 
(GOF) plots

20 randomly selected individual fits

Goodness-of-fit quantitatively assessed with residuals-based metric (see methods)

5688

Appendix 1—figure 5. TK modeling goodness-of-fit689690

Non - normalized

8+8 random patients

6

Normalized by baseline value – early cycles

691

Appendix 1—figure 6. Examples of longitudinal kinetics: Albumin692693
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Non - normalized

7+7 random patients

7

Normalized by baseline value – early cycles

694

Appendix 1—figure 7. Examples of longitudinal kinetics: CRP695696

Normalized by baseline value – early cyclesNon - normalized

8+8 random patients

8
697

Appendix 1—figure 8. Examples of longitudinal kinetics: LDH698699
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Non - normalized

7+7 random patients

9

Normalized by baseline value – early cycles

700

Appendix 1—figure 9. Examples of longitudinal kinetics: Neutrophils701702

10

Albumin CRP LDH Neutrophils

Model BICc b BICc b BICc b BICc b

Double-exponential 48,395 0.058 28,764 0.21 39,886 0.56 102,449 0.14

Hyperbolic 48,007 0.056 29,712 0.22 40,915 0.62 102,943 0.14

Linear 49,436 0.063 30,020 0.23 42,462 0.70 105,193 0.17

Constant 49,724 0.065 31,332 0.25 42,982 0.74 106,249 0.18

Corrected Bayesian Information Criterion (BICc) for four empirical kinetic models of BK. b : standard deviation of the proportional error model

703

Appendix 1—figure 10. Goodness-of-fit metrics of dynamic BK models704705
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Individual residuals Individual fits in patients with at least 10 data points

⇒ Good description of individual kinetics

⇒ No sign of model misspecification at 
individual level

706

Appendix 1—figure 11. Albumin: hyperbolic individual fits707708

Individual residuals Individual fits in patients with at least 10 data points

⇒ Globally,  several individuals not adequately fitted

⇒ Nevertheless, some patients have very accurate fits

⇒ Some trend of the model to underestimation

⇒ Distribution of IWRES remains close to gaussian

709

Appendix 1—figure 12. CRP: dexp individual fits710711
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Individual residuals Individual fits in patients with at least 10 data points

⇒ Very good description of individual kinetics

⇒ No sign of model misspecification at 
individual level

13
712

Appendix 1—figure 13. LDH: dexp individual fits713714

Individual residuals Individual fits in patients with at least 10 data points

⇒ Moderate description of individual kinetics

⇒ No major sign of model misspecification at 
individual level

14
715

Appendix 1—figure 14. Neutrophils: dexp individual fits716717
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15

Comparative cross-validated predictive 
performances of the survival ML models. 

Note: 10-fold cross-validation on FIR, BIRCH and POPLAR (train data set) – performances using all features
718

Appendix 1—figure 15. Comparison of ML algorithms and tuning methods719720

16

6 months 24 months

Comparison of all model metrics for varying landmark time

12 months

721

Appendix 1—figure 16. ROC curves for variables landmark times (test set - OAK)722723
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17
724

Appendix 1—figure 17. Learning curve725726

727

Appendix 1—figure 18. Additional value of NLME to baseline for multiple metrics728729
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kML 1.5 months kML 3 months kML 6.8 months

A

B

730

Appendix 1—figure 19. kML models using only single kinetic markers731732
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