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Abstract

Background: Psychiatric disorders cause substantial patient su↵ering world-
wide, which could be alleviated through the discovery of early diagnostic
biomarkers. Urinary markers have promising practical applications; however,
no robust urine biomarkers exist currently for psychiatric disorders. While
the traditional biomarker discovery process is costly and time-consuming,
genetic methods utilizing existing data from large-scale studies, such as
Mendelian randomization, may provide an alternative, cost-e↵ective approach
to identifying such biomarkers. Methods: A two-sample Mendelian ran-
domization analysis was conducted in R using GWAS data for seven psy-
chiatric disorders from the Psychiatrics Genomics Consortium, as well as
a meta-analysis of urinary metabolite GWAS studies and the GWAS Cat-
alog. Mendelian randomization assumptions were assessed using the MR-
Egger intercept, P-values, and genetic associations from the PhenoScanner
database. Outcomes: The Mendelian randomization analysis revealed 67
analyte-disorder associations, of which 21 were exclusive to a single disorder.
Most notable associations were observed between tyrosine and schizophrenia
(�=-0·041, SE=0·013, Q=0·027), and creatine and bipolar disorder (�=-
0·077, SE=0·019, Q=0·002), which validated across multiple studies, as well
as that of pyridoxal (�=0·10, SE=0·03, Q=0·042) and ferulic acid 4-sulfate
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(�=0·077, SE=0·025, Q=0·037) to anorexia nervosa, and N,N-dimethylglycine
to attention deficit hyperactivity disorder (�=-0·39, SE=0·11, Q=0·008). In-
terpretation: These results indicate an association between bipolar disorder,
schizophrenia, anorexia nervosa, and attention deficit hyperactivity disorder
with urinary metabolite marker alterations. Most of the findings were sup-
ported by previous literature. The results provide a roadmap for future ex-
perimental and clinical validation of the identified biomarker candidates and
demonstrate the utility of using genetic instruments for urinary biomarker
discovery.

Keywords: Psychiatric disorders, Mendelian randomization, Biomarkers

1. Introduction

Psychiatric disorders pose significant diagnostic challenges, leading to sub-
stantial personal and economic burden worldwide. The 12 most debilitating
psychiatric disorders are estimated to annually cause 125 million disability
adjusted life years globally1, and economically the direct and indirect costs
of mental health disorders in the UK alone are estimated to account for
4·5% of the gross domestic product, or £70B-£100B every year2. Only the
three most debilitating psychiatric conditions, i.e., major depressive disor-
der, schizophrenia, and bipolar disorder, have each been estimated to incur
annual societal costs of £5B-£8B in England alone3–5.

Although early intervention and treatment have been associated with im-
proved long-term outcomes6–8, delays in the diagnosis of psychiatric dis-
orders are common. The di�culty in diagnosing psychiatric diseases lies
within the current diagnostic frameworks, which are primarily interview-
based methods9,10, as well as the lack of biological consistency within the
disorders11. As a result, 39% of patients with a severe psychiatric disorder
are initially misdiagnosed12. It has been reported that the average diagnostic
delay for bipolar disorder is 6·5 years13, and the mean duration of untreated
psychosis has been estimated to be up to 2·9 years14. Early and accurate
diagnosis and intervention could significantly mitigate the severe burden and
costs associated with mental health disorders. This could be facilitated by
the discovery of consistent and actionable biomarkers in easily accessible pa-
tient samples, which could additionally provide a valuable means to improve
biological understanding of psychiatric diseases.
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Among other biological patient samples, urine holds great promise as a po-
tential source of biomarkers. However, it is commonly overlooked by the sci-
entific community for nearly all disorders. Publications listed in PubMed for
blood-based biomarker research outnumber urinary biomarker publications
ten-fold. Despite being often overlooked, urine mostly retains the biomarker
signal observed in plasma, as a substantial proportion of urinary metabolite
concentrations are filtered directly from plasma15. Furthermore, urine has
significant advantages as a biomarker source compared to other body fluids
due to the ease and non-invasive nature of sample collection, and the abun-
dance of sample volume. Discovery of robust urinary markers could introduce
an opportunity for a simple, non-invasive, and longitudinal biomarker assess-
ment as well as point-of-care testing for high risk of disease or relapse.

The high clinical potential of urinary biomarkers can be fully utilised with
careful study design and appropriate methodology. Computational methods
could overcome the challenges of urinary biomarker discovery in psychiatric
diseases, including the high variation in analyte concentrations16,17 as well
as the significant impact of potential confounding e↵ects. One such method
is a genetic analysis called Mendelian randomization (MR)18, which utilizes
the principles of instrumental variable analysis and applies them to genetic
data to evaluate the e↵ects of a given exposure (i.e., an analyte of interest)
on a selected outcome (i.e., risk of psychiatric disease) when the e↵ect of the
genetic variability on both are known.

In the present study, we aimed to discover genetically linked urinary markers
for seven psychiatric disorders potentially capable of di↵erential diagnosis.
A two-sample MR study was conducted using exposure data obtained from
a meta-analysis of urinary metabolite GWAS studies and urinary metabo-
lite associations from the GWAS catalog, as well as outcome data obtained
from the most up-to-date psychiatric disorder GWAS data. Additionally,
sensitivity analyses were conducted, including tests for horizontal pleiotropy,
heterogeneity, confounder associations, as well as the determination of poten-
tial mechanistic reasons for altered expressions, to validate MR assumptions
and ensure the robustness of the identified biomarker candidates.
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2. Methods

2.1. Compilation of the exposure data

The exposure association data were obtained from a meta-analysis of uri-
nary metabolite GWAS described in detail by Zaki et al. (manuscript in
preparation), as well as results from the GWAS catalog under the trait uri-
nary metabolite measurement (EFO 0005116). In brief, the meta-analysis19

combined results from five urinary metabolite GWAS20-24 using a sample
size-based meta-analysis method25, identifying 2248 significant associations
for 14 analytes (P<7·1x10-9) prior to clumping. The identified SNPs from
the meta-analysis were combined with 195 associations for 152 analytes ob-
tained from the GWAS catalog20,21,23,24,26–30, excluding SNPs duplicated in
the catalog as well as mislabelled studies conducted in other sample types.
All studies contained European ancestry populations; however, some studies
di↵ered in confounder profiles such as obesity and age. Exclusively genome-
wide significant associations (P<5x10-8) were selected for the analysis from
the GWAS catalog. An F-statistic was calculated for all exposure associa-
tions to evaluate weak instrument bias18.

2.2. Psychiatric disorder GWAS data collection

The most recent summary statistics GWAS data for each assessed psychiatric
disorder were selected from meta-analyses conducted by the Psychiatrics
Genomics Consortium, which were primarily based on European ancestry
populations and did not have patient overlap with the exposure datasets.
The seven psychiatric disorders selected for this study included attention
deficit hyperactivity disorder (nADHD=20183, nCTRL=35191)31, anorexia ner-
vosa (nANO=16996, nCTRL=55525)32, autism spectrum condition (nASC=18381,
nCTRL=27969)33, bipolar disorder (nBD=41917, nCTRL=371549)34, major de-
pressive disorder (nMDD=15771, nCTRL=178777)35, schizophrenia (nSCZ=76755,
nCTRL=243649)36, and Tourette’s syndrome (nTS=4819, nCTRL=9488)37.

2.3. Mendelian randomization

Two-sample MR was conducted to genetically assess causal associations of
analytes selected in the meta-analysis and the GWAS catalog to the seven
psychiatric disorders. MR analysis was carried out using the TwoSampleMR38

package in R. For the significant analyte-SNP associations from the meta-
analysis, MR was performed separately between each of the meta-analysed
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studies and the outcome datasets, with MR estimates subsequently com-
bined using the inverse variance weighted (IVW) meta-analysis method25.
This two-step process was necessary due to inconsistent measurement meth-
ods, scales, and log transformations used for individual analytes included in
the meta-analysis, which caused their beta coe�cients and standard errors
to be incomparable and prevented them from being combined into a single
coe�cient. For the exposure data from the GWAS catalog, a standard single-
step MR was performed.

For each of the analyses, closely located (1000 kb) and correlated (r2<0·001)
SNPs in the exposure dataset were combined by clumping using the Euro-
pean population-based reference panel from the 1000 Genomes Project39. For
exposure SNPs not found in the outcome dataset, highly correlated (r2<0·8)
linkage disequilibrium (LD) proxy replacements in the outcome dataset were
identified using the European population from the 1000 Genomes Project as
a reference, and the LDlinkR40 package in R. The IVW ratio MR method
was used for metabolites with at least two SNP associations, and the Wald
ratio (WR) MR method was used for metabolites with only a single SNP
association41. For metabolites with three or more SNP associations, sensi-
tivity analyses were conducted using the weighted median, weighted mode,
and MR-Egger methods to assess consistent directionality and e↵ect sizes42.
Cochrane’s Q test was applied for metabolites assessed using the inverse vari-
ance weighted method to assess heterogeneity between e↵ect size estimates42.
The Benjamini-Hochberg method was used to correct for multiple compar-
isons, with the significance threshold set to Q<0·05.

2.4. Assumption validation

The three assumptions of MR analysis state that: 1) the genetic instrument
must be associated with the exposure, 2) the genetic instrument must not di-
rectly influence the outcome (i.e., horizontal pleiotropy must not occur), and
3) the genetic instrument must not be associated with potential confounders
of the exposure and the outcome18. These assumptions were assessed for all
results which passed the significance threshold following multiple compar-
ison correction. The first assumption of genetic instrument association to
exposure levels was assessed through the significance level of the exposure
associations (P<5x10-8) in either the GWAS catalog or the meta-analysis.
To assess the second and third assumptions, SNP-trait associations were
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examined using the PhenoScanner database43,44, with genome-wide signifi-
cant associations to either the disorder or known demographical confounders
(such as smoking for schizophrenia) invalidating the assumptions. Addi-
tionally, MR-Egger intercept was used to assess metabolites with more than
three SNP associations, with significant associations indicating horizontal
pleiotropy42.

3. Results

3.1. Mendelian randomization

In the present work, the causal e↵ect of 163 urinary analytes on seven se-
lected psychiatric disorders was assessed using two-sample MR, with a total
of 4852 analyte-SNP associations combined from the meta-analysed studies
(4657) and the GWAS catalog (195) in the exposure dataset, and 56,698,746
unique SNP measurements in the outcome dataset. Prior to assumption val-
idation, 68 statistically significant metabolite-disorder associations were dis-
covered between 45 unique analytes and the mental health conditions ADHD,
anorexia, BD, and schizophrenia following multiple comparison adjustment.

3.2. Assumption validation and sensitivity analyses

To ensure that the first assumption of MR is met, and the instrumental vari-
ables are robustly associated with exposure, the analysis included only those
SNP-analyte associations that were genome-wide significant (P<5x10-8) in
either the GWAS catalog or the meta-analysis. The second and third assump-
tion of MR was assessed using SNP-trait associations from the PhenoScan-
ner database. The analysis revealed a genome-wide significant association
of alcohol intake frequency with rs2287921 and rs281408, which were both
significantly associated with fucose. Therefore, the association of fucose to
schizophrenia (�=0·09, SE=0·017, Q=3·56x10-5) was excluded from the list
of results, as potentially representing an indirect e↵ect of alcohol consump-
tion. No other analysed SNPs were found to violate the assumptions of MR.
Furthermore, horizontal pleiotropy was not found to be present in any of the
SNP-trait associations where an MR-Egger intercept was able to be calcu-
lated (3 SNPs per analyte). Further sensitivity analyses showed that for
associations whose exposure data were obtained from multiple studies, the
MR estimates were consistent between individual source studies, as shown
in Supplementary Figures 1 and 2. Additionally, no heterogenic e↵ects were
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observed for SNPs involved in any of the significant associations (Supple-
mentary Table 2). Finally, consistent e↵ect sizes were observed for all appli-
cable SNP-trait associations using non-primary MR modes (weighted mode,
weighted median, and MR-Egger) which have been presented in Supplemen-
tary Figure 3.

3.3. Common markers of psychiatric disorders

Following the assumption validation, 67 metabolite-disorder associations re-
mained significant between 44 unique analytes and the respective disor-
ders, with no significant associations found for ASC, MDD, or Tourette’s
syndrome. All significant metabolite-disorder associations following meta-
analysis and assumption validation are presented in Supplementary Table
1. The largest overlap was observed between biomarker associations to BD
and schizophrenia, which overlapped in 22 unique analytes with similar e↵ect
sizes and directionality. The extent of overlap between BD and schizophrenia
is shown in Figure 1. The most significant associations overlapping between
BD and schizophrenia involved most notably numerous N-acetylated com-
pounds. In addition, anorexia was associated with upregulated pyridoxal
(�=0·10, SE=0·03, Q=0·042) and ferulic acid 4-sulfate (�=0·077, SE=0·025,
Q=0·037), which also overlapped with BD and schizophrenia, however with
opposite directionality.

3.4. Di↵erential markers of psychiatric disorders

Of the 67 significant metabolite-disorder associations, 21 were exclusive to a
single disorder. Of these, five were associated with schizophrenia, 15 with BD,
and one with ADHD. The most robust associations were observed between
tyrosine and schizophrenia (�=-0·041, SE=0·013, Q=0·027), and creatine
and BD (�=-0·077, SE=0·019, Q=0·002), due to their associations being
significant after assessment in multiple studies. The single analyte association
to ADHD was N,N-dimethylglycine (�=-0·39, SE=0·11, Q=0·008). All non-
overlapping analyte associations specific to schizophrenia or BD are shown
in Figures 2.

4. Discussion

The present study aimed to discover putative urinary metabolite biomarkers
of psychiatric diseases using genetic instruments. To this end, a two-sample
MR analysis was conducted using GWAS exposure data obtained from a
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meta-analysis of urinary metabolite GWAS studies as well as the publicly
available GWAS catalog, and the outcome data obtained from the Psychi-
atric Genomics Consortium. Causal e↵ects were identified for 67 analyte-
disorder associations, of which 21 were specific to a single disease. Most no-
table findings of the analysis include the common association of N-acetylated
compounds to BD and schizophrenia, tyrosine to schizophrenia, creatine to
BD, N,N-dimethylglycine to ADHD, as well as pyridoxal and ferulic acid 4-
sulfate to anorexia. The overlapping markers, as well as markers of ADHD
and anorexia are discussed in the supplementary material in the Extended
Discussion. Previously published direct and indirect associations were found
in the existing literature for all of the shared putative biomarkers of the disor-
ders. Furthermore, tyrosine and creatine have been reported to show strong
and robust pathophysiological associations with schizophrenia and BD, re-
spectively. Owing to their specificity and the multiple lines of supporting
evidence, these biomarkers have potential to di↵erentiate not only patients
from healthy controls, but also di↵erent diseases from each other.

4.1. Specific biomarkers of bipolar disorder

The 15 significant urinary biomarkers associated uniquely with BD can be
grouped into glycine-related compounds (creatine, tigloyl glycine, isovaleryl
glycine, isobutyryl glycine, 3-methyl crotonyl glycine, and 2-methylbutyrylglycine),
sulfates (gamma-cehc sulfate, epiandrosterone sulfate, 16A-hydroxy DHEA
3-sulfate, andro-steroid monosulfate), cholates (tauro-beta-muricholate, glyco-
beta-muricholate), as well as individual compounds, N-acetyl-aspartyl-glutamate,
N-methylpipecolate, and methyl succinyl carnitine. Although sulfates, cholates,
and the individual compounds N-methylpipecolate and methyl succinyl carni-
tine have no known associations to BD, existing literature shows that glycine-
and glutamate-related compounds have well-established links to the disease.

Glycine and glutamate alterations in plasma have been observed in BD pa-
tients during manic phases, irrespective of mood stabilizer treatment45. Glu-
tamate and glycine are co-agonists at the N-methyl-D-aspartate receptor
(NMDAR), the abnormalities of which have been hypothesized to be associ-
ated with symptoms of BD46. The specific details of the mechanism of action
regarding NMDARs and BD are not yet thoroughly understood, however the
results of the MR analysis further support the connection and suggest a
pathophysiological role for N-acetyl-aspartyl-glutamate. Additionally, the
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MR analysis results imply that creatine is inversely correlated with BD. Cre-
atine is a compound commonly linked with energy metabolism in muscle and
brain tissue, and can be supplemented dietarily, however in the body it is
also synthesized using glycine and other amino acids47. Creatine has been
extensively linked with BD in past studies because of its relation to brain
energy metabolism. Reductions of creatine levels have been identified in sev-
eral regions of the brain in BD48,49, and total creatinine has been shown to be
inversely correlated with depressive symptom severity in patients with BD50.
In a clinical trial of creatine add-on supplementation, the e�cacy of creatine
in treating depressive symptoms was not statistically significant, however it
was shown to significantly improve remission rates in BD patients51. There-
fore, it can be hypothesized that naturally increased creatine levels could
have protective e↵ects in relation to symptoms of BD.

4.2. Specific biomarkers of schizophrenia

The five exclusive associations between urinary analytes and schizophrenia
were tyrosine, methylsuccinate, ethylmalonate, beta-citrylglutamate, and 2-
methylmalonylcarnitine. The analytes can be grouped into two categories.
Tyrosine and beta-citrylglutamate are metabolically associated with the neu-
rotransmitters dopamine and glutamate, which are central to the leading hy-
potheses of the mechanism of schizophrenia. In turn, 2-methylmalonylcarnitine,
methylsuccinate, and ethylmalonate are associated with metabolic distur-
bances in mitochondria, which similarly have been hypothesised to cause
schizophrenia.

Methyl succinic acid and ethylmalonic acid are conjugate acids of methylsuc-
cinate and ethylmalonate, respectively. When upregulated in urine, they are
biomarkers of the severe neurometabolic condition ethylmalonic encephalopa-
thy (EE)52, which is characterized by disturbances in the brain, cardiovas-
cular, and digestive systems. EE is caused by disturbances in mitochondrial
function through mutations a↵ecting the production of an enzyme which
breaks down sulfides in mitochondria. As the MR results imply that up-
regulated urinary methylsuccinate and ethylmalonate increase susceptibil-
ity to schizophrenia, it can be hypothesized that a similar mechanism to
that of EE involving mitochondrial dysfunction may exist in schizophre-
nia. In addition, ethylmalonate in cerebrospinal fluid has been directly
associated with schizophrenia in the past53, suggesting that a mechanistic
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association may exist between ethylmalonate and the disease. In turn, 2-
methylmalonylcarnitine is a short-chain acylcarnitine which has roles in acyl-
group compound transport into mitochondria for energy production54, and
it has been linked with ASC through e↵ects on mitochondrial function55.
Mitochondrial disturbances have been strongly linked with increased risk of
schizophrenia56,57, however the exact pathomechanism remains elusive. The
results of the MR analysis linking ethylmalonate, methylsuccinate, and 2-
methylmalonylcarnitine to schizophrenia therefore indicate a possible causal
linking factor through e↵ects on mitochondrial function and should be fur-
ther validated in future studies.

The MR results regarding tyrosine and beta-citrylglutamate are in line with
the dopamine and glutamate hypotheses of schizophrenia, which are at present
the dominant theories of the mechanisms underlying the disease58,59. Briefly,
the dopamine hypothesis states that the psychotic symptoms of schizophrenia
stem from hyperactive dopamine neurotransmission, as well as oversensitiv-
ity of dopamine receptors59. Most current antipsychotic treatments target
this system through dopamine receptor blockage59. Tyrosine is a precursor
amino acid of dopamine and is thus central to the dopaminergic pathway,
acting as a limiting factor in the production of dopamine60. Observed causal
e↵ects from the MR imply that higher levels of tyrosine result in a lower like-
lihood of schizophrenia development. The results can be interpreted within
the context of the dopamine hypothesis as being a result of potentially en-
hanced conversion of tyrosine into dopamine, however other possibilities also
exist. Previous clinical trials have not supported the possibility of a protec-
tive e↵ect of tyrosine on schizophrenia symptoms61, therefore it is more likely
that the observed e↵ect is an outcome of a mechanistic step in the symptom
development pathway. Other studies have suggested that limited tyrosine
transport to the brain through the blood brain barrier could be causal to
the alterations of dopamine levels in the brains of schizophrenia patients62,63.
Therefore, increased peripheral levels of tyrosine could imply that an excess
of tyrosine may mitigate the lower tyrosine transport into the brain, and thus
reduce the symptoms of schizophrenia.

The literature regarding beta-citrylglutamate is limited, however it is a known
derivative of glutamate, and concentrations of beta-citrylglutamate decrease
with age64. The glutamate hypothesis of schizophrenia is similar to the obser-
vations of glutamate disruptions in BD, where the downregulated glutamate
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signalling function of NDMARs are hypothesized to be associated with the
cognitive and negative symptoms of schizophrenia58. The MR results imply
that decreased urinary beta-citrylglutamate increases the risk of developing
schizophrenia, which may be due to lower baseline levels of glutamate result-
ing in decreased glutamate signalling. Taken together, the present results
are in line with the dopamine and glutamate hypotheses of schizophrenia
and indicate urinary tyrosine and glutamate as potential biomarkers.

4.3. Urinary diagnostics

The observed urinary analyte-disorder associations, if validated, have the po-
tential to be used in a di↵erential diagnostic biomarker panel. This is due to
the sheer number of markers exclusive to a single disease, specifically for BD
and schizophrenia. The collective predictive value of the identified biomark-
ers could surpass the threshold for utility in a clinical test. A significant
benefit of the discovered biomarkers concerns the target disorders. BD and
schizophrenia are commonly misdiagnosed with each other, with an estimated
24% of schizophrenia patients being misdiagnosed with BD12,65, and one-third
of BD patients receiving an initial diagnosis of schizophrenia66. Therefore, a
diagnostic panel would only need to be able to accurately di↵erentiate the
two disorders from each other to be clinically relevant. Additionally, for
high-risk individuals such as close relatives of patients with the respective
disorders, a point-of-care diagnostic assessment could be developed to iden-
tify early indicators of either disorder, owing to the non-invasive nature of
urinary measurements.

4.4. Computational screening for biomarker discovery

The present study highlights the robust capability of computational methods
to pre-emptively identify high-priority targets in biomarker discovery in ad-
dition to traditional methods. The current landscape in biomarker discovery
does not utilize computational resources to its full extent. While MR studies
have been carried out in the past for biomarkers of mental health disorders
in the past67,68, the intent is often to exclusively identify causal e↵ects and
not disease biomarkers. Additionally, in the vast majority of biomarker dis-
covery trials, computational screening is not utilized for target identification.
As the library of GWAS studies expands, the use of computational biolog-
ical assessment through MR should be more accessible and applicable to a
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wide variety of disorders and markers. Therefore, the use of computational
methods for biomarker candidate screening should be broadly implemented
to maximize the probability of success in clinical trials, especially consider-
ing the high costs of conducting such studies, and the low cost of MR analysis.

4.5. Limitations

Urinary analyte levels are significantly impacted both between and within
individuals and depend on changes in daily activities such as diet, hydration,
or activity levels16,17. When considering that the majority of the identified
markers show small e↵ect sizes, the observation and validation of the mark-
ers in real samples could be challenging. Another limitation is the lack of
availability of comprehensive urinary GWAS data. Urinary analyte GWAS
compared to other GWAS studies typically have small sample sizes, mea-
sure a limited number of analytes, and use more variable scales, which lim-
its the number of SNPs available for analysis and necessitates the use of
non-standard MR methods, such as the one used in the present study. Ad-
ditionally, palindromicity of the analysed SNPs was not evaluated in the
analysis due to a lack of allele frequency data in the majority of the exposure
datasets. In the outcome datasets, the SNP associations are assessed against
healthy controls and not against other disorder groups, therefore it is feasi-
ble that some di↵erential biomarkers identified in this study may overlap in
real patient samples. Finally, the assessed GWAS studies in the analysis are
primarily based on European populations, therefore the analysis might not
translate to other ethnic populations.

4.6. Conclusions

In conclusion, we identified 21 urinary biomarker candidates with a potential
for di↵erential diagnosis of psychiatric disorders using a two-sample MR ap-
proach. Of the putative biomarkers, five were associated with schizophrenia,
15 with BD, and one with ADHD. Tyrosine for schizophrenia and creatine
for BD were considered the most robust markers, owing to their e↵ects being
identified based on multiple studies. The findings indicate that urine could
be a valuable source of biomarkers for various psychiatric disorders and high-
light the strength of computational and genetic analyses for the purposes of
biomarker discovery. With further validation, the identified markers could be
used for developing a di↵erential diagnostic non-invasive biomarker platform
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for psychiatric diseases, which is much needed to lower delays in diagnosis
as well as misdiagnosis rates of severe psychiatric disorders and mitigate the
significant economic and individual burdens.
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Figure 1: Venn diagram of significant analyte association for schizophrenia (SCZ), and
bipolar disorder (BD). E↵ect size estimate directionality has been indicated with triangles.

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 26, 2023. ; https://doi.org/10.1101/2023.09.26.23296078doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.26.23296078


 
 

 

0.11(0.03), Q=0.001

−0.07(0.02), Q=0.004

−0.14(0.04), Q=0.011

−0.16(0.05), Q=0.017

−0.16(0.05), Q=0.017

−0.16(0.05), Q=0.017

−0.08(0.02), Q=0.002

−0.14(0.04), Q=0.017

−0.13(0.04), Q=0.017

−0.05(0.02), Q=0.017

−0.07(0.02), Q=0.017

−0.06(0.02), Q=0.017

−0.03(0.01), Q=0.027

0.05(0.02), Q=0.037

−0.05(0.02), Q=0.037

16a−hydroxy DHEA 3−sulfate

2−methylbutyrylglycine

3−methylcrotonylglycine

Andro steroid monosulfate

Creatine*

Epiandrosterone sulfate

Gamma−cehc sulfate

Glyco−beta−muricholate

Isobutyrylglycine

Isovalerylglycine

Methylsuccinoylcarnitine

N−acetyl−aspartyl−glutamate

N−methylpipecolate

Tauro−beta−muricholate

Tigloylglycine

−0.2 0.0 0.2

Bipolar disorder

0.11(0.03), Q=0.001

−0.07(0.02), Q=0.004

−0.14(0.04), Q=0.011

−0.16(0.05), Q=0.017

−0.16(0.05), Q=0.017

−0.16(0.05), Q=0.017

−0.08(0.02), Q=0.002

−0.14(0.04), Q=0.017

−0.13(0.04), Q=0.017

−0.05(0.02), Q=0.017

0.21(0.06), Q=0.003

0.07(0.02), Q=0.004

−0.12(0.04), Q=0.044

−0.15(0.05), Q=0.048

−0.04(0.01), Q=0.027
Tyrosine*

2−methylmalonylcarnitine

Beta−citrylglutamate

Ethylmalonate

Methylsuccinate

16a−hydroxy DHEA 3−sulfate

Isobutyrylglycine

3−methylcrotonylglycine

Creatine*

2−methylbutyrylglycine

Tigloylglycine

Isovalerylglycine

Methylsuccinoylcarnitine

Gamma−cehc sulfate

N−acetyl−aspartyl−glutamate

−0.2 0.0 0.2
Log odds ratio per standard deviation increase in metabolite level (SE)

Inverse variance weighted Wald ratio

Schizophrenia

0.11(0.03), Q=0.001

−0.07(0.02), Q=0.004

−0.14(0.04), Q=0.011

−0.16(0.05), Q=0.017

−0.16(0.05), Q=0.017

−0.16(0.05), Q=0.017

−0.08(0.02), Q=0.002

−0.14(0.04), Q=0.017

−0.13(0.04), Q=0.017

−0.05(0.02), Q=0.017

0.21(0.06), Q=0.003

0.07(0.02), Q=0.004

−0.12(0.04), Q=0.044

−0.15(0.05), Q=0.048

−0.04(0.01), Q=0.027
Tyrosine*

2−methylmalonylcarnitine

Beta−citrylglutamate

Ethylmalonate

Methylsuccinate

16a−hydroxy DHEA 3−sulfate

Isobutyrylglycine

3−methylcrotonylglycine

Creatine*

2−methylbutyrylglycine

Tigloylglycine

Isovalerylglycine

Methylsuccinoylcarnitine

Gamma−cehc sulfate

N−acetyl−aspartyl−glutamate

−0.2 0.0 0.2
Log odds ratio per standard deviation increase in metabolite level (SE)

Inverse variance weighted Wald ratio

Schizophrenia

 

0.11(0.03), Q=0.001

−0.07(0.02), Q=0.004

−0.14(0.04), Q=0.011

−0.16(0.05), Q=0.017

−0.16(0.05), Q=0.017

−0.16(0.05), Q=0.017

−0.08(0.02), Q=0.002

−0.14(0.04), Q=0.017

−0.13(0.04), Q=0.017

−0.05(0.02), Q=0.017

−0.07(0.02), Q=0.017

−0.06(0.02), Q=0.017

−0.03(0.01), Q=0.027

0.05(0.02), Q=0.037

−0.05(0.02), Q=0.037

16a−hydroxy DHEA 3−sulfate

2−methylbutyrylglycine

3−methylcrotonylglycine

Andro steroid monosulfate

Creatine*

Epiandrosterone sulfate

Gamma−cehc sulfate

Glyco−beta−muricholate

Isobutyrylglycine

Isovalerylglycine

Methylsuccinoylcarnitine

N−acetyl−aspartyl−glutamate

N−methylpipecolate

Tauro−beta−muricholate

Tigloylglycine

−0.2 0.0 0.2

Bipolar disorder

0.11(0.03), Q=0.001

−0.07(0.02), Q=0.004

−0.14(0.04), Q=0.011

−0.16(0.05), Q=0.017

−0.16(0.05), Q=0.017

−0.16(0.05), Q=0.017

−0.08(0.02), Q=0.002

−0.14(0.04), Q=0.017

−0.13(0.04), Q=0.017

−0.05(0.02), Q=0.017

0.21(0.06), Q=0.003

0.07(0.02), Q=0.004

−0.12(0.04), Q=0.044

−0.15(0.05), Q=0.048

−0.04(0.01), Q=0.027
Tyrosine*

2−methylmalonylcarnitine

Beta−citrylglutamate

Ethylmalonate

Methylsuccinate

16a−hydroxy DHEA 3−sulfate

Isobutyrylglycine

3−methylcrotonylglycine

Creatine*

2−methylbutyrylglycine

Tigloylglycine

Isovalerylglycine

Methylsuccinoylcarnitine

Gamma−cehc sulfate

N−acetyl−aspartyl−glutamate

−0.2 0.0 0.2
Log odds ratio per standard deviation increase in metabolite level (SE)

Inverse variance weighted Wald ratio

Schizophrenia

0.11(0.03), Q=0.001

−0.07(0.02), Q=0.004

−0.14(0.04), Q=0.011

−0.16(0.05), Q=0.017

−0.16(0.05), Q=0.017

−0.16(0.05), Q=0.017

−0.08(0.02), Q=0.002

−0.14(0.04), Q=0.017

−0.13(0.04), Q=0.017

−0.05(0.02), Q=0.017

0.21(0.06), Q=0.003

0.07(0.02), Q=0.004

−0.12(0.04), Q=0.044

−0.15(0.05), Q=0.048

−0.04(0.01), Q=0.027
Tyrosine*

2−methylmalonylcarnitine

Beta−citrylglutamate

Ethylmalonate

Methylsuccinate

16a−hydroxy DHEA 3−sulfate

Isobutyrylglycine

3−methylcrotonylglycine

Creatine*

2−methylbutyrylglycine

Tigloylglycine

Isovalerylglycine

Methylsuccinoylcarnitine

Gamma−cehc sulfate

N−acetyl−aspartyl−glutamate

−0.2 0.0 0.2
Log odds ratio per standard deviation increase in metabolite level (SE)

Inverse variance weighted Wald ratio

Schizophrenia

Figure 2: Estimated causal e↵ects of urinary markers on the risk of bipolar disorder and
schizophrenia. Urinary markers are shown on the Y-axis and log-odds ratio of bipolar
disorder and schizophrenia are shown on the X-axis. Dots represent the mean e↵ect
size, with horizontal lines representing standard errors. Combined results from multiple
studies are marked with an asterisk (*). Q-values represent P-values adjusted for multiple
comparisons.
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