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ABSTRACT 

A number of challenges hinder artificial intelligence (AI) models from effective clinical 

translation. Foremost among these challenges are: (1) reproducibility or repeatability, which is 

defined as the ability of a model to make consistent predictions on repeat images from the same 

patient taken under identical conditions; (2) the presence of clinical uncertainty or the equivocal 

nature of certain pathologies, which needs to be acknowledged in order to effectively, accurately 

and meaningfully separate true normal from true disease cases; and (3) lack of portability or 

generalizability, which leads AI model performance to differ across axes of data heterogeneity. 

We recently investigated the development of an AI pipeline on digital images of the cervix, 

utilizing a multi-heterogeneous dataset (“SEED”) of 9,462 women (17,013 images) and a multi-

stage model selection and optimization approach, to generate a diagnostic classifier able to 

classify images of the cervix into “normal”, “indeterminate” and “precancer/cancer” (denoted as 

“precancer+”) categories. In this work, we investigated the performance of this multiclass 

classifier on external data (“EXT”) not utilized in training and internal validation, to assess the 

portability of the classifier when moving to new settings. We assessed both the repeatability and 

classification performance of our classifier across the two axes of heterogeneity present in our 

dataset: image capture device and geography, utilizing both out-of-the-box inference and 

retraining with “EXT”. Our results indicate strong repeatability of our multiclass model utilizing 

Monte-Carlo (MC) dropout, which carries over well to “EXT” (95% limit of agreement range = 0.2 

- 0.4) even in the absence of retraining, as well as strong classification performance of our 

model on “EXT” that is achieved with retraining (% extreme misclassifications = 4.0% for n = 26 

“EXT” individuals added to “SEED” in a 2n normal : 2n indeterminate : n precancer+ ratio), and 

incremental improvement of performance following retraining with images from additional 

individuals. We additionally find that device-level heterogeneity affects our model performance 

more than geography-level heterogeneity. Our work supports both (1) the development of 

comprehensively designed AI pipelines, with design strategies incorporating multiclass ground 

truth and MC dropout, on multi-heterogeneous data that are specifically optimized to improve 

repeatability, accuracy, and risk stratification; and (2) the need for optimized retraining 

approaches that address data heterogeneity (e.g., when moving to a new device) to facilitate 

effective use of AI models in new settings. 
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AUTHOR SUMMARY 

Artificial intelligence (AI) model robustness has emerged as a pressing issue, particularly in 

medicine, where model deployment requires rigorous standards of approval. In the context of 

this work, model robustness refers to both the reproducibility of model predictions across repeat 

images, as well as the portability of model performance to external data. Real world clinical data 

is often heterogeneous across multiple axes, with distribution shifts in one or more of these axes 

often being the norm. Current deep learning (DL) models for cervical cancer and in other 

domains exhibit poor repeatability and overfitting, and frequently fail when evaluated on external 

data. As recently as March 2023, the FDA issued a draft guidance on effective implementation 

of AI/DL models, proposing the need for adapting models to data distribution shifts.  

To surmount known concerns, we conducted a thorough investigation of the 

generalizability of a deep learning model for cervical cancer screening, utilizing the distribution 

shifts present in our large, multi-heterogenous dataset. We highlight optimized strategies to 

adapt an AI-based clinical test, which in our case was a cervical cancer screening triage test, to 

external data from a new setting. Given the severe clinical burden of cervical cancer, and the 

fact that existing screening approaches, such as visual inspection with acetic acid (VIA), are 

unreliable, inaccurate, and invasive, there is a critical need for an automated, AI-based pipeline 

that can more consistently evaluate cervical lesions in a minimally invasive fashion. Our work 

represents one of the first efforts at generating and externally validating a cervical cancer 

diagnostic classifier that is reliable, consistent, accurate, and clinically translatable, in order to 

triage women into appropriate risk categories. 
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INTRODUCTION 

The development of artificial intelligence (AI) and deep learning (DL) approaches have 

become seemingly ubiquitous in recent years, across several clinical domains, with 

optimized models reporting near-clinician-level performance (1–4). However, translation 

of AI models from bench to bedside remain sparse. To be clinically translatable, AI/DL 

models should be robust, computationally-efficient, low-cost, and blend well with 

existing clinical workflows, ensuring the inputs/outputs of the model and the task it 

performs are most relevant to the clinician for a given use case. This is often not the 

case with existing models, which are frequently hindered by several key methodological 

flaws in their design (5), thereby undermining their validity, and hindering clinical 

translation. In particular, model robustness has emerged as a key challenge hindering 

AI model deployment from bench to clinical practice. 

In the context of this work, model robustness refers to two key attributes: 1. 

repeatability or reproducibility, defined as the ability of a model to generate near-

identical predictions for the same patient under identical conditions, ensuring that the 

model produces precise, reliable outputs in the clinical setting (6); and 2. generalizability 

or portability, defined as the ability of a model to adapt well to domain expansion or, 

alternatively, the ability of a model to perform well on datasets that are out of distribution 

from the training data, i.e., having different characteristics from training data (7). There 

is a paucity of work in the current DL and medical image classification literature that 

assess one or both of these attributes, with many models tending to overfit to the 

training data distribution. This is either due to 1) the absence of data heterogeneity 

(geography-, institution-, population- and/or device-level) in the available training data 

for a given use case; and/or 2) the absence of specific optimization approaches to 

reduce overfitting. To assess whether a model is overfit, an external dataset is required 

which has different characteristics from the training set. Assessing overfitting is 

particularly important when considering AI model deployment for use cases that are 

likely to involve multiple axes of data heterogeneity. 

Globally, cervical cancer is the fourth most common cause of cancer morbidity 

and mortality, with approximately 90% of the 300,000 deaths per year occurring in low-

resource settings (8–10). Even though the causal pathway to cervical cancer is well 
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understood, with HPV being the main cause (11–13), this cancer has not yet been 

controlled, especially in low-resource settings (14). The primary prevention strategy is 

HPV vaccination, and for the secondary prevention strategy the World Health 

Organization (WHO) recommends screening with HPV test (15,16). In order to triage 

the risk of HPV-positive individuals, visual inspection with acetic acid (VIA) is used in 

low-resource settings (17,18). However, many studies have shown that expert visual 

evaluation has mediocre accuracy and repeatability (19,20). Therefore, there is a need 

for a highly accurate, repeatable, low-cost, point-of-care visual screening test to triage 

the risks of HPV-positive individuals. To address this need, we previously conducted a 

comprehensive, multi-stage model selection and optimization approach, utilizing a large, 

collated multi-institution, multi-device, and multi-population dataset, in order to generate 

a diagnostic classifier, termed automated visual evaluation (AVE) that is able to classify 

images of the cervix into “normal”, “indeterminate” (interchangeably termed as “gray 

zone”) and “precancer/cancer” (denoted as “precancer+”) categories (21). In the present 

work, we assess the generalizability or portability of AVE on multiple external datasets; 

specifically, we assess both the repeatability and classification performance, utilizing 

various retraining and inference strategies. Our approaches are directed by the known 

distribution shifts present in our external dataset, in the form of device and geography. 

Our work makes two important conclusions, which, we believe, hold relevance 

even outside of cervical imaging: 

1. Portability: 

a. Device-level heterogeneity impacts model performance greater than 

geography level heterogeneity. Our model performs well out of the box (no 

retraining) on external datasets where the axis of heterogeneity is geography 

only vs. device, i.e., on images from a different geography but sharing a 

device that is represented in the training dataset. 

b. Incremental retraining with inclusion of new device images to the training 

dataset progressively improves classification performance and class 

discrimination on images from a new device previously not incorporated in the 

training dataset, up to a point of saturation. 
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2. Repeatability: Our model is optimized for improved repeatability of predictions 

across multiple images from the same individual and continues to make 

repeatable predictions on external data. The repeatability performance holds true 

irrespective of the specific approach used for testing on the external dataset 

(inference vs. retraining) and the axis of data heterogeneity investigated (device 

vs. geography). 

 

MATERIALS AND METHODS 

In this paper, we utilized a model  that we developed in a prior study, following a multi-

stage model selection and optimization process utilizing a multi-heterogeneous dataset, 

henceforth referred to as “SEED” (21). The primary discernible axes of heterogeneity in 

this prior work included image capture device and geography. In the current study, we 

conducted a thorough external validation of our model by running the model on images 

prospectively collected from a new, external dataset, henceforth termed “EXT”. The 

“EXT” dataset used a different image capture device, Samsung Galaxy J8, from those 

of the SEED (Fig. 1), and also constituted six distinct geographies/countries (Table 1, 

Fig. 1). All of these countries are listed in the low- and middle-income countries (LMIC) 

classification of the World Bank and IMF (22). 

DATASET 

Analysis Population 

We utilized two groups of datasets in this study: 1) a collated, multi-institutional and 

multi-device (cerviscope, DSLR) dataset that was previously utilized in the model 

development work, which comprised of a convenience sample combining five distinct 

studies – Natural History Study (NHS), ASC-US/LSIL Triage Study for Cervical Cancer 

(ALTS), Costa Rica Vaccine Trial (CVT), Biopsy Study in the US (Biop), and Biopsy 

Study in Europe (D Biop) (21); we denote this dataset as “SEED”, and 2) an external 

multi-geography dataset of images taken by Samsung Galaxy J8 smartphones, from six 

countries – Bolivia, Brazil, Cameroon, El Salvador, Kenya and Thailand; we denote this 

dataset as “EXT”. All sites in “EXT” (except Brazil) was collected as part of the 

prospective AVE Network Project, where none of the images were available/used at the 

initial training, validation, and testing phases of the AVE algorithm. In all six countries, 
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cervical images were collected at the vaginal exam using a Samsung Galaxy J8 

smartphone. Referral for a vaginal exam was due to human papillomavirus (HPV) 

positivity in Bolivia and El Salvador, with additional cervical images from El Salvador 

collected from a randomly selected group of HPV-negative individuals. In Cameroon, 

Kenya, and Thailand, images were collected from VIA positive individuals at the triage 

visit. In Brazil, images were collected from patients with histologically confirmed cervical 

intraepithelial neoplasia (CIN) 2 or worse lesions. HPV tests used in these countries 

were Hybrid Capture 2 (HC2) (23) for Bolivia, AmpFire® (24) for Cameroon, and Care™ 

HPV (25) for El Salvador and Kenya. In Thailand, no HPV test was used for screening, 

however cytology was utilized in addition to VIA. Histopathologic confirmation of cervical 

cancer status in these countries were available in the form of CIN 2, CIN 3, 

adenocarcinoma in situ (AIS), and cervical cancer. In Brazil, images were collected after 

application of acetic acid and prior to Loop Electrosurgical Excision Procedure (LEEP). 

Ground Truth Delineation 

The ground truth values for the “EXT” dataset was assigned in a similar manner to that 

used for the “SEED” dataset (21). Specifically, the three ground truth values mapped to 

the images, “normal”, “indeterminate” and “precancer+”, were based primarily on 

histology and HPV results. All images ≥CIN 3 were assigned to precancer/cancer. If 

images were CIN 2, high-risk HPV (hrHPV) positivity was used to determine classes for 

images from all sites except Brazil: hrHPV+ was assigned to the “precancer+” class, 

and hrHPV- was assigned to the “indeterminate” class. All images from Brazil were 

>CIN 2 and were assigned to the "precancer+” class. For images where the 

histopathology result is <CIN 2 or missing, the ground truth class (either “normal” or 

“indeterminate”) was determined by a joint evaluation of a local clinician and an NCI 

expert colposcopist review in a site-specific manner. The final result of the ground truth 

distribution across each of the geographies, in terms of both the number of individuals 

and the number of images is depicted on Table 1. 

Ethics 

All study participants signed a written informed consent prior to enrollment and sample 

collection. All studies were reviewed and approved by the Institutional Review Boards of 

the National Cancer Institute (NCI) and the National Institutes of Health (NIH). 
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MODEL TRAINING AND ANALYSIS 

We conducted our model training and analysis in two distinct phases. Prior to any model 

runs, all images were cropped with bounding boxes generated from a YOLOv5 (26) 

model trained for cervix detection on the “SEED” dataset images (Fig. 2), resized to 

256x256 pixels, and scaled to intensity values from 0 to 1. For the retraining runs, affine 

transformations were applied to the image for data augmentation. 

Portability Analysis 

In the first phase, we assessed the portability of our model, conducting two distinct sets 

of investigations. In the first set, we analyzed the relative impacts of device- and 

geography-level heterogeneities of our dataset on model performance, both visually via 

uniform manifold approximation and projection (UMAP), and statistically via assessing key 

classification performance and repeatability metrics. 

First, in order to get a sense of the dataset distributions of the “SEED” and “EXT” 

datasets, including the distributions by device and geography, we ran out-of-the-box 

(OOB) inference with our initial model on the held-aside test set of the “SEED” dataset 

and on the full “EXT” dataset. We subsequently plotted UMAPs of the resulting features, 

which represent a dimension-reduced version of the features output from the model’s 

inference run, color-coded by dataset, device, and geography (Fig. 1) respectively. 

We further tested the impact of device- and geography-level heterogeneity on our 

model performance via three distinct model runs: (i) OOB inference of AVE on a test set 

comprising only of “SEED” images; (ii) OOB inference of AVE on a test set comprising 

only of “EXT” (J8) images; and (iii) training a model using the same hyperparameters as 

AVE but on both “SEED” images and “EXT” images from all geographies except Bolivia 

and testing on Bolivia images.  

In the second set of the portability analyses, we closely assessed the overall 

performance of AVE on “EXT” (J8) by incrementally adding women from “EXT” to our 

training set of “SEED” images, training on the combined set comprising of “SEED” and 

“EXT” images and testing on a common, held-aside set of “EXT” women (230 women, 

644 images). Specifically, we added images at the woman level in two distinct ratios of 

ground truth – 1 normal (N) : 1 indeterminate (I) : 1 precancer+ (P), and 2 N : 2 I : 1 P; 

our intuition behind these additions were twofold: 1) we sought to minimize the number 
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of precancer+ women needed when conducting a prospective study utilizing a new 

device, and 2) we intended to mimic the ground truth balancing utilized in our model 

development work, which used a 2 N : 2 I : 1 P ratio of ground truths during training on 

“SEED”, and evaluate whether matching the same balancing strategy as in the “SEED” 

set has any influence on the model performance. The specific increments of women 

added are highlighted in Fig. 4 and Table 2. We assessed the classification 

performance of the retrained models via the area under the receiver operating 

characteristics curve (AUROC) (Fig. 4), and the degree of extreme misclassifications 

(normal misclassified as precancer+ and vice versa) and total misclassifications (Table 

2). We also assessed the repeatability of these models via the degree of extreme 

disagreement (% 2-class disagreement between image pairs across women) and the 

95% limits of agreement (LoA) on a Bland-Altman plot (Table 2).  

Finally, to aid better visualization of predictions at the individual model level, we 

generated the plots on Fig. 4a which compare model predictions across 60 images for 

each of the retrained models. To generate this comparison, we first summarized each 

model’s output as a continuous severity 𝑠𝑐𝑜𝑟𝑒. Specifically, we utilized the ordinality of 

our problem and defined the continuous severity 𝑠𝑐𝑜𝑟𝑒 as a weighted average using 

softmax probability of each class as described in Equation 3, where 𝑘 is the number of 

classes and 𝑝𝑖 the softmax probability of class 𝑖. 

𝑠𝑐𝑜𝑟𝑒 =  ∑ 𝑝𝑖  × 𝑖

𝑘

𝑖=0

 

Put another way, the 𝑠𝑐𝑜𝑟𝑒 is equivalent to the expected value of a random variable that 

takes values equal to the class labels, and the probabilities are the model’s softmax 

probability at index 𝑖 corresponding to class label 𝑖. For a three-class model, the values 

lie in the range 0 to 2. We next computed the average of the 𝑠𝑐𝑜𝑟𝑒 for each image 

across all 16 models compared and arranged the images in order of increasing 𝑠𝑐𝑜𝑟𝑒 

within each class. From this 𝑠𝑐𝑜𝑟𝑒-ordered list, we randomly selected 20 images per 

class, maintaining the distribution of mean scores within each class, and arranged the 

images in order of increasing average 𝑠𝑐𝑜𝑟𝑒 within each class in the top row of Fig. 4a (i 

and ii), color coded by ground truth. We subsequently compared the predicted class 
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across the models for each of these 60 images (bottom 16 rows of Figure 4a), 

maintaining the images in the same order as the ground truth row and color-coded by 

model predicted class. This enabled us to gain a deeper insight and to compare model 

performances at the individual image level. 

Repeatability and Classification Performance Analysis 

In the second phase of our analysis, we sought to evaluate the improvement in 

repeatability and classification performance imparted by the two key innovations in our 

AVE model, namely multiclass classification (vs. binary) and the incorporation of Monte-

Carlo (MC) dropout. This was assessed by four distinct model runs which only differed 

in terms of these two design choices, with all other hyperparameters kept constant: (i) 

binary; (ii) binary with MC dropout; (iii) multiclass; and (iv) multiclass with MC dropout. 

Each of these models were trained on a dataset that comprised of the “SEED” dataset 

together with a small number of “EXT” (J8) images added in 2n N : 2n I : 1n P ratio of 

ground truths at the women level, for a total of n = 26 women, and tested on a held-

aside “EXT” (J8) dataset. For each of these cases, we first assessed the repeatability of 

these models via Bland-Altman plots and the corresponding 95% LoA (Fig. 5a), test-

retest score plots (Fig. 5b), and the degree of extreme disagreement (% 2-class 

disagreement between image pairs across women) (Fig. 5c 1) We assessed the 

classification performance of each of these models via the total degree of extreme 

misclassifications, the % precancer+ misclassified as normal, and the % normal 

misclassified as precancer+ (Fig. 5c 2-4). 

RESULTS 

In this work, we conducted a multi-stage external evaluation of our model, utilizing a 

collated multi-geography dataset of cervical images acquired using a J8 device. We 

assessed portability of our model across devices and geographies, repeatability, and 

classification performance respectively (see METHODS). 

PORTABILITY ANALYSIS 

The UMAPs on Fig. 1a and 1b highlight that the “EXT” dataset and its corresponding J8 

device occupy a different cluster from the “SEED” dataset and its corresponding 

devices, while Fig. 1c highlights the geography level distribution. Taken together, Fig. 
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1a, b and c suggests the relatively greater impact of device-level heterogeneity on 

model performance than geography-level heterogeneity, given that within the same 

device, different geographies do not occupy distinct clusters on Fig. 1c, unlike the 

corresponding device level clusters on Fig. 1b. 

This is further reinforced by Fig. 3, which highlights the results from the model 

runs designed to investigate the relative impacts of device- and geography-level 

heterogeneity. Fig. 3 illustrates that, for our model, device level heterogeneity impacts 

model performance greater than geography level heterogeneity. Specifically, column (i) 

of Fig. 3 highlights that our model performs well when running out-of-the-box inference 

on images that are acquired using devices that are represented in the SEED data 

utilized in training our model (AUROC Normal vs. Rest = 0.88, AUROC Precancer+ vs. 

Rest = 0.82). However, when tested on a new device, J8, out-of-the-box (OOB) 

inference using the same model trained on seed data fails, as indicated by the poor 

classification performance of our model (AUROC Normal vs. Rest = 0.65; AUROC 

Precancer+ vs. Rest = 0.60; no normal predictions) on column (ii) of Fig. 3. Column (iii) 

of Fig. 3 highlights that our model performs well when trained on images from a training 

set that includes the seed data and J8 images from all geographies except Bolivia and 

tested on J8 images from Bolivia (AUROC Normal vs. Rest = 0.70, AUROC Precancer+ 

vs. Rest = 0.79). This trend in classification performance is also reflected in the 

confusion matrices on row (b) of Fig. 3, where column (i) and column (iii) have extreme 

misclassification rates of 3.1% and 9.1% respectively, while column (ii) shows the model 

making only “indeterminate” and “precancer+” predictions, and no “normal” predictions. 

Finally, row (c) illustrates the strong repeatability performance of our model in all of the 

cases (i) – (iii), highlighted by the small width of the 95% limits of agreement (95% LoA) 

on each corresponding Bland-Altman plot (95% LoA = 0.24, 0.36, 0.42 respectively). 

Taken together, these results suggest that the classification performance of our model 

is affected more by device differences than differences in geography, while repeatability 

is relatively unaffected and quite strong throughout. 

Fig. 4 illustrates that, given the impact of device level heterogeneity on the 

performance of our model, retraining can improve performance on a new device 

previously not present in the “SEED”. Specifically, incremental retraining with inclusion 
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of J8 images to the seed data, where training set = “SEED” images + J8 images, 

progressively improves classification performance and class discrimination on a held-

aside test set consisting only of J8 images, up until a point of saturation. Panel (a) of 

Fig. 4 highlights this finding by providing a detailed comparison of model performance at 

the individual image level. Here (i) represents the case where the J8 images were 

added in a 1n N : 1n G : 1n P ratio of ground truth class at the woman level, while (ii) 

represents J8 additions in a 2n N : 2n G : 1n P ratio of ground truth classes at the 

woman level (the y-axis represents n, or the number of precancer+ women added). In 

both cases, incremental addition of new device images to the training set improves 

class discrimination; this improvement is achieved with fewer precancer+ cases added 

to the training set in (ii), with the 2:2:1 ratio. Panel (b) plots the AUROCs (both normal 

vs. rest and precancer+ vs. rest) against number of women added in the training set for 

each of the two corresponding ratios together with bootstrapped confidence intervals for 

each AUROC value, further reinforcing the finding that our model performance on J8 

images improves with increased representation of J8 images in the training set in a 

saturating fashion. Additionally, model performance on the original “SEED” set images 

remains consistently strong regardless of the number of women added from the “EXT” 

dataset (Supp. Table 1). 

Table 2 highlights key classification (% extreme misclassifications and % total 

misclassifications) and repeatability (% extreme disagreement and 95% LoA) metrics for 

the case where J8 images are added to the training set in a 2 N : 2 G : 1 P ratio at the 

woman level. Specifically, the decrease in % total misclassifications with progressive 

addition of J8 images in the training set further illustrates the improvement in 

classification performance. On the other hand, the repeatability of our model is quite 

strong and relatively consistent throughout, as highlighted by the consistently low % 

extreme disagreement and 95% LoA values in Table 2. 

REPEATABILITY AND CLASSIFICATION PERFORMANCE ANALYSIS 

We hypothesized that the two key design innovations utilized in our AVE model, namely 

multiclass classification (vs. binary) and the incorporation of MC dropout are optimized 

for both improved repeatability of predictions across multiple images from the same 

woman, as well as improved class discrimination, which subsequently carries over well 
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to “external” data (“EXT”) in the form of a new device (J8). This is evidenced in Fig. 5, 

which highlights key classification and repeatability metrics for each of the four models 

under investigation namely (i) binary, (ii) binary with MC dropout, (iii) multiclass and (iv) 

multiclass with MC dropout (our model). Panel (a) highlights the improvement in 

repeatability via decrease in the 95% LoA on the Bland Altman plot; specifically, the 

corresponding 95% LoA values are (i) 0.75, (ii) 0.50, (iii) 0.51, and (iv) 0.41 respectively. 

Both the binary to multiclass transition and the no dropout to MC dropout transition 

improve repeatability, with the multiclass MC model achieving the best repeatability 

among all models. This is reinforced by the test-retest score plot in (b), which highlights 

progressively stronger alignment to the diagonal representing no difference between 

image 1 and image 2 score at the patient level, from (i) through to (iv). Panel (c) (1) also 

highlights that the multiclass MC model (our model) achieves the smallest degree of 

extreme disagreement on repeat images per woman (0.25%), i.e., the fewest women for 

whom image 1 is predicted “normal” and image 2 is predicted “precancer+” and vice 

versa. Taken together, panel (a), panel (b) and panel (c) (1) suggest that our multiclass 

model with MC dropout is strongly optimized for improved repeatability. 

Panel (c) (2) – (4) highlight the improvement in classification performance, 

represented by successive decrease in % extreme misclassification, % normal 

misclassified as precancer+, and % precancer+ misclassified as normal, as we go from 

binary to binary MC to multiclass to a multiclass MC model. The incorporation of multi-

level ground truth delineations during our model selection approach was designed to (1) 

account for the inherent clinician uncertainty or the equivocal nature of certain 

pathologies (e.g., ASCUS in the Bethesda system) and (2) ensure reduction of grave 

errors or extreme misclassifications – Panel (c) (2) – (4) highlight that this is strongly 

achieved, with the multiclass MC model achieving the lowest % ext. mis. = 3.96%, % p 

as n = 8.29%, and % n as p = 1.30% respectively (purple bars in 1 – 4). 

DISCUSSION 

The use of AI models as possible biomarkers continue to be hindered by key factors 

that affect their clinical translation. To be effective, any biomarker needs to: 1. generate 

reproducible test results; 2. acknowledge uncertainty, particularly when the underlying 

predictive task has pre-existing uncertainty (e.g., ASCUS in the Bethesda system); and 
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3. acknowledge the need for, or the lack of, generalizability or portability to data 

heterogeneities. In this work, we address each of these properties in turn via first 

investigating the key axes of heterogeneities present in the underlying and prospectively 

acquired data, and subsequently demonstrating that the key design innovations of our 

multiclass AVE model are optimized for improved repeatability and classification 

performance and can translate well into new settings in order to facilitate clinical 

decision-making. 

Our work demonstrates proof of principle on adapting an AI-based clinical test, 

which in our case was a cervical cancer screening triage test, to a new setting. Both 

“internal” and “external” validation of AI models, particularly for models that are intended 

for clinical translation and deployment across heterogeneous data, are essential for fair 

evaluation of model performance (27). In the context of our work, “internal” validation 

refers to assessing model performance on data that shares similar distributional 

characteristics to the training data (e.g., same device, same geography, same 

population), while “external” validation uses datasets that are out-of-distribution (28). In 

the large majority of cases, the training data that is available for an AI model is 

homogeneous and does not often match the intended use case. Additionally, data drift 

or covariate shift, a phenomenon where the distribution of input data to an AI model 

changes over time, can significantly impact model performance following deployment 

(7,29,30). This is particularly consequential in a clinical setting, where an inaccurate 

model prediction can lead to a cascade of potentially harmful downstream clinical 

decisions which might impact the health and safety of a patient. In this work, we posit 

that assessing AI model performance requires thorough consideration of both 

repeatability or reproducibility of predictions, and the discrimination ability of the model, 

when evaluated on “external” data from a new setting. 

First, we highlight that our model achieves strong repeatability of predictions 

when evaluated on external data. In particular, our model makes reliable, consistent 

predictions on external data irrespective of the axis of data heterogeneity i.e., on 

individuals from new geographies or new devices. This is achieved even in the absence 

of retraining, and remains relatively constant throughout incremental retraining, as Table 
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2 highlights. This is largely attributable to the presence of MC dropout and the dedicated 

optimization of repeatability as a selection criterion during model optimization (6,21,31). 

Second, we demonstrate that our model is able to discriminate between classes 

(“normal”, “indeterminate”, “precancer+”) well when evaluated on external data without 

retraining, provided that the axis of heterogeneity is geography only. If the external data 

is from a new device, our model performance improves as we incrementally add images 

collected from additional individuals from the external dataset and retrain on the collated 

training set. The specific retraining approach used, in particular, a ground truth ratio of 

women added to match the corresponding ratio in the “SEED” used for baseline model 

training, also determines the extent of this improvement. Additionally, as Fig. 3 

highlights, this performance improvement eventually reaches a saturation point. Overall, 

these findings have important implications for clinical deployment: in order to deploy our 

model to a new setting which uses a different image capture device from the family of 

devices utilized in model training, we would need to retrain our model, via optimized 

strategies, with a small portion of labelled images acquired using the new device; 

however, this is not needed if the new setting only differs in terms of geography. We can 

therefore expect our model to generalize well across diverse geographies without the 

need for retraining, provided that the image capture device used is represented in the 

training set. This is a critical and impactful result, which implies that standardizing an 

image capture device should minimize the need for retraining. 

Despite the heterogeneous nature of our dataset, our work may be limited by the 

number of external devices utilized. Forthcoming work will evaluate our retraining 

approaches and assess model performance on additional external devices. Future work 

will additionally optimize our model for use on edge devices, thereby promoting 

deployability and translation in clinical settings. 
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FIGURE 1: Uniform manifold approximation and projections (UMAP) highlighting the relative 

distributions of the datasets, devices and geographies investigated in this work. Each subplot 

highlights a different representation of the UMAP, where the color coding (highlighted in the 

corresponding legend at the top of each subplot) is at the (a) dataset-level, (b) device-level and (c) 

geography-level. The datasets and devices occupy distinct clusters in (a) and (b), while the 

geographies are all clustered together within the same device in (c). 
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FIGURE 2: (a) Bounding boxes generated from running the cervix detector, highlighted in white, 

around 50 randomly selected images from the external (“EXT”) dataset. The cervix detector utilized 

a YOLOv5 architecture trained on the “SEED” dataset images. (b) Bound and cropped images of 

the cervix which are passed onto the diagnostic classifier (AVE). 
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FIGURE 3: Results from the first set of the portability analyses, highlighting that device level heterogeneity impacts our model performance 

greater than geography level heterogeneity. The classification performance and repeatability plots depicted here include (a) receiver 

operating characteristics (ROC) curves; (b) confusion matrices; and (c) Bland-Altman plots, for models that were (i) trained on “SEED” 

and tested on a held-aside set from “SEED”; (ii) trained on “SEED” and tested on “EXT”; and (iii) trained on a dataset comprising of 

“SEED” + all images from “EXT” except Bolivia and tested on Bolivia images from “EXT”. “Gray Zone” = “Indeterminate” class. 
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FIGURE 4: Results from the second set of the portability analysis, highlighting that retraining can 

improve performance on a new device previously not present in the “SEED”. (a) Model level 

comparison across models representing incremental additions of “EXT” (J8) images at the woman 

level to the training set of “SEED” images, with the “EXT” images  added in (i) a 1n normal (N) : 

1n indeterminate (I) : 1n precancer+ (P) ratio; and (ii) a 2n N : 2n I : 1n P ratio of ground truth 

classes at the woman level, where n = # of precancer+ women added (y-axes) (b) Plots of area under 

receiver operating characteristics curve (AUC) vs. # women added to the training set per ground 

truth class, in the same ratios as in (a). For example, in (ii), the x-axis represents the # precancer+ (P) 

women added (n) in the ratio 2n N : 2n I : 1n P to the training set. The top row plots the Normal 

(class 0) vs. Rest AUC, while the bottom row plots the Precancer+ (class 2) vs. rest AUC, respectively, 

on the y-axis. In panel (a) “normal” = green, “indeterminate” / “gray zone” = gray and “precancer+” 

= red. 
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FIGURE 5: Results from the repeatability and classification performance analysis, highlighting (a) Bland-Altman plots; and (b) Test-Retest 

score plots for each of the four models under investigation namely (i) binary; (ii) binary with MC dropout; (iii) multiclass; and (iv) multiclass 

with MC dropout (our model), in order assess the relative impact of the key design choices of our model. Panel (c) (1) highlights the % 

extreme disagreement (proportion of women for whom the model predicts “normal” for image 1 and “precancer+” for image 2 and vice-

versa) for the each of the four models (repeatability), while Panel (c) (2) – (4) highlights relevant classification metrics, including (2) the % 

extreme misclassification (precancer+ misclassified as normal and vice-versa); (3) the % precancer+ misclassified as normal; and (4) the % 

normal misclassified as precancer+, for each of the four models. “Gray Zone” = “Indeterminate” class. 
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TABLE 1: Detailed breakdown of “EXT” dataset by ground truth class and geography. ni=total # images; nw=total # women 

 

Table 1: Breakdown of dataset by ground truth and geography 

DATASETS Ground truth categories  GRAND TOTAL  

(ni=1669, nw=580) 
no. (%) 

Normal (ni=598, nw=204) Indeterminate / Gray (ni=465, nw=157) Precancer+ (ni=606, nw=219) no. (%) 

# images # women # images # women # images # women # images # women 

Bolivia 140 (5.8%) 40 (3.1%) 118 (5.5%) 33 (2.4%) 59 (5.5%) 15 (2.4%) 317 (19.0%) 88 (15.2%) 

Brazil 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 410 (37.9%) 154 (24.2%) 410 (24.6%) 154 (26.6%) 

Cameroon 231 (9.5%) 85 (6.7%) 33 (1.5%) 13 (0.9%) 2 (0.2%) 2 (0.3%) 266 (15.9%) 100 (17.2%) 

El Salvador 130 (5.3%) 49 (3.9%) 0 (0.0%) 0 (0.0%) 56 (5.2%) 21 (3.3%) 186 (11.1%) 70 (12.1%) 

Kenya 0 (0.0%) 0 (0.0%) 309 (14.3%) 109 (7.8%) 36 (3.3%) 13 (2.0%) 345 (20.7%) 122 (21.0%) 

Thailand 97 (4.0%) 30 (2.4%) 5 (0.2%) 2 (0.1%) 43 (4.0%) 14 (2.2%) 145 (8.7%) 46 (7.9%) 

TOTAL 598 (24.6%) 204 (16.0%) 465 (21.6%) 157 (11.3%) 606 (56.0%) 219 (34.4%) 1669 (100.0%) 580 (100.0%) 
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TABLE 2: Relevant classification performance metrics, including % extreme misclassifications (% 

ext. mis.) and % total misclassifications (% tot. mis.), and repeatability metrics, including % extreme 

disagreement (% ext. dis.) and 95% limits of agreement (LoA) on a Bland Altman plot, for each of 

the model runs involving incremental additions of images from the “EXT” (J8) dataset at the woman 

level. Here the metrics are presented for the incremental additions in a 2n normal (N) : 2n 

indeterminate (I) : n precancer+ (P) ratio of ground truth class, where n = # of precancer+ women 

added, as shown on the leftmost column. All values are rounded to 1 decimal place. 

 

 

Table 2: Classification and Repeatability Metrics 

# added 
Classification Repeatability 

% ext. mis. % tot. mis. % ext. dis. 95% LoA 

Add 00 (inf) N/A N/A N/A N/A 

Add 05 N/A N/A N/A N/A 

Add 13 7.8% 65.7% 0.0% 0.3 

Add 16 9.6% 53.0% 1.9% 0.4 

Add 18 7.9% 55.2% 1.0% 0.4 

Add 21 4.4% 51.3% 0.5% 0.4 

Add 23 7.4% 39.1% 1.0% 0.4 

Add 26 4.8% 46.1% 0.0% 0.4 

Add 28 6.0% 55.2% 0.5% 0.4 

Add 41 8.7% 37.8% 1.9% 0.4 

Add 45 7.0% 44.8% 1.5% 0.4 

Add 50 11.3% 39.1% 1.9% 0.4 

Add 55 9.6% 38.3% 2.4% 0.4 

Add 60 6.5% 33.9% 1.9% 0.4 

Add 65 6.0% 39.1% 1.0% 0.4 

Add 70 6.0% 27.8% 1.9% 0.4 
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