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Abstract 23 

We have recently demonstrated that humans with motor-and-sensory complete cervical spinal cord 24 
injury (SCI) can modulate the activity of spared motor neurons that control the movements of 25 
paralyzed muscles. These motor neurons still receive highly functional cortical inputs that 26 
proportionally control flexion and extension movements of the paralyzed hand digits. In this study, 27 
we report a series of longitudinal experiments in which subjects with motor complete SCI received 28 
motor unit feedback from NeurOne. NeurOne is a software that realizes super-fast digitalization of 29 
motor neuron spiking activity (32 frames/s) and control of these neural ensembles through a 30 
physiological motor unit twitch model that enables intuitive brain-computer interactions closely 31 
matching the voluntary force modulation of healthy hand digits. We asked the subjects (n=3, 3-4 32 
laboratory visits) to match a target displayed on a monitor through a cursor that was controlled by 33 
the modulation of the recruitment and rate coding of the spared motor units using a motor unit 34 
twitch model. The attempted movements of the paralyzed hands involved grasping and hand digit 35 
extension/flexion. The target cursor was scaled in a way that the subjects could increase or 36 
decrease feedback by either recruiting or derecruiting motor units, or by modulating the 37 
instantaneous discharge rate. The subjects learned to control the motor unit output with high levels 38 
of accuracy across different target intensities up to the maximal achievable discharge rate. Indeed, 39 
the high-performance motor output was surprisingly stable in a similar way as healthy subjects 40 
modulated the muscle force output recorded by a dynamometer. Therefore, NeurOne enables 41 
tetraplegic individuals an intuitive control of the paralyzed muscles through a digital neuromuscular 42 
system.  43 

Significance Statement 44 

Our study demonstrates the remarkable ability of individuals with complete cervical spinal cord 45 
injuries to modulate spared motor neurons and control paralyzed muscles. Utilizing NeurOne, a 46 
software, we enabled intuitive brain-computer interactions by digitalizing motor neuron spiking 47 
activity and employing a motor unit twitch model. Through this interface, tetraplegic individuals 48 
achieved high levels of accuracy and proportional control which closely resembled motor function 49 
in intact humans. NeurOne provides a promising digital neuromuscular interface, empowering 50 
individuals to control assistive devices super-fast and intuitive. This study signifies an important 51 
advancement in enhancing motor function and improving the quality of life for those with spinal cord 52 
injuries. 53 

 54 
Main Text 55 
 56 
Introduction 57 
The human hand is a remarkable structure with a complex set of movements that allow us to 58 
perform various tasks with ease. The control of hand movements is governed by a network of neural 59 
pathways that originate from the brain and the spinal cord and involve upper and lower motor 60 
neurons that control muscle forces. Electromyography (EMG) measures the electrical activity 61 
generated by muscle fibers during muscle contraction, with surface EMG (sEMG) being a non-62 
invasive technique that can provide a comprehensive picture of motor unit activity across space 63 
and time (1, 2). Recent advancements in sEMG, particularly high-density sEMG (HD-sEMG), have 64 
allowed for accurate extraction of individual motor units using techniques such as convolutive 65 
kernel compensation (CKC) and fast independent component analysis (FastICA) (3–9). The 66 
characteristics of motor units have been investigated in both isometric and dynamic movements of 67 
the hand (4, 8, 10–13), with some studies showing the identification of unique motor units specific 68 
to certain movement patterns (14). Real-time decomposition of sEMG signals into motor unit firings, 69 
also known as online decomposition, has been successfully applied using convolutive blind source 70 
separation (BSS) techniques and gated recurrent units (GRU) (15–19). 71 

For individuals with neuromuscular diseases or paralysis resulting in hand immobility, visual 72 
feedback of their hand movement intention is not possible. However, real-time identification of the 73 
firing motor unit activity from HD-sEMG signals might provide a solution for this lack of control. Ting 74 
et al. demonstrated that an individual with motor complete SCI still had functional motor neurons 75 
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that can be extracted through the decomposition of HD-sEMG signals (20, 21). Similarly, we found 76 
unique motor units in eight motor complete SCI patients with a lesion at level C5-C6 who attempted 77 
predetermined hand movements (22). These patients were also able to track a visual cue on a 78 
monitor by modulating the discharge rate of the identified motor units in real-time (22). 79 

Here, we present NeurOne, a software that provides paralyzed individuals with fast and accurate 80 
motor neuron feedback. As motor neurons represent the last neural code of movement that is then 81 
translated into muscle force, this interface enables direct control of the movements that were once 82 
paralyzed without the need of remapping to new motor dimensions. The software uses an online 83 
decomposition method that extracts motor unit action potentials from HD-sEMG signals through 84 
convolutive BSS embedded with a super-fast digitalization of the spiking activity (>30Hz), and a 85 
motor unit twitch model with physiological delay for the user-in-the-loop computer interaction. 86 
Although there are algorithms already capable of identifying the motor unit activity (15, 23, 24), 87 
these have very low time resolutions (<10 Hz) and do not include a realistic motor unit twitch model 88 
and therefore are not intuitive. More importantly, these previous algorithms have not been 89 
developed for paralyzed individuals which requires software with high user-in-the-loop capabilities, 90 
as demonstrated in the paragraphs below. The software is used by asking individuals with 91 
paralyzed hands to attempt various dynamic hand movements guided by a virtual hand to ensure 92 
that the HD-sEMG signals are synchronized. The HD-sEMG signals (128 electrodes) are measured 93 
from the surface of the forearm, and the extracted motor unit action potentials are used to decode 94 
the signals at a rate of 32 Hz, providing real-time feedback on task-related motor unit firings. After 95 
identifying the motor unit spike trains, NeurOne generates a task-related cumulative motor unit 96 
spike train, which is convolved with a physiological optimized motor unit twitch model to provide 97 
smooth feedback. To evaluate the accuracy of NeurOne, participants are asked to follow a 98 
requested trajectory that involves ramps with different activation levels. The accuracy is then 99 
calculated using the Pearson correlation coefficient (PCC) r and the root-mean-square error RMSE 100 
normalized to the respective activation level. We evaluated the accuracy on a subset of three 101 
patients with chronic cervical SCI who visited the laboratory over the course of up to two months. 102 
After just one day of training sessions, these patients could reliably track a visual cue on a monitor 103 
at a large range of neural activation levels. The feedback provided by NeurOne reached a 104 
coefficient of variation cv similar to the variability of the measured force in healthy subjects during 105 
the plateaus of ramp trajectories in different hand and lower limb muscles.  106 

This innovative software offers a potential solution for individuals with paralysis resulting in hand 107 
immobility, providing them with a new level of control in a minimally invasive way. By allowing 108 
paralyzed individuals to use their remaining motor neurons to control their hand movements 109 
through real-time feedback, NeurOne offers a promising avenue for restoring mobility and 110 
independence. 111 

Results 112 

Interfacing Motor Units in SCI  113 

We present a novel technique for non-invasive interfacing of the spinal motor neurons in individuals 114 
with motor and sensor-complete cervical SCI. Our method involves the application of BSS on HD-115 
sEMG recordings to identify individual motor unit firings in real-time and rendering of the neural 116 
activity through a super-fast decomposition and integration of visuomotor feedback through a motor 117 
unit twitch model. The HD-sEMG electrodes are placed on the extensor digitorum and flexor 118 
digitorum superficialis muscle in the forearm to measure muscle activity, as these muscles are 119 
involved in almost all digit movements of the human hand. 120 

We integrated our non-invasive motor unit interface based on convolutive BSS into our software 121 
NeurOne, which allows users to interact with physiological latency with the spared neural activity 122 
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Figure 1. Overview of the experimental protocol used in individuals with spinal cord injury (SCI). A) We recorded high-123 
density surface electromyographic (HD-sEMG) signals from the forearms of participants with SCI by applying two electrode 124 
grids with 64 channels each on top of the extensor digitorum and flexor digitorum superficialis muscles. These signals 125 
represent an estimate of the activity of the spared motor units that controls hand movements. We used a multichannel 126 
amplifier to collect the HD-sEMG signals and stream them to a computer that runs NeurOne. NeurOne decomposes the 127 
streamed HD-sEMG signals into individual motor unit firings. B) NeurOne used in the study where either offline or online 128 
decomposition on the acquired HD-sEMG signals from the forearm of the participant was performed. By attempting specific 129 
hand movements such as power grasp or pinch, the participants were instructed to follow a trajectory displayed on a screen 130 
during the online session. The neural feedback for the hand movements was calculated by NeurOne and displayed to the 131 
participant through a cursor on a monitor. C) An online session of participant S3, where the participant followed a requested 132 
trajectory (red line) by modulating the motor unit activity (blue line). The participants attempted to control the movement of 133 
the paralyzed hand, and the feedback from NeurOne allowed real-time adjustments of the spared motor commands to 134 
achieve the desired trajectory. D) NeurOne calculates the feedback by convolving the task-related cumulative motor unit 135 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 26, 2023. ; https://doi.org/10.1101/2023.09.25.23295902doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.25.23295902
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

5 
 

spike train decomposed by NeurOne with a physiological optimized motor unit twitch model. This approach provides smooth 136 
and super-fast feedback that helped the participants adjusting the movements in real-time. 137 

(32 
frames

s
). This latency enables visuomotor feedback without the perception of any delay for the 138 

user. Figure 1 shows the overview of NeurOne describing the pipeline for decoding motor unit 139 
spiking activity and the closed-loop user interaction display where SCI subjects followed predefined 140 
trajectories with a cursor controlled by their smoothed motor neuron spiking activity during hand 141 
digit movements. NeurOne decoded individual motor unit firings in real-time by decomposing the 142 
measured HD-sEMG signals on the forearm (Figure 1A).  143 
We performed longitudinal tests on three individuals diagnosed with complete SCI affecting motor 144 
and sensory functions in four separate sessions, over a period of two weeks, except for participant 145 
2, who could only complete three sessions. For this participant, the first two sessions occurred 146 
within a week, while the final session took place two months later. The subjects present no 147 
movement in their hand, and they have no visible feedback when asked to attempt tasks. Here, we 148 
demonstrate that the feedback provided by NeurOne can bypass the injury and allow SCI 149 
individuals to reliably interact with a computer by attempting hand movements.  150 
In each session, we performed a short warm-up in which the subjects were asked to follow a virtual 151 
hand displayed on a screen. Subsequently, we recorded 20 seconds of contractions to find the 152 
separation matrices (the motor unit filters), which are used in the BSS iterative process to calculate 153 
the source signals from the observations and from which the motor unit action potentials are 154 
calculated through spike-triggered-averaging. During the online part, we applied these filters such 155 
that the subjects could follow the requested trajectory with high accuracy (Fig. 2B). One online 156 
session of participant S6 is displayed in Figure 1C. The feedback is represented through the blue 157 
line while the requested trajectory is shown in red. 158 
To calculate the feedback, i.e., the smoothed motor neuron spiking activity, we identified all motor 159 
unit spike trains involved in an individual hand digit movement, summed the spike trains across all 160 
motor units, and convolved the firing activity (series of zeros and ones) with an artificial motor unit 161 
twitch model (Figure 1D). The digital twitch embedded in NeurOne simulates the muscle twitch in 162 
a human muscle and has a latent period, a contraction phase, and a relaxation phase. Our 163 
approach to feedback calculation enabled high accuracy in tracking the requested trajectory (see 164 
paragraph below). We implemented the decomposition and rendering of motor unit activity by 165 
utilizing the high-performance graphical processing unit that enabled the display of the motor unit 166 

feedback and spike trains with real-time resolution (32 
frames

s
). We then evaluated the performance 167 

of our feedback across the different experiments and in comparison, to intact healthy individuals, 168 
which are described below. Metrics across groups are described as mean±standard deviation. 169 

Accuracy of the neural feedback 170 

All three participants with sensory and motor complete SCI were able to follow the requested 171 
trajectory with high levels of accuracy by modulating task-related motor units. The attempted tasks 172 
involved power grasp (hereafter grasp) for all participants and pinch grasp (hereafter pinch, 173 
S1)/index flexion/extension (hereafter index, S2 and S3) depending on the subject. Figure 2A 174 
shows the participants in the experimental environment with the applied HD-sEMG electrode grids. 175 
Across the first three sessions the Pearson correlation coefficient r (PCC) and the root-mean-176 
squared error RMSE are calculated for each task and for the ramps of different levels of activations 177 
(LoA) individually for each ramp/feedback pair. The level of activation (hereafter referred simply to 178 
activation) refers to the extent of motor unit activation, i.e., motor unit discharge rate, relative to the 179 
maximal activation observed during the offline recording. Figure 2B shows the whole recording of 180 
the online session with the highest average correlation r and lowest average error RMSE per 181 
activation for each participant. The neural feedback trajectory calculated by NeurOne is displayed 182 
in blue and the requested trajectory in the red. The neural feedback trajectories of each participant 183 
follow the requested trajectory with some deviation. The average correlation r (r1=0.909±0.028, 184 
r2=0.866±0.034, r3=0.860±0.072; p1, 2, r=0.248, p1, 3, r=0.173, p2, 3, r=0.974) and error RMSE 185 
(RMSE1=0.231±0.031, RMSE2=0.280±0.081, RMSE3=0.228±0.042; p1, 2, RMSE=0.243, p1, 3, 186 
RMSE=0.995, p2, 3, RMSE =0.208) throughout their best session for participants S1-S3 were similar, 187 
suggesting that NeurOne provides high proportionality using motor unit spiking activity.  188 
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Figure 2. Performance of the participants in the study. A) The three participants in the study during a session. Two electrode 189 
grids, each having 64 electrodes are placed on the skin of the forearm of the paralyzed hand. After performing a warm-up 190 
and recording 20 seconds of high-density surface electromyography (HD-sEMG) the online session is performed. B) The 191 
best online attempted movements throughout all sessions (a total of nine sessions per task spanning over three training 192 
days) where the participants followed a requested trajectory (red line) consisting of eight ramps by their task-related motor 193 
unit activity (blue line). The accuracy of the performance is calculated through the Pearson correlation coefficient r and the 194 
root-mean-square error RMSE per activation. C) Correlation and error were calculated individually for each ramp/feedback 195 
pair throughout the first three training sessions for all participants shown for each task and differed between the activations 196 
of 20% and 60%. Ramp/feedback pairs that had a correlation below r<0.5 were discarded as they were marked as not 197 
followed. The correlation r and error RMSE demonstrated largely consistent patterns between different activation levels and 198 
tasks. However, it is noteworthy that participant S1 was the only participant showing significant differences between lower 199 
and higher activations in both metrics. 200 

We found a difference between the average RMSE of the lower (20% of maximum) and higher 201 
(60% of maximum) activations for participants S1 and S2. Specifically, for S1, we observed a 202 
significant difference (p=0.037) in the average RMSE between lower (RMSE1, 20=0.208±0.027) and 203 
higher (RMSE1, 60=0.254±0.013) activations. Similarly, for S2, a significant contrast in average 204 
RMSE values was evident (RMSE2, 20=0.344±0.061 vs. RMSE2, 60=0.216±0.032), with a p-value of 205 
0.017. These results indicate that accuracy in following ramps is more difficult with lower activations 206 
than with higher activations.  207 

Despite these RMSE variations, there were no significant differences in correlation r for both S1 208 
and S2. The correlation values remained consistent for S1 (r1, 20=0.904±0.037 and r1, 209 
60=0.914±0.011, with p-value of 0.684) and S2 (r2, 20=0.853±0.023 and r2, 60=0.879±0.037, with p-210 
value of 0.335). In the case of participant S3, we found no significant difference between activation 211 
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levels for both correlation r (r3, 20=0.824±0.071 and r3, 60=0.897±0.052) and error RMSE (RMSE3, 212 
20=0.214±0.027 and RMSE3, 60=0.338±0.009), with p-values of 0.203 and 0.257, respectively. 213 

Figure 2C illustrates the overall performance across sessions. All participants displayed a robust 214 
linear relationship between task performance and activation levels, with an average correlation 215 
coefficient exceeding r>0.785. The correlation was significantly higher at higher activation levels 216 
(r20 =0.769±0.056, r60=0.806±0.075, p=0.024). Notably, participant S1 exhibited a strong linear 217 
relation in both activation levels and tasks (r1, 20, pinch=0.853±0.051, r1, 60, pinch=0.867±0.051, r1, 60, 218 
grasp=0.867±0.090), except for the grasp task at 20% maximum activation (r1, 20, grasp=0.783±0.077), 219 
which was significantly lower (p-values in respect to grasp at 20% activation: pgrasp, 60=1.7e-4, ppinch, 220 
20=1.1e-3, ppinch, 60=4.7e-5). In contrast, participants S2 (r2, 20, grasp=0.696±0.158, r2, 20, 221 
index=0.684±0.106, r2, 60, grasp=0.724±0.146, r2, 60, index=0.681±0.140) and S3 (r3, 20, grasp=0.802±0.097, 222 
r3, 20, index=0.795±0.079, r3, 60, grasp=0.851±0.091, r3, 60, index=0.847±0.063) did not exhibit significant 223 
differences in their correlations between the two different activations and tasks. 224 

Regarding error, lower activation levels had generally higher error values, while higher activation 225 
levels had lower error values (RMSE20=0.369±0.059, RMSE60=0.304±0.047, p=5.3e-7). Notably, 226 
participant S3 demonstrated the lowest error for lower activation levels (RMSE3, 20=0.288±0.076) 227 
and a similar error to participant S1 for higher activation levels (RMSE1, 60=0.269±0.069; RMSE3, 228 
60=0.274±0.055). Participant S2 showed similar error values to participant S1 for lower activation 229 
levels (RMSE1, 20=0.415±0.172; RMSE2, 20=0.406±0.074). However, participant S2 exhibited the 230 
highest error for the highest activation levels (RMSE2, 60=0.365±0.094). 231 

Participants S2 and S3 consistently maintained errors in following the requested trajectory, with no 232 
significant differences between higher and lower activations and tasks. However, participant S1, 233 
showed a significant difference between lower and higher activations and tasks (pgrasp20, 234 
grasp60=0.004, pgrasp20, pinch20=0.927, pgrasp20, pinch60=5.42e-6, pgrasp60, pinch20=0.018, pgrasp60, pinch60=0.455, 235 
ppinch20, pinch60=2.92e-5). Moreover, this participant had the lowest overall error for the pinch task at 236 
60% maximum activation (RMSE1, 60, pinch=0.246±0.034) but also the highest overall error for the 237 
grasp task at lower activation levels (RMSE1, 20, grasp=0.426±0.159) indicating that the lower 238 
activations were more difficult to follow for this participant. 239 

Additionally, when examining the interquartile range IQR across all tasks and activations for 240 
correlation, participant S1 demonstrated the lowest IQR (IQR1, r=0.082±0.009), indicating a high 241 
level of consistency. Participant S3 followed with a slightly higher IQR (IQR3, r=0.112±0.031). In 242 
contrast, participant S2 exhibited a considerably larger range than the other two participants in 243 
correlation (IQR2, r=0.223±0.068). As for the calculated error RMSE between the ramp and 244 
feedback, participant S1 had the highest average range across all tasks and activations (IQR1, 245 
RMSE=0.166±0.110). However, this was mainly influenced by the higher ranges for error RMSE at 246 
lower activations (IQR1, RMSE, 20=0.245; IQR1, RMSE, 60=0.078) emphasising the significant differences 247 
between lower and higher activations for participant S1. On the other hand, participant S3 displayed 248 
the lowest range across all metrics, tasks, and activations (IQR3, RMSE=0.088; IQR3, r=0.112). 249 
Interestingly, for participant S3, the range for lower activations was smaller compared to higher 250 
activations (IQR3, RMSE, 20=0.101, IQR3, RMSE, 60=0.081, IQR3, r, 20=0.135, IQR3, r, 60=0.089). 251 

These findings illuminate the consistency and variability in participants' performance across tasks 252 
and activation levels, offering valuable insights into individual dissimilarities and patterns of 253 
response. Moreover, we observed a consistent and robust training effect for all subjects. Within 254 
just a few days of using NeurOne, the participants exhibited remarkable improvement, accurately 255 
tracking a prescribed trajectory, as described below. 256 

Improvement of neural feedback 257 

Figure 3 illustrates the progress made by the participants during the three training sessions across 258 
three consecutive days that spanned over 2 weeks for participants S2 and S3. For participant 1 the 259 
first two training sessions spanned over 1 week while the last session had to be conducted two 260 
months later. Figure 3A displays the best (highest average correlation across all ramp/feedback 261 
pairs) online session for participant S2 for the index finger on each training day. On the first day,  262 
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Figure 3. The effectiveness of the proposed neural feedback system in improving the accuracy of tracking a requested 263 
trajectory with a cursor. NeurOne was tested on three participants (S1, S2, and S3) over three training days spanning 264 
between seven days (S2) up to 2 months (S1). A) shows the improvement in proportional control of motor unit activity over 265 
time for participant S2. On the first day of training, no proportional control was observed, as feedback was activated even 266 
when not requested. However, by the second day, the participant was able to activate motor unit activity only when it was 267 
requested. On the third day, the participant was able to modulate the feedback with high proportionality and low error. B) 268 
presents the correlation and error values between the best feedback and requested trajectory for each training day for 269 
participant S2, as calculated from the best correlated feedback/ramp pair in the online recording. The plot demonstrates 270 
that the correlation improves over the course of the training days. C) Boxplots of the Pearson correlation coefficient r and 271 
root-mean-square error RMSE per activation for each participant at 60% of the maximum activation for one task. All 272 
participants showed a significant increase in the correlation r (Δr1=147.6%, p1=1.33e-6;  Δr2=275.6%, p2=8.16e-4;  273 
Δr3=172.9%, p3=2.44e-3 for participants S1, S2 and S3 respectively) and a significant decrease in the error from day 1 to 274 
day 3 (ΔRMSE1=45.6%, p1=3.54e-5;  ΔRMSE1=25.6%,  p2=0.011;  ΔRMSE1=37.6%, p3=2.72e-3 for participants S1, S2 and 275 
S3 respectively). Participants S1 and S3 achieved consistent accuracy in following the trajectories, as the range in 276 
performance at individual ramps decreased (Δr1=94.8%, ΔRMSE1=64.3%; Δr3=98.6%, ΔRMSE3=66.9%) over the training 277 
sessions. In contrast, participant S2 showed an increase in the range, but the median values were higher for the correlation 278 
and lower for the error on day 3 than on the other days. 279 

participant S2 had an average correlation r1=0.054±0.351 and error RMSE1=0.574±0.154 across 280 
all feedback/ramp pairs of this session. Moreover, the normalized activation levels from the neural 281 
feedback remained almost constant throughout the recording. By the second day, the neural 282 
feedback during the resting phase had become silent, and while the feedback at the requested 283 
activation of 60% did not reach 60%, the activation level for those ramps was higher than for the 284 
ramps at 20% of maximum activation. We speculate that the subjects learned to silence the motor 285 
units with tonic activity (firing when no task was displayed on the monitor) that were observed on 286 
day 1. The average correlation of r2=0.477±0.108 and error of RMSE2=0.448±0.041 was 287 
significantly improved. On the third day, participant S2 was able to modulate the feedback at the 288 
requested activation level, and the feedback trajectory tended to overshoot the requested activation 289 
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Although the neural feedback was still active during the resting phase, the activation was much 290 
lower than during the actual ramps. During the best performance of the index finger task, the 291 
participant had an average correlation of r3=0.759±0.109 and an error of RMSE3=0.372±0.104 292 
across all feedback/ramp pairs of this session. Across the days, participant S2 was able to improve 293 
the proportional control of the cursor by more than 1,400% and reduced the error by 35.2%. Figure 294 
3B shows the requested activation level plotted against the feedback calculated by NeurOne and 295 
displays the differences between the days more clearly. For each day, a ramp/feedback pair with 296 
the highest correlation value was selected for both 20% and 60% activations. The feedback at 20% 297 
of maximum activity is colored red, while the feedback at the requested activation level of 60% is 298 
colored yellow. The activations at 20% on day 1 showed a negative correlation of r1, 20=-0.20 for 299 
20% and r1, 60=-0.14 for 60% of the maximum activation. By day 2, the correlation for the target 300 
activation level of 20% reached r2, 20=0.68 and for 60% the correlation had the value r2, 60=0.34. By 301 
day 3, the correlation for both activation levels reached r3, 20=0.78 for 20% and r3, 60=0.88 for 60% 302 
of the maximum activation level. 303 

Across three days of training, all participants demonstrated a higher correlation and lower error in 304 
at least one task when the activation level was set to 60%. Figure 3C illustrates the performance 305 
of the ramp/feedback pairs, which revealed that on the first day, each participant had a lower 306 
correlation (r1, day1=0.626±0.141; r2, day1=0.246±0.215; r3, day1=0.525±0.284) and higher error 307 
(RMSE1, day1=0.362±0.063; RMSE2, day1=0.479±0.042; RMSE3, day1=0.402±0.105). On the third day, 308 
all participants showed a significant increase in correlation values (r1, day3=0.924±0.016, p=1.33e-309 
6; r2, day3=0.678±0.208, p=8.16e-4; r3, day3=0.908±0.003, p=2.44e-3) and a decrease in error values 310 
(RMSE1, day3=0.197±0.028, p=3.54e-5; RMSE2, day3=0.357±0.094, p=0.011; RMSE3, 311 
day3=0.251±0.032, p=2.72e-3). Compared to participant S2, participants S1 and S3 achieved high 312 
correlation values by the second day (r1, day2=0.899±0.042, p1=9.67e-7; r3, day2=0.861±0.047, 313 
p3=7.82e-4). However, the error was not reduced for participant S1 (RMSE1, day2=0.353±0.066, 314 
p=0.938). Overall, there was an increase of 147.6%, 275.6%, and 172.9% in the correlation and a 315 
decrease of 45.6%, 25.6%, and 37.6% in the error for participants S1, S2, and S3, respectively. 316 

Furthermore, the interquartile range IQR in the results decreased for participants S1 and S3 from 317 
day 1 to day 3. For participant S1, the range in correlation decreased by 94.8% (IQR1, day1, r=0.192 318 
to IQR1, day3, r=0.010) and in error by 64.3% (IQR1, day1, RMSE=0.098 to IQR1, day3, RMSE=0.035). 319 
Although the range decreased significantly for correlation after one day of training, the error was 320 
only reduced on the third day. For participant S3, the range for correlation and error decreased 321 
after the first day (IQR3, day1, r=0.369 to IQR3, day2, r=0.053; IQR3, day1, RMSE=0.163 to IQR3, day2, 322 
RMSE=0.054). From day 1 to day 3, the interquartile range IQR in correlation decreased by 98.6% 323 
(IQR3, day3, r=0.005) and in error by 66.9% (IQR3, day3, RMSE=0.054). However, only participant S2 324 
showed an increase in range and correlation values, but the error values decreased. This was 325 
particularly evident in the error range, which was similar on the first two days (IQR2, day1, RMSE=0.040 326 
to IQR2, day2, RMSE=0.044), but increased by 400% on the last training day (IQR2, day3, RMSE=0.160). 327 
Regarding the correlation, there was a decrease of 32.8% in the range between the first two days 328 
(IQR2, day1, r=0.244 to IQR2, day2, r=0.164), but on the last training day, the correlation range was 329 
significantly increased (IQR2, day3, r=0.284). 330 

Validation of NeurOne  331 

Figure 4 depicts the software architecture of NeurOne, including the feedback calculation process 332 
for achieving seamless and ultra-fast feedback delivery to the user. The interface to the 333 

amplification device, which records the HD-sEMG signals, enables the streaming of 32 
frames

s
 with 334 

a sampling frequency of 2048 Hz (64 data samples per frame) for a total of 408 channels. Offline 335 
decomposition of a 20-second recorded HD-sEMG signal (49,960 data samples per channel) was 336 
completed in 3:05±0:10 minutes. During online decomposition, the measured time difference 337 

between two frames was tΔframe=31.3±0.42 ms, resulting in an average of 31.9 
frames

s
. The measured 338 

time to calculate the feedback was tcalc=3.07±0.7 ms. Updating the plot windows for the spike trains 339 
and feedback took tplot=4.33±0.7 ms after the frames were received. Participants in the study did 340 
not report any delay between the attempted task and the displayed feedback.  341 
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Figure 4. Overview of NeurOne's software architecture and the feedback calculation process displayed to the participants. 342 
A) The software is utilizing the PySide6 Python module and uses a QuattrocentoInterface (based on QTcpSocket) to 343 
communicate with the amplification device software OT Biolab Light. This data is then sent to the main window of NeurOne, 344 
which handles the graphical user interface (GUI), motor unit spike train plots, and data processing. NeurOne can perform 345 
either offline or online decomposition of incoming data. The spike trains of all motor units, including those of the main and 346 
sub-tasks, are displayed in the main window using the SpikeTrainPlot widget, while the calculated feedback is plotted in a 347 
separate FeedbackPlot window (based on QMainWindow), making it possible to display the monitor specifically for the 348 
participant in a dual monitor setup. NeurOne can also display the high-density surface electromyographic signals in real-349 
time using the EMGPlot window (based on QMainWindow). NeurOne also provides the functionality of streaming the 350 
calculated feedback through an object of the OutputStream class (based on QUdpSocket), which maps the feedback of the 351 
selected task on the involved fingers to control a virtual hand or mechatronic systems. B) The feedback calculation that 352 
enables fast and smooth feedback for controlling the cursor to track the requested trajectory. The identified spike trains of 353 
the task-related motor units are summed up into a cumulative spike train, which is then convolved with a motor unit twitch 354 
model. The induced feedback from this frame is then added to the calculated feedback from previous frames. From the 355 
resulting summed feedback, the first 64 samples, i.e., 31.25 ms (red-dotted line), are taken as the feedback frame. The 356 
average of the feedback frame is mapped on the cursor. C) Main window of NeurOne’s GUI that displays the identified 357 
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motor unit spike trains in real-time (left) and the feedback window that is displayed to the participants of the study (right). 358 
NeurOne's main window allows users to choose tasks, electrode configurations, online and offline parts. In the case of the 359 
online part, users can select one main task from which the feedback is displayed in the feedback window and additional 360 
sub-tasks. The real-time decoded motor unit spike trains are displayed in the main window, with tasks being colored 361 
differently. The feedback window, displayed to the participants in the study, provides task instructions and displays the 362 
cursor (red dot) representing the current feedback frame and its history (red line) while the user is asked to follow the 363 
requested trajectory (black line) by attempting the pinch task. 364 
 365 
Figure 5 illustrates the validation process of the feedback calculation algorithm integrated in 366 
NeurOne. As previously described, this algorithm uses a motor unit twitch model to smooth the 367 
discharge rates of motor unit firings. To validate this approach, the convolutive feedback method 368 
was applied to decomposed motor unit spike trains of 22 healthy individuals acquired by previously 369 
conducted experiments (10 subjects in the first (10, 25) and 12 subjects in the second experiment 370 
(26, 27)) in an offline analysis. In the second experiment of the study (first experiment with healthy 371 
individuals), the force exerted by the index finger during an isometric contraction was measured 372 
using a mechanical apparatus, while HD-sEMG signals were recorded from the third dorsal 373 
interosseous (FDI) muscle using a 64 channel electrode grid (Figure 5A/B). The second experiment 374 
(second experiment with healthy subjects) involved the measurement of HD-sEMG and force 375 
during isometric ankle dorsiflexion. Two HD-sEMG electrode grids with 64 channels each were 376 
placed on the skin above the musculus tibialis anterior (TA). The force was measured using an 377 
ankle dynamometer. 378 
 379 
In both experiments, the healthy individuals were instructed to follow a predetermined force 380 
trajectory. For the experiment with the FDI, the requested force trajectory was represented by 381 
twelve ramps with a target activation level of 10% of their maximum voluntary contraction (MVC), 382 
presented in Figure 5C. The MVC was determined prior to the study and one isometric ramp 383 
contraction in the requested trajectory had a duration of 14 seconds. The second experiment with 384 
the ankle dorsiflexion had a target force of 35% MVC with incline and decline of 5%/s and involved 385 
only one ramp.  386 

The HD-sEMG signals recorded in both experiments were decomposed into motor unit spike trains, 387 
and the three most active motor units were selected for the validation process. NeurOne's feedback 388 
was derived from analyzing the cumulative spike train of a specific subset of identified motor units, 389 
which was then compared with the recorded force signal (Figure 5D). To simulate the number of 390 
identified motor units in real-time experiments involving SCI, we carefully selected a subpool of 391 
motor units consisting of the three motor units with the highest number of firings during the 392 
contraction phase. The coefficient of variation cv of NeurOne’s feedback was evaluated to 393 
determine its similarity to the coefficient of variation cv of the measured force signal. Therefore, the 394 
steady parts of the reference signal and NeurOne’s feedback were extracted and normalized on 395 
the mean of their respective steady part. The coefficient of variation cv of the force signal in one 396 
ramp of the first experiment (FDI) was found to be cvforce=0.044, while the coefficient of variation cv 397 
of NeurOne’s feedback was cvNeurOne=0.078. 398 
 399 
Figure 5E presents an overview of the average coefficient of variation values obtained from the 400 
protocol ramps of experiment 2 (FDI) and 3 (TA). While the coefficient of variation value for the 401 
reference signal in experiment 2 (FDI) was generally lower than the coefficient of variation from 402 
NeurOne's feedback calculation, three healthy participants showed almost similar coefficients of 403 
variation values (cvP7, force=0.031±0.005, cvP7, NeurOne=0.038±0.010, p=0.079; cvP9, force=0.034±0.005, 404 
cvP9, NeurOne=0.042±0.016, p=0.105; cvP10, force=0.060±0.022, cvP10, NeurOne=0.122±0.056, p=0.072). 405 
Participant P4 exhibited an even lower coefficient of variation value with NeurOne's feedback than 406 
with the recorded reference signal (cvP4, force=0.045±0.007, cvP4, NeurOne=0.033±0.007, p=6.58e-4).  407 
In experiment 3 (TA) all subjects had a slightly higher coefficient of variation for the calculated 408 
motor unit feedback (NeurOne). Three subjects (P12, P18 and P20), however, showed an almost 409 
similar coefficient of variation cv to force (cvP12, force=0.022, cvP12, NeurOne=0.024; cvP18, force=0.016, 410 
cvP18, NeurOne=0.022; cvP20, force=0.023, cvP20, NeurOne=0.028). However, some subjects (P11, P13-15, 411 
P19, P21-22) had a much higher coefficient of variation cv for the motor unit feedback of NeurOne 412 
compared to the measured force (cvP11, force=0.024, cvP11, NeurOne=0.047; cvP13, force=0.020, cvP13, 413 
NeurOne=0.041; cvP14, force=0.037, cvP14, NeurOne=0.061, cvP15, force=0.018, cvP15, NeurOne=0.044; cvP19,  414 
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Figure 5. Procedure used to validate the feedback calculation method of NeurOne. A) Two experiments were conducted 415 
that involved placing high-density surface electromyography (HD-sEMG) electrode grids consisting of 64 channels on the 416 
first dorsal interosseous (FDI) muscle (left) and the musculus tibialis anterior (TA, rechts) of 23 healthy subjects (10 and 12 417 
in experiment 2 and 3 respectively). At the same time, the isometric force produced during index finger abduction (FDI) and 418 
ankle dorsiflexion (TA) was measured through a mechanical apparatus. B) A recorded HD-sEMG signal during a ramp 419 
contraction of experiment 2 (14 seconds) was analyzed and decomposed into motor unit spike trains. C) The subjects were 420 
instructed to follow a specific trajectory with their generated force, consisting of twelve ramps with a target activation level 421 
of 10% of maximum voluntary contraction (MVC). The requested trajectory is displayed with the red line and the force 422 
feedback measured with the blue line (displayed for experiment 2). D) The cumulative spike train of the three motor units 423 
(green) from the recorded HD-sEMG signal during a ramp contraction of the index finger abduction task were used in the 424 
feedback calculation approach of NeurOne. Additionally, the requested trajectory (red), the force signal (blue), and the 425 
feedback calculated by NeurOne (green) are displayed. Four seconds of the plateau part of the ramp (between the vertical 426 
dotted red lines) were extracted for each signal and experiment and normalized on its mean. Furthermore, the coefficient 427 
of variation cv was calculated for the presented ramp plateau. E) The mean and standard deviation of the coefficient of 428 
variation cv were calculated for each participant of experiment 2 (FDI, P1-10) and 3 (TA, P11-22) across all ramps. The 429 
coefficient of variation cv was displayed for the output of NeurOne's feedback calculation method (blue bars) and the 430 
recorded force signals (yellow bars) for the healthy subjects. F) Average coefficient of correlation cv across all participants 431 
for experiment 2 and 3. 432 
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force=0.008, cvP19, NeurOne=0.023; cvP21, force=0.022, cvP21, NeurOne=0.050; cvP22, force=0.012, cvP22, 433 
NeurOne=0.038). Across all healthy subjects during the index finger abduction task, the coefficient of 434 
variation value was cvFDI, NeurOne=0.066±0.030 for the feedback calculation method implemented in 435 
NeurOne. In comparison, the coefficient of variation cv for force (cvFDI, Force=0.037±0.005) was 436 
significantly lower (Δcv=44%, p=3.51e-3) and exhibited greater consistency with a narrower range 437 
across subjects. This contrasted with the coefficient of variation cv observed during ankle 438 
dorsiflexion, which was generally lower than during the index finger abduction task. Noteworthy, 439 
when utilizing NeurOne, the coefficient of variation cv (cvTA, NeurOne=0.038±0.012) achieved a similar 440 
value with no significant differences compared to the force during experiment 2 (p=0.10) and 441 
experiment 3 (cvTA, Force=0.021±0.008, p=0.120). These findings suggest the effectiveness of 442 
NeurOne in providing comparable results to force measurements in both experiments. 443 

These small discrepancies between the measured force and the rendered force by NeurOne are 444 
related to numerous factors which include a small number of motor units that were used for the 445 
analysis, offline experiments, and other nonlinear characteristics of motor neuron to muscle force 446 
generation. However, the differences in actual force and digitally rendered force by NeurOne were 447 
very small and negligible (Figure 5 D-F).  448 

Discussion  449 
In this study, we introduce NeurOne, a non-invasive and intuitive software that provides users with 450 
immediate neural feedback on the spared motor unit activity, which enabled three SCI individuals 451 
to train and control the spared neural activity after many years of motor complete paralysis. We 452 
presented the framework behind NeurOne which consists of two main parts. We then evaluated 453 
NeurOne on longitudinal experiments and proved that this framework enables SCI individuals to 454 
control a cursor on a screen in a similar way as intact healthy individuals modulate the isometric 455 
force output.  456 

The first part of the framework is the offline decomposition that tries to find suitable filters that 457 
extract the source signals, i.e., the motor unit firings convolved with their motor unit action 458 
potentials. The offline decomposition method, which was adapted for NeurOne, a convolutive blind 459 
source separation algorithm, is extensively tested and validated against iEMG by different 460 
researchers (4, 15, 19). The decomposition method is performed fully automatically and requires 461 
only 3 minutes and 5 seconds (3:05±0:10) to complete. This makes it considerably faster than 462 
comparable solutions (15).  463 

The online decomposition with the intuitive motor unit interface for the paralyzed is the second and 464 
novel part of NeurOne. It applies the found filters from the offline decomposition, i.e., the separation 465 
matrix W, the motor unit action potentials and the maximum value of the calculated feedback of the 466 
cumulative offline spike train on the streamed HD-sEMG frame. After identifying the motor unit 467 
firings, the task-related cumulative spike train is used to calculate a smooth and super-fast 468 
feedback by convolving it with a motor unit twitch model. 469 

Our study demonstrated that NeurOne provides highly effective feedback, enabling participants 470 
with paralyzed hands to accurately follow a requested trajectory with strong proportionality 471 
(correlations of r=0.91/0.87/0.86) and minimal error (RMSE=0.23/0.28/0.23 for participants S1/2/3) 472 
across an entire online recording consisting of eight ramps during attempted hand movements. 473 
Note that during these movements the subjects show no movements of the hands (see Ting et al. 474 
and Oliveira et al. for more details on this finding (21, 22)). Furthermore, our results revealed that 475 
NeurOne was capable of motivating and engaging participants to track the requested trajectory 476 
more accurately over the course of multiple training days. For example, participant S2 showed a 477 
substantial improvement in proportionality (r=0.05 to r=0.76) and a reduction in error (RMSE=0.57 478 
to RMSE=0.37) for the index task over three training days. It should be noted that the reported 479 
correlation and error values are averaged across all eight consecutive ramps in an online recording, 480 
and therefore do not imply that participants were unable to follow any ramp in the first online 481 
sessions. Variability in correlation and error exhibited greater variation during the initial training 482 
sessions. This suggests that as participants became more familiar with the system, their ability to 483 
consistently and accurately track trajectories improved. This training phenomenon highlights the 484 
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promising utility of NeurOne, which has a direct connection to spinal motor neurons, in the field of 485 
neural rehabilitation for people with paralysis. 486 

Consistency in control signals is crucial for the effective use of NeurOne, particularly in applications 487 
involving mechatronic systems such as exoskeletons or prostheses. Individuals with 488 
neuromuscular conditions or paralyzed limbs need a control system that feels natural, and NeurOne 489 
can provide smooth and fast feedback that can be modulated proportionally to different activation 490 
levels within the same time window. The participants achieved an almost similar (no significant 491 
differences for participants S2 and S3, participant S1 has a significant difference for the grasp task 492 
at the lower activation) correlation for both activations across tasks (above r>0.79 in average) 493 
indicating a strong proportionality between the voluntary motor unit spiking activity and the 494 
requested trajectory. Especially in applications where high durability is crucial, a strong 495 
proportionality between voluntary motor unit spiking activity and target level, along with low error, 496 
becomes vital. This is because maintaining a constantly high activation level would lead to 497 
exhaustion and muscle soreness. 498 

However, there are also limitations to the proposed feedback calculation, particularly regarding the 499 
normalization of feedback. The MVC is typically used for this purpose but cannot be calculated 500 
using force sensors in patients with SCI who are not able to produce force with their hands. To 501 
address this, we engaged participants as much as possible during the offline phase through 502 
dynamic contractions and used the maximum value of the calculated offline feedback as the MVC 503 
for normalization. However, there are differences between the online and offline spike detection 504 
methods used in our study, which we plan to address in future studies by using consistent detection 505 
methods. 506 

The speed of the feedback calculation and presentation emphasizes the importance of timely 507 
feedback for individuals with SCI, as they do not have visible feedback of their muscle contractions. 508 
Moving average filters are often employed to smooth the discharge rate of motor units for offline 509 
and real-time presentation (15, 22). However, using such filters involves buffering the data, leading 510 
to delays in feedback presentation. In related works, this delay goes up to 500 ms due to the need 511 
to wait for four frames of data at a streaming frequency of 8 Hz (15). Additionally, the low streaming 512 
frequency results in a delayed feedback presentation, with the plot being updated only eight times 513 
per second. 514 

NeurOne addresses these limitations by offering a high streaming frequency of 32 Hz, which is 515 
significantly higher than any previous real-time decomposition approaches (15–17, 19), and 516 
introduces significant latencies to the user. The proposed feedback calculation method using a 517 
motor unit twitch model does not require waiting for a specific amount of time, thereby eliminating 518 
the delay in feedback presentation (15). 519 

To validate NeurOne’s feedback method based on the digital motor unit twitch model, a comparison 520 
in the variability of the signal, i.e., the coefficient of variation cv during the plateau phase of isometric 521 
ramp contractions in healthy subjects was conducted. In general, the coefficient of variation cv of 522 
the force signals was lower than for smoothed motor unit spiking activity. One reason for the higher 523 
variability observed in the participants is that force feedback was used as a reference to track the 524 
ramp trajectory on a screen, which allowed participants to gauge the steadiness of the force signal. 525 
Moreover, the number of motor units used was limited to the three most active motor units imitating 526 
the number of motor units that were found in individuals with SCI. Together with a high variability 527 
in the number of motor units identified per subject in the decomposition process, this is a limiting 528 
factor in a fair comparison with force measurement as in force generation are up to hundreds of 529 
motor units involved. Another factor that may contribute to higher variability in NeurOne's feedback 530 
is the challenge of reliably identifying small motor units that are generally better in precise and 531 
smooth movements compared to bigger motor units. However, the small motor units are often 532 
suppressed by bigger motor units because of their bigger motor unit action potentials making it 533 
difficult for current decomposition methods to decompose the small motor units (4, 5, 8). Despite 534 
these differences, the variability of NeurOne and the measured torque level was negligible, which 535 
confirms the high robustness of the method for digitalizing motor units in SCI. 536 
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Nevertheless, a few subjects displayed a similar coefficient of variation cv, with one subject (P4) 537 
showing even lower variability. This finding is remarkable, given that the human muscle twitch is 538 
optimized for smooth control, resulting in low variability in measured force. This suggests that 539 
NeurOne's feedback is also able to provide real-time smoothness and can be applied to control 540 
assistive devices.   541 

An alternative and frequently employed method to control assistive devices, as opposed to the 542 
motor unit twitch model, is the integration of a musculoskeletal model. However, it's important to 543 
note a difference in the torque output bandwidth between musculoskeletal models and actuators of 544 
mechatronic systems. Actuators exhibit a broader torque bandwidth when compared to 545 
musculoskeletal models. Therefore, through the normalization of NeurOne's output, we can 546 
efficiently utilize the complete motor bandwidth, leading to improved performance.  547 

Conclusion 548 
In this study, we demonstrated the efficacy of NeurOne, a noninvasive and intuitive software that 549 
provides immediate neural feedback on the spared motor unit activity of individuals with SCI. 550 
Developed with the specific goal of improving the lives of individuals who have paralyzed hands, 551 
NeurOne can help them gain greater control over assistive devices and facilitate communication. 552 
By providing real-time, high-speed, and smooth neural feedback, NeurOne enables individuals with 553 
long-term complete motor paralysis to gain real-time control of their motor unit activity and 554 
accurately track a requested trajectory with a cursor. Our findings suggest that the accuracy of 555 
tracking can be improved through training, indicating the potential for NeurOne to enhance the 556 
rehabilitation process. In addition, we performed offline analysis to validate NeurOne's feedback by 557 
applying it to motor unit spike trains that were decomposed with a high level of accuracy during 558 
isometric index finger abduction and ankle dorsiflexion tasks in healthy participants. We observed 559 
that NeurOne's feedback achieved a level of variability during the plateau phase of the ramps that 560 
was partially similar to the generated force. The smoothness and accuracy of the smoothed motor 561 
unit discharge rate through NeurOne support the possibility of using this software for assistive 562 
device control such as exoskeletons. Overall, our results highlight the promising potential of 563 
NeurOne to revolutionize the way individuals with paralysis interact with the world around them and 564 
improve their quality of life. 565 

Materials and Methods 566 
This study involved the recruitment of three participants diagnosed with chronic motor complete 567 
SCI for experiment 1 (SCI subjects). The study employed the following criteria to select participants: 568 
(1) injury level ranging from C4-C6, (2) age between 18 and 60 years old, and (3) absence of 569 
voluntary movement of one hand or both hands. Participant S3 exhibited voluntary hand movement 570 
in their left hand. An overview of the paralyzed participants is shown in Table 1. 571 

Table 1. Characteristics of recruited participants in the study 572 

Subject Age 

range 

(years) 

Gender Injury 

level 

AIS Sensory 

level* 

Wrist 

movement 

Time 

since 

injury 

(years) 

S1 31-35 M C5 B C5 yes 9.1 

S2 36-40 F C5 A C5 yes 24.2 

S3 56-60 M C5 A T3 no 6.9 
* The sensory level corresponds to lowest level with normal sensory function. 573 
 574 
22 healthy subjects were recruited for experiment 2 (index finger abduction, 10 subjects) and 575 
experiment 3 (ankle dorsiflexion, 12 subjects). All procedures were conducted in accordance with 576 
the Declaration of Helsinki and were approved by the Ethical Committees of Friedrich-Alexander-577 
Universität (approval no. 22-138-Bm, experiment 1), Imperial College London (approval no. 578 
18IC4685, experiment 2) and University Rome ‘Foro Italico’ (approval no. 44 680, experiment 3). 579 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 26, 2023. ; https://doi.org/10.1101/2023.09.25.23295902doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.25.23295902
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

16 
 

Prior to participation, all subjects provided written informed consent. Some data from this study 580 
have been previously published (10, 25–27). 581 

Experiment 1 (spinal cord injury) 582 

The first experiment comprised multiple sessions for each participant, with S2 and S3 undergoing 583 
training on four separate days and S1 on three days. The last session for S1 occurred two months 584 
after the previous sessions, which were conducted within a two-week timeframe. During the 585 
sessions, we trained participants to enhance their neural control over two distinct tasks, utilizing an 586 
online decomposition approach to analyze a HD-sEMG signal obtained from the placement of 128 587 
HD-sEMG electrodes on the forearm's skin. The training tasks consisted of a power grasp, which 588 
involved the flexion and extension of the whole hand, and a pinch grasp that required the 589 
involvement of the thumb and index finger (for S1) or single-digit movement of the index finger (for 590 
S2 and S3). Participant 3 only attempted the training with the power grasp task in the first session. 591 

Prior to commencing the training, participants underwent a one-minute warm-up in which they 592 
followed a virtual hand attempting the task in a relatively slow (0.5 Hz), sinusoidal pattern displayed 593 
on a monitor. Subsequently, we recorded a 20-second signal during which participants were asked 594 
to attempt the requested task dynamically, i.e., flexion and extension in repetition. The task was 595 
attempted dynamically during the recording because the decomposition had a higher accuracy at 596 
finding motor units compared to isometric tasks. The recorded signal was then decomposed offline 597 
to determine the unique motor unit action potentials and separation matrix W for the online phase. 598 
If decomposition was not finding filters or the filters were insufficient, decomposition results of the 599 
same tasks in previous sessions were selected.  600 

Once offline decomposition was completed, we initiated the online phase, which comprised three 601 
sets, with each set including eight trajectories, and a one-minute break between sets. The 602 
trajectories consisted of ramps with increasing (three seconds) and decreasing (three seconds) 603 
flanks, as well as a plateau (five seconds). A ten-second resting phase separated each ramp. The 604 
first four ramps had an activation level of 20%, while the subsequent four ramps had an activation 605 
level of 60%. This difference in activation levels was intended to determine whether participants 606 
with paralyzed hands can voluntarily modulate their motor unit activity to match two significantly 607 
different target levels. Moreover, by having the ramps reach two different activation levels, we were 608 
able to test the proportionality at different modulating rates. The relatively long sloping parts with a 609 
duration of three seconds ensured a large period of proportional tracking. The total duration of one 610 
set was 2:48 minutes. 611 

In each session for each task, the protocol included a warm-up period followed by the offline 612 
decomposition phase and the online training segment. Between the completion of one task and the 613 
commencement of another, a larger break of three minutes was provided. Altogether, the training 614 
per day took approximately 40-45 minutes. 615 

Experiment 2 (index finger abduction) 616 

The full details of this experiment have been described previously (10, 25). We also provided a 617 
brief explanation of the methods here. A chair, table, and computer monitor constituted the 618 
experimental setup, where participants (nine men and one woman) assumed a comfortable seated 619 
position. Their dominant hand was supported by a custom apparatus, with the forearm immobilized 620 
and positioned between pronation and supination. The index finger and thumb were aligned along 621 
the forearm's longitudinal axis, and a monitor situated 60 cm away displayed the applied force. 622 
Force measurements of the index finger and thumb were captured using a three-axis force 623 
transducer (Nano25, ATI Industrial Automation), which underwent digitization at 2048 Hz (USB-624 
6225, National Instruments) and underwent low-pass filtering at a cutoff frequency of 15 Hz. HD-625 
sEMG signals were obtained from the first dorsal interosseous (FDI) and thenar muscles (flexor 626 
pollicis brevis and abductor pollicis brevis) using flexible electrode grids featuring 13x5 electrodes 627 
with a 4 mm interelectrode spacing and amplified with a multichannel amplifier (Quattrocento, OT 628 
Bioelettronica; 16-bit A/D converter, bandwidth 10-500 Hz). Next, the HD-sEMG signals were 629 
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processed using a well-established BSS algorithm to decompose them into individual motor unit 630 
spike trains (5, 6). 631 

Participants engaged in force-matching tasks, involving simultaneous abduction of the index finger 632 
and flexion of the thumb, for a duration of 60 seconds. Visual feedback was provided via a moving 633 
dot cursor on the monitor, with the x-axis representing thumb force and the y-axis representing 634 
index finger force. Participants were instructed to maintain the force signal within 10% of the target 635 
for each applied force. 636 

Prior to the tasks, MVC recordings were performed, and two 60-second trials were conducted with 637 
30 seconds of rest between them. The experimental design aimed to explore the extent of common 638 
synaptic inputs among sets of motor neurons, requiring participants to exert forces in the same 639 
sagittal plane for both muscle sets, necessitating approximately 10 minutes of practice. 640 

Experiment 3 (ankle dorsiflexion) 641 

The full details for this experiment have been described previously (26, 27). We also provided a 642 
brief explanation of the methods here. The experimental setup consisted of a custom-made ankle 643 
ergometer (OT Bioelettronica, Turin, Italy) fixed to an examination table using adjustable straps. 644 
Twelve recreationally active young men participated in the study, with their dominant leg secured 645 
to the ergometer using straps (approximately 3 cm width) at the foot, ankle, and knee. Force signals 646 
were recorded using a force transducer (CCt Transducer s.a., Turin, Italy), amplified (200 x), and 647 
sampled at 2048 Hz using an external A/D converter (Quattrocento, OT Bioelettronica, Turin, Italy). 648 
Visual feedback was provided via a custom LabVIEW software (LabVIEW 8.0; National 649 
Instruments, Austin, TX, USA) displayed on a monitor positioned 1 m away from the participants. 650 
HD-sEMG signals were recorded from the TA muscle using two semi-disposable adhesive grids, 651 
each with 64 electrodes (13x5 electrodes with an IED of 8 mm, OT Bioelettronica). The signals 652 
were sampled at 2048 Hz, bandpass filtered (10-500 Hz), and digitally converted using a 16-bit A/D 653 
converter. The HD-sEMG signals were then similar to experiment 2 processed using a well-654 
established BSS algorithm to decompose them into individual motor unit spike trains (5, 6). 655 

Participants underwent a standardized warm-up, consisting of eight isometric contractions of the 656 
dorsiflexors at varying intensities (4 × 50%, 3 × 70%, 1 × 90%), separated by 15–30 seconds. After 657 
the warm-up, they performed three or four MVCs with 30 seconds of rest in between. The highest 658 
MVC force determined the maximal voluntary force (MVF) used to set target forces (35%, 50%, 659 
and 70% of MVF) for subsequent submaximal contractions. Participants later performed 660 
trapezoidal contractions, gradually increasing to the target force, maintaining it for 10 seconds, and 661 
then linearly decreasing back to the resting force at the same rate. Two trials were conducted for 662 
each target force in randomized order and 3–5-minute rest intervals. 663 

Evaluation of experiment 1 (spinal cord injury) 664 

The analysis of the training sessions was carried out using Python 3.11, where each ramp/feedback 665 
trajectory pair of the online recordings was partitioned and evaluated individually. The trajectories 666 
were then categorized into 20% and 60% activation levels for further analysis. To evaluate the 667 
accuracy of each ramp/feedback trajectory pair, two metrics were used, namely Pearson correlation 668 
r and root-mean-square error RMSE. Pearson correlation measures the correlation between the 669 
requested (ramp) and actual (feedback) trajectories, indicating the degree of proportionality 670 
between the two. Additionally, the error provides a measure of accuracy by assessing the distance 671 
between the requested and actual trajectories.  672 

To enable comparison between participants, the initial three sessions were selected from 673 
participants S2 and S3, resulting in 36 ramp/feedback pairs for each task and activation level. To 674 
demonstrate the overall performance of participants during the online sessions (Figure 2C), 675 
ramp/feedback pairs with a correlation value below 50% were discarded. Boxplots were then used 676 
to plot the ramp/feedback pairs for each task, activation level, and participant, with the box 677 
representing the IQR and the median displayed as a red line. The whiskers extending from the box 678 
represent the minimum and maximum values of the data that fall within 1.5 times the IQR from the 679 
first and third quartile, respectively. The range of the data was described by reporting the IQR, as 680 
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well as the mean and standard deviation of the ramp/feedback pairs. The mean and standard 681 
deviation were also calculated across all ramp/feedback pairs within the online recording, which 682 
included eight ramp/feedback pairs. 683 

To evaluate training improvement, only ramp/feedback pairs with a positive correlation were 684 
considered. Similar to the general performance, the Pearson correlation coefficient r and the root-685 
mean-squared error RMSE were used to describe the accuracy of the tracking. For each training 686 
day, twelve ramp/feedback pairs were evaluated. The best online recordings of participant S2 were 687 
selected based on the highest correlation values across the entire online recording. Mean and 688 
standard deviation were reported for the entire online recording, and the ramp/feedback pairs 689 
selected for the correlation plots (Figure 3B) were based on the highest correlation values within 690 
the online recording. 691 

Evaluation of experiment 2 (index finger abduction) and 3 (ankle dorsiflexion) 692 

The decomposed motor unit pulses and the measured reference signal (i.e., the force) of the 693 
healthy participants were used to validate the feedback calculation approach proposed in our study. 694 
To do this, we calculated the coefficient of variation cv, which is the ratio of the standard deviation 695 
𝜎(𝑥) to the mean of the reference signal x during the steady plateau of the trajectory: 696 

𝑐𝑣 =
𝜎(𝑥)

𝜇(𝑥)
. 697 

Additionally, we calculated the feedback offline, instead of online as in experiment 1, by convolving 698 
the decomposed spike trains of the three most firing motor units with the motor unit twitch model. 699 
Three motor units were selected as this is the average number of motor units identified in our study 700 
in people with SCI. Afterwards, we extracted the steady part and calculated the coefficient of 701 
variation cv. For each participant, we calculated the mean and standard deviation for feedback and 702 
reference signal (force) across the ramps (twelve ramps per subject for experiment 2 and the best 703 
ramp at 35 % MVC for the subjects in experiment 3). In experiment 2 the ramps that didn’t show 704 
three individual motor units spiking during the plateau phase were discarded.  705 

High-density surface electromyography recording 706 

During all sessions of experiment 1, we placed two HD-sEMG electrode grids, each containing 64 707 
electrodes, on the shaved and cleaned skin of the forearm. The electrode grids utilized in our 708 
investigation were square in shape, with an 8x8 configuration of electrodes, and an interelectrode 709 
distance (IED) of 10mm (GR10MM0808, OT Bioelettronica, Turin, Italy). To ensure consistent 710 
electrode placement, we positioned one electrode grid above the extensor digitorum and the 711 
second above the flexor digitorum superficialis, both aligned with the ulna bone. To further enhance 712 
reproducibility, we recorded the exact electrode positions by capturing images. To affix the 713 
electrode grids to the skin, we used bi-adhesive foam layered between the grids and the skin, filled 714 
with conductive paste (SpesMedica, Battipaglia, Italy), and secured them to the forearm using tape.  715 

The HD-sEMG signals were recorded using a multichannel amplifier with 16-bit A/D conversion 716 
(Quattrocento, OT Bioelettronica). We used the OT Biolab Light software (OT Bioelelettronica) to 717 
record the signals in monopolar mode, with a sampling frequency of 2048 Hz, and filtered by a 718 
bandpass of 10-500 Hz. 408 channels were streamed in real-time using a Transmission Control 719 
Protocol/Internet Protocol (TCP/IP) with a streaming frequency of 32 Hz. However, only the 128 720 
channels holding the HD-sEMG signals were extracted and used from the streamed data. 721 

Online decomposition 722 

The first part of the online decomposition process aiming at the decoding of HD-sEMG signals into 723 
individual firings of motor units in real-time, involved an offline decomposition. The offline 724 
decomposition is necessary to determine the filters that will be applied during the second part of 725 
the process in real-time. Therefore, we conducted a recording of a dynamic task (grasp or 726 
pinch/index finger flexion/extension) and decomposed the recorded HD-sEMG signals.  727 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 26, 2023. ; https://doi.org/10.1101/2023.09.25.23295902doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.25.23295902
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

19 
 

The approach of the decomposition (offline and online) is based on the theoretical model of 728 
measured HD-sEMG signals. The HD-sEMG signal is a convolutive mixture of motor unit spike 729 
trains and action potentials. In matrix form it is described as: 730 

𝑥(𝑘) = ∑ 𝐻(𝑙)𝑠(𝑘 − 𝑙)

𝐿−1

𝑙=0

+ 𝑛(𝑘), 731 

𝑘 = 0, … , 𝐷𝑅 732 

where x(k) = [x1(k), x2(k), …, xm(k)]T is the vector comprising all recorded observations (HD-sEMG 733 
channels) m and s(k) = [s1(k), s2(k), …, sn(k)]T is the vector comprising the spike trains of all motor 734 
units n. Matrix H(l) has the size m x n for each sample l and carries the information of the motor 735 
unit action potentials. L is the duration of the action potentials. Furthermore, H(l) is assumed to be 736 
constant during the recording of observations. The additive noise vector n(k) = [n1(k), n2(k), …, 737 
nm(k)]T comprises the noise for each observation. DR is the duration of the recording of the 738 
observations. By applying BSS techniques to this mixed model, the sources, i.e., the individual 739 
motor units, can be decomposed. For those algorithms, we assume that the identified sources are 740 
not fully correlated and are either sparse or independent (4). The algorithm that we were using for 741 
the offline decomposition of the HD-sEMG was based on the proposed convolutive BSS approach 742 
of Negro et al. (4). To reduce the noise in the observations we applied a Butterworth bandpass filter 743 
(20-500 Hz) to remove noisy frequencies where the observations are not significantly represented 744 
and a 50 Hz notch filter to remove power line interference. Following the filtering, we performed 745 
convolutive sphering as described by Negro et al. (4). The convolutive sphering method involves 746 
extension, centering, and whitening of the HD-sEMG signal. We used an extension factor of R=10 747 
as we were looking for n=32 sources by using m=128 channels and an estimated action potential 748 
length of L=40 samples by following the general equation for the extension factor R (4): 749 

𝑅 =
𝑛

𝑚
 𝐿. 750 

The convolutive sphering is followed by applying FastICA, which is a fixed-point iteration algorithm 751 
that maximizes the number of uniquely identified sources, i.e., the mixture of the motor unit spike 752 
trains convolved with its action potential, by using Gram-Schmidt Orthogonalization. Through 753 
FastICA, a separation matrix W is obtained and by multiplying it with the extended HD-sEMG signal 754 
�̂�(k) it results in the source signals s(k): 755 

𝑠(𝑘) = 𝑊�̂�(𝑘) 756 

A silhouette score-based K-means driven approach is used to detect spikes from identified sources. 757 
The sources are squared, resulting in innervation pulse trains (IPTs). The peaks of the IPTs are 758 
divided into two classes: high peaks and small peaks. The small peaks, representing noise, are 759 
discarded. High peaks with a silhouette score of 0.9, indicating the distance between spike and 760 
noise, are considered as firing a motor unit. 761 

Apart from the optimized separation matrix W obtained through FastICA, other results from the 762 
offline decomposition are also used in the online part. By calculating the spike triggered average 763 
(STA) for each source, we can find the motor unit action potentials to use in the real-time 764 
decomposition as templates for template matching. 765 

To normalize the feedback calculated during the online part, a reference value is required. Without 766 
normalization, an estimation of the activation is not possible. Therefore, feedback using the offline 767 
spike trains is calculated. The feedback is the convolution of the cumulative spike train of all motor 768 
units that are found with an artificial motor unit twitch, which is simulating a muscle twitch during 769 
neural input-based contraction in humans. The real-time detection of spikes from individual motor 770 
units constitutes the second part of the online decomposition, and the pipeline is described in Figure 771 
6. The observations x(k) in this phase consists of the streamed HD-sEMG frame (128 channels x 772 
64 samples), which is extended and centered similar to the offline decomposition but not whitened 773 
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due to high computational costs. The extended observations �̂�(k) are then multiplied with the 774 
separation matrix W determined during the respective task in the offline decomposition to obtain 775 
the identified sources in real-time (Figure 6A). In order to detect spikes in the current frame, the 776 
sources are subject to thresholding with a threshold value T set at 10 times the noise level, which 777 
is calculated in the first frame during rest by taking the average of each source signal in this frame 778 
(Figure 6B). However, thresholding alone may not be sufficient for reliable spike detection due to 779 
the lack of filtering of noise through a Butterworth bandpass filter in real-time compared to offline 780 
decomposition. To enhance the algorithm's reliability, we used template matching (Figure 6C). In 781 
template matching, spike triggered action potentials of each source were correlated to the motor 782 
unit action potential extracted during offline decomposition. If the correlation between the template 783 
and the signal exceeds 0.6, the spike was accepted as valid. Subsequently, the spikes in the current 784 
frame are convolved with the artificial motor unit twitch used in the offline part. However, since the 785 
twitch length is significantly longer than the actual frame, the leftover signal is buffered for the next 786 
frames to prevent an unstable feedback signal. The feedback from the previous frames is then 787 
shifted and added to the convolutive result in each iteration.  788 

Figure 6. This figure depicts the online decomposition method that is utilized in our software, NeurOne. The process involves 789 
three steps. A) First, the source signals are identified in real-time by applying the separation matrix W, which was discovered 790 
in the offline stage on the extended and centered high-density surface electromyographic (HD-sEMG) signals of the current 791 
frame. B) Next, a spike detection technique is applied to the identified sources. This method detects the peak in the 792 
innervation pulse trains (IPTs), which are the squared source signals of this frame. If the peak of the IPT is greater than 10 793 
times the noise level, it is designated as a possible spike. C) Finally, template matching is conducted to verify whether the 794 
possible spike is a motor unit firing or not. To achieve this, a window is implemented around this possible spike in the source 795 
signal and then correlated with the motor unit action potential that was identified in the offline stage. If the correlation 796 
coefficient rthreshold > 0.60, the spike is identified as a motor unit firing.  797 

Graphical user interface 798 

NeurOne is a software that provides a GUI for real-time display of identified motor unit firings and 799 
neural feedback. Figure 4A shows the architecture of the back-end of NeurOne. NeurOne is written 800 
in Python 3.10 and utilizes the PySide6 module which provides access to the complete Qt 6.0+ 801 
framework. The RealTimeDecomposition class, which is a child class of QMainWindow, integrates 802 
the GUI and the back-end, and manages the flow of data within NeurOne for processing and 803 
plotting. 804 
The study, in which NeurOne was used, involved recording and amplifying HD-sEMG signals from 805 
the participant's forearm using a multichannel amplification system (Quattrocento, OT 806 
Bioelettronica, Italy). The communication between the recording software (OT Biolab Light) and 807 
NeurOne was established via TCP/IP network communication using the QuattrocentoInterface 808 
class. Depending on the selected part (offline or online decomposition), the input frame is either 809 
directly decomposed in real-time or buffered for offline analysis after recording. The online 810 
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processed HD-sEMG frame, which is the motor unit spike train, is displayed in the SpikeTrainPlot 811 
widget. Furthermore, the feedback is calculated by the convolution of the motor unit spike trains 812 
with the motor unit twitch model (Figure 4B) and displayed in the FeedbackPlot window. These 813 
visualizations are based on the VispyPlotWidget class, which uses the graphical processing unit 814 
(GPU) to render the data. This is enabled by the VisPy library in Python. Furthermore, the EMGPlot 815 
is a separate window that can be opened and configured to display the streamed HD-sEMG signals 816 
and is based on the VispyPlotWidget too. Additionally, NeurOne uses the OutputStream class to 817 
open a UDP socket to stream the calculated feedback as a control signal to control a virtual hand 818 
or assistive devices. After the offline and online recordings, the results are stored in a NumPy file 819 
(.npy extension) along with a timestamp and subject identifier for subsequent data processing. 820 
NeurOne’s GUI is shown in Figure 4C. The user can connect to the HD-sEMG measurement 821 
system, display streamed data in real-time, and start the neural interface to follow requested 822 
trajectories with the feedback cursor. Furthermore, the selection of the offline or the online part is 823 
enabled through radio buttons. The user can configure the HD-sEMG by selecting respective 824 
channel ports that are connected to the electrodes placed on the forearm and repeat the offline 825 
part until the identified filters are reliable and provide great accuracy in the online part. Tasks 826 
available to the user are grasp and pinch as well as index flexion/extension. In the online part, the 827 
user can choose filters for the main task by choosing the respective folder in the operating system’s 828 
filesystem. The main task determines which task the subject should attempt to follow the requested 829 
trajectories. Additionally, sub-tasks may be selected, whose motor unit firings are displayed 830 
alongside the main task, but without real-time display of the feedback. The requested trajectory 831 
that is used for the online protocol has four ramps with a low activation of 20% followed by four 832 
high ramps with an activation of 60%. The requested trajectory and the corresponding feedback 833 
trajectory were displayed on the FeedbackPlot window, which was located on a second monitor in 834 
front of the participants. 835 
The evaluation of the computing and plotting time was done on a mobile laptop (XMG NEO 15 E21, 836 
Ryzen 9 5900HX, NVIDIA RTX 3080 mobile, 32 GB Ram), on which 15 motor units were recorded 837 
and visualized during the measurement. The display of spike trains and feedback had a window of 838 
5 seconds and 128 channels of HD-sEMG were decomposed. 839 

Statistical Analysis 840 

In this study, we conducted statistical analyses to investigate significant differences in the 841 
measured results using one-way ANOVA type 2 (for more than two groups) with the anova_lm 842 
function from the Python package Statsmodel and t-test (for two groups) with the ttest_ind function 843 
from the Python package Scipy. 844 

We employed the significance level α=0.05 to determine whether there are significant differences 845 
between groups. P-values below the significance level indicate the rejection of the null 846 
hypothesis,highlighting observable significant differences. Conversely, p-values above the 847 
significance level indicate no difference in the data. To identify specific group differences after the 848 
one-way ANOVA, we conducted a pairwise Tukey test using the pairwise_tukeyhsd function from 849 
the Python package Statsmodel. In Experiment 1, we applied the statistical analysis to detect 850 
differences between lower and higher activations and between different tasks. The correlation 851 
coefficient r and error RMSE were used individually as dependent variables to assess their 852 
significance. Additionally, the analysis was used to highlight significant improvements over the 853 
training days. In Experiment 2, the statistical analysis aimed to identify significant differences 854 
between the coefficient of correlation cv (dependent variable) of the feedback calculated using the 855 
method implemented in NeurOne and the recorded force. Moreover, we conducted a statistical 856 
analysis across all participants in Experiments 2 and 3 to investigate significant differences in the 857 
variability of force and motor unit feedback.858 
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1Link: https://github.com/NsquaredLab/NeurOne 
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Figures and Tables 948 
 949 

Figure 1. Overview of the experimental protocol used in individuals with spinal cord injury (SCI). 950 
A) We recorded high-density surface electromyographic (HD-sEMG) signals from the forearms of 951 
participants with SCI by applying two electrode grids with 64 channels each on top of the extensor 952 
digitorum and flexor digitorum superficialis muscles. These signals represent an estimate of the 953 
activity of the spared motor units that controls hand movements. We used a multichannel amplifier 954 
to collect the HD-sEMG signals and stream them to a computer that runs NeurOne. NeurOne 955 
decomposes the streamed HD-sEMG signals into individual motor unit firings. B) NeurOne used in 956 
the study where either offline or online decomposition on the acquired HD-sEMG signals from the 957 
forearm of the participant was performed. By attempting specific hand movements such as power 958 
grasp or pinch, the participants were instructed to follow a trajectory displayed on a screen during 959 
the online session. The neural feedback for the hand movements was calculated by NeurOne and 960 
displayed to the participant through a cursor on a monitor. C) An online session of participant S3, 961 
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where the participant followed a requested trajectory (red line) by modulating the motor unit activity 962 
(blue line). The participants attempted to control the movement of the paralyzed hand, and the 963 
feedback from NeurOne allowed real-time adjustments of the spared motor commands to achieve 964 
the desired trajectory. D) NeurOne calculates the feedback by convolving the task-related 965 
cumulative motor unit spike train decomposed by NeurOne with a physiological optimized motor 966 
unit twitch model. This approach provides smooth and super-fast feedback that helped the 967 
participants adjusting the movements in real-time.  968 
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Figure 2. Performance of the participants in the study. A) The three participants in the study during 969 
a session. Two electrode grids, each having 64 electrodes are placed on the skin of the forearm of 970 
the paralyzed hand. After performing a warm-up and recording 20 seconds of high-density surface 971 
electromyography (HD-sEMG) the online session is performed. B) The best online attempted 972 
movements throughout all sessions (a total of nine sessions per task spanning over three training 973 
days) where the participants followed a requested trajectory (red line) consisting of eight ramps by 974 
their task-related motor unit activity (blue line). The accuracy of the performance is calculated 975 
through the Pearson correlation coefficient r and the root-mean-square error RMSE per activation. 976 
C) Correlation and error were calculated individually for each ramp/feedback pair throughout the 977 
first three training sessions for all participants shown for each task and differed between the 978 
activations of 20% and 60%. Ramp/feedback pairs that had a correlation below r<0.5 were 979 
discarded as they were marked as not followed. The correlation r and error RMSE demonstrated 980 
largely consistent patterns between different activation levels and tasks. However, it is noteworthy 981 
that participant S1 was the only participant showing significant differences between lower and 982 
higher activations in both metrics.  983 
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Figure 3. The effectiveness of the proposed neural feedback system in improving the accuracy of 984 
tracking a requested trajectory with a cursor. NeurOne was tested on three participants (S1, S2, 985 
and S3) over three training days spanning between seven days (S2) up to 2 months (S1). A) shows 986 
the improvement in proportional control of motor unit activity over time for participant S2. On the 987 
first day of training, no proportional control was observed, as feedback was activated even when 988 
not requested. However, by the second day, the participant was able to activate motor unit activity 989 
only when it was requested. On the third day, the participant was able to modulate the feedback 990 
with high proportionality and low error. B) presents the correlation and error values between the 991 
best feedback and requested trajectory for each training day for participant S2, as calculated from 992 
the best correlated feedback/ramp pair in the online recording. The plot demonstrates that the 993 
correlation improves over the course of the training days. C) Boxplots of the Pearson correlation 994 
coefficient r and root-mean-square error RMSE per activation for each participant at 60% of the 995 
maximum activation for one task. All participants showed a significant increase in the correlation r 996 
(Δr1=147.6%, p1=1.33e-6;  Δr2=275.6%, p2=8.16e-4;  Δr3=172.9%, p3=2.44e-3 for participants S1, 997 
S2 and S3 respectively) and a significant decrease in the error from day 1 to day 3 998 
(ΔRMSE1=45.6%, p1=3.54e-5;  ΔRMSE1=25.6%,  p2=0.011;  ΔRMSE1=37.6%, p3=2.72e-3 for 999 
participants S1, S2 and S3 respectively). Participants S1 and S3 achieved consistent accuracy in 1000 
following the trajectories, as the range in performance at individual ramps decreased (Δr1=94.8%, 1001 
ΔRMSE1=64.3%; Δr3=98.6%, ΔRMSE3=66.9%) over the training sessions. In contrast, participant 1002 
S2 showed an increase in the range, but the median values were higher for the correlation and 1003 
lower for the error on day 3 than on the other days.   1004 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 26, 2023. ; https://doi.org/10.1101/2023.09.25.23295902doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.25.23295902
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

30 
 

Figure 4. Overview of NeurOne's software architecture and the feedback calculation process 1005 
displayed to the participants. A) The software is utilizing the PySide6 Python module and uses a 1006 
QuattrocentoInterface (based on QTcpSocket) to communicate with the amplification device 1007 
software OT Biolab Light. This data is then sent to the main window of NeurOne, which handles 1008 
the graphical user interface (GUI), motor unit spike train plots, and data processing. NeurOne can 1009 
perform either offline or online decomposition of incoming data. The spike trains of all motor units, 1010 
including those of the main and sub-tasks, are displayed in the main window using the 1011 
SpikeTrainPlot widget, while the calculated feedback is plotted in a separate FeedbackPlot 1012 
window (based on QMainWindow), making it possible to display the monitor specifically for the 1013 
participant in a dual monitor setup. NeurOne can also display the high-density surface 1014 
electromyographic signals in real-time using the EMGPlot window (based on QMainWindow). 1015 
NeurOne also provides the functionality of streaming the calculated feedback through an object of 1016 
the OutputStream class (based on QUdpSocket), which maps the feedback of the selected task 1017 
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on the involved fingers to control a virtual hand or mechatronic systems. B) The feedback 1018 
calculation that enables fast and smooth feedback for controlling the cursor to track the requested 1019 
trajectory. The identified spike trains of the task-related motor units are summed up into a 1020 
cumulative spike train, which is then convolved with a motor unit twitch model. The induced 1021 
feedback from this frame is then added to the calculated feedback from previous frames. From 1022 
the resulting summed feedback, the first 64 samples, i.e., 31.25 ms (red-dotted line), are taken as 1023 
the feedback frame. The average of the feedback frame is mapped on the cursor. C) Main 1024 
window of NeurOne’s GUI that displays the identified motor unit spike trains in real-time (left) and 1025 
the feedback window that is displayed to the participants of the study (right). NeurOne's main 1026 
window allows users to choose tasks, electrode configurations, online and offline parts. In the 1027 
case of the online part, users can select one main task from which the feedback is displayed in 1028 
the feedback window and additional sub-tasks. The real-time decoded motor unit spike trains are 1029 
displayed in the main window, with tasks being colored differently. The feedback window, 1030 
displayed to the participants in the study, provides task instructions and displays the cursor (red 1031 
dot) representing the current feedback frame and its history (red line) while the user is asked to 1032 
follow the requested trajectory (black line) by attempting the pinch task.  1033 
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 Figure 5. Procedure used to validate the feedback calculation method of NeurOne. A) Two 1034 
experiments were conducted that involved placing high-density surface electromyography (HD-1035 
sEMG) electrode grids consisting of 64 channels on the first dorsal interosseous (FDI) muscle (left) 1036 
and the musculus tibialis anterior (TA, rechts) of 23 healthy subjects (10 and 12 in experiment 2 1037 
and 3 respectively). At the same time, the isometric force produced during index finger abduction 1038 
(FDI) and ankle dorsiflexion (TA) was measured through a mechanical apparatus. B) A recorded 1039 
HD-sEMG signal during a ramp contraction of experiment 2 (14 seconds) was analyzed and 1040 
decomposed into motor unit spike trains. C) The subjects were instructed to follow a specific 1041 
trajectory with their generated force, consisting of twelve ramps with a target activation level of 10% 1042 
of maximum voluntary contraction (MVC). The requested trajectory is displayed with the red line 1043 
and the force feedback measured with the blue line (displayed for experiment 2). D) The cumulative 1044 
spike train of the three motor units (green) from the recorded HD-sEMG signal during a ramp 1045 
contraction of the index finger abduction task were used in the feedback calculation approach of 1046 
NeurOne. Additionally, the requested trajectory (red), the force signal (blue), and the feedback 1047 
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calculated by NeurOne (green) are displayed. Four seconds of the plateau part of the ramp 1048 
(between the vertical dotted red lines) were extracted for each signal and experiment and 1049 
normalized on its mean. Furthermore, the coefficient of variation cv was calculated for the 1050 
presented ramp plateau. E) The mean and standard deviation of the coefficient of variation cv were 1051 
calculated for each participant of experiment 2 (FDI, P1-10) and 3 (TA, P11-22) across all ramps. 1052 
The coefficient of variation cv was displayed for the output of NeurOne's feedback calculation 1053 
method (blue bars) and the recorded force signals (yellow bars) for the healthy subjects. F) Average 1054 
coefficient of correlation cv across all participants for experiment 2 and 3.  1055 
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Figure 6. This figure depicts the online decomposition method that is utilized in our software, 1056 
NeurOne. The process involves three steps. A) First, the source signals are identified in real-time 1057 
by applying the separation matrix W, which was discovered in the offline stage on the extended 1058 
and centered high-density surface electromyographic (HD-sEMG) signals of the current frame. B) 1059 
Next, a spike detection technique is applied to the identified sources. This method detects the 1060 
peak in the innervation pulse trains (IPTs), which are the squared source signals of this frame. If 1061 
the peak of the IPT is greater than 10 times the noise level, it is designated as a possible spike. 1062 
C) Finally, template matching is conducted to verify whether the possible spike is a motor unit 1063 
firing or not. To achieve this, a window is implemented around this possible spike in the source 1064 
signal and then correlated with the motor unit action potential that was identified in the offline 1065 
stage. If the correlation coefficient rthreshold > 0.60, the spike is identified as a motor unit firing.   1066 
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Table 1. Characteristics of recruited participants in the study 1067 

Subject Age 

range 

(years) 

Gender Injury 

level 

AIS Sensory 

level* 

Wrist 

movement 

Time 

since 

injury 

(years) 

S1 31-35 M C5 B C5 yes 9.1 

S2 36-40 F C5 A C5 yes 24.2 

S3 56-60 M C5 A T3 no 6.9 
* The sensory level corresponds to lowest level with normal sensory function. 1068 
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