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Abstract  

Vaccine is the most efficient method for controlling of infectious disease. Vaccine effectiveness 

estimation is extremely important in monitoring vaccine efficacy and controlling disease 

spreading. To study about the COVID-19 vaccine effectiveness from EHR data, we apply the 

counterfactual reasoning method with deep neural network for vaccine effectiveness estimation 

from the time-to-event data which are extracted from Optum EHR dataset. The estimated vaccine 

effectiveness by the counterfactual reasoning   is compared with the   Cox regression model and 

Random survival forest model. The preliminary results show that the proposed model is more  

unbiased than the Cox regression and Random survival forest models. 
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Introduction 

Until May 2023, the COVID-19 pandemic had led to 160 million cases and 1.14 million deaths 

in the United States of America [1]. The spread of the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) has been slowed down after the wide injection of vaccines. The 

effect of vaccination for preventing disease is a treatment effect estimation problem. Many 

studies are conducted to study the efficacy of COVID-19 vaccinations [2-7], and most of them 

are strictly designed clinical trials. In this project, the EHR data from Optum COVID-19 dataset 

will be used to estimate COVID-19 vaccination efficacy for preventing infection. The causal 

inference by counterfactual reasoning method would be applied as the analysis framework. 

Vaccine effectiveness (VE) estimation can be considered as a treatment effect estimation 

problem in which the vaccine is a treatment against a particular virus or pathogen infection. 

Vaccine effectiveness (VE) estimation has been a key study area for infectious diseases. 

Accurate estimation of the extent of the waning of vaccine-induced protection over time is an 

important public health need [8].  Vaccine efficacy (VE) is generally estimated by: �� � 1 �

�� , where ��  is the measurement of relative risk in the vaccinated compared with the 

unvaccinated group. The time-varying VE will be estimated by ����	  �  1 �  ����	, where 

����	 is the rate ratio at a specific time point � [9]. When estimating vaccine effectiveness in 

observational studies, scientists often encounter the problems of selection bias and covariate 

shift. Selection bias is generated when patients get their treatment by nonrandomized procedures. 

It will make observational data distributed differently from the population under research. When 

the observational covariate distribution differs from the whole population, it becomes a covariate 

shift problem. In our research, we adapt the model with time-to-event data in a counterfactual 

causal inference framework (survITE) [10] for vaccine effectiveness estimation. The VE 
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estimation is conducted within EHR dataset, and compared with the results from a Cox 

regression model [11] and Random survival forest (RSF) model [12]. 

Methods and material  

Problem formulation 

The effectiveness of vaccination can be formulated as a problem of estimation of the effects of 

the treatment on survival time. We consider a vaccine as a treatment, denoted as � � 1 �
 0 

where � � 1 denotes vac cine inoculated, and � � 0 denotes vaccine uninoculated. Let � be the 

treatments vector in observational data. Consider the elapsed time during which one has not been 

infected by an infectious disease such as COVID-19 after their inoculation as survival time, 

denoted by � , and �  be the time vector in observational data. Let �  be a covariate vector 

associated with a patient’s characteristics and features, and C be a censoring time which 

indicates loss of follow-up for a patient. Therefore, the observed survival time vector ��  (the time 

elapsed until either breakthrough infection or censoring occurs) is defined as 

 

�� � min ��, �	 

We define indicator variable ∆� ��� � �	, which shows whether the breakthrough infection is 

obtained or not. Consider � patients. The observed dataset is 

� � ��� , �� , �̃� , !�"���
�  

where �� # �, �� # �, �̃� # ��, !� # ∆. 

Conditional Hazard 

To define the conditional hazard function %��|�, �	 , we need to track breakthrough infection and 

censoring events. Define the indicators at the time t for the breakthrough infection and the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 25, 2023. ; https://doi.org/10.1101/2023.09.24.23296040doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.24.23296040
http://creativecommons.org/licenses/by-nc-nd/4.0/


censoring event, respectively, as: '���	 � ���� � �, ∆� 1	  and '���	 � �(�� � �, ∆� 0)  for 

� # �. Define event indicator at the time �  as *��	 � ��'���	 � 1+'��� � 1	 � 0	, i.e., the 

event occurs exactly at time �. The conditional hazard at the time � is defined as the conditional 

probability, which means an event occurs at time �, and it does not occur before time � [10]: 

 

%��|�, �	  � ,��� � �, ∆� 1|�� - �, � � �, � � �	  

             � ,�*��	 � 1|'��� � 1	 � 0, '��� � 1	 � 0, � � �, � � �	 . (1) 

 

We define the risk set at the time � as 

 

���, �	 � �. # /�0|'��� � 1	 � 0, '��� � 1	 � 0, � � �" , 

 

i.e., the set of samples at risk at time �. 

The survival function at time � is defined as 

 

1��|�, �	 � ,�� 2 �|� � �, � � �	 .       (2) 

 

The survival time and censoring time probability functions are defined, respectively, as 

 

3��|�, �	 � ,�� � �|� � �, � � �	 ,       (3a) 

 

3���|�, �	 � ,�� � �|� � �, � � �	 .       (3b) 
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Then, the conditional hazard %��|�, �	  can be expressed as 

 

%��|�, �	 � �	
|�,��

�	
|�,��
 .         (4) 

 

The relationship between the hazard function and survival function is given by 

 

1��|�, �	 � ∏ �1 � %��|�, �	��
 ).       (5) 

 

Conditional Hazard under Intervention and Estimation of the Vaccine Effectiveness 

The above hazard and survival functions are defined in terms of association. The treatment effect 

estimation involves causal analysis. The hazard, survival functions, and treatment effect 

estimation should be defined in terms of interventions. Let 5��� � �	  denote do-operator, 

implying that every individual is randomly assigned to a treatment �. Then, the hazard and 

survival functions under intervention are defined as [10] :  

 

%���|�	 � ,��� � �|� - �, 5��� � �	, � � �	 ,     (6) 

 

1���|�	 � ,�� 2 �|5��� � �	, � � �	 � ∏ �1 � %���|�		��
  .   (7) 

 

The vaccine efficiency at day � is defined as the proportional reduction in the hazard rate of 

infection after � day vaccination for an individual [2]: 

 

�� � 1 � ��	
|��

��	
|��
 .          (8) 
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Equation (8) implies that vaccine efficiency estimation needs to estimate counterfactual hazards. 

These are essential quantities in cause-based treatment effect estimation from survival data.  

To identify these individual quantities, we make some assumptions for the data [10]:  

1. Data are generated by general directed acyclic graphs (DAGs) (supplementary Figure 1) 

where a set of covariates are divided into possibly overlapping subsets 

� � ���, ��, ��", ��5 �  represents a treatment. The DAG also includes infection and 

censoring events at time ��, ��, … , �.  

2. Assume that there are no hidden confounders in static treatment effect estimation, i.e., 

��  �|�. 

3. Assume that censoring is random, i.e., ��  �|�, �. 

4. Consistency assumption. Assume that the observed outcomes are potential outcomes 

under the observed intervention, i.e., %���|�	 � %��|�, �	. 

5. Overlap/positivity. Assume that with non-zero probability �, 2 0	, the interventions of 

interests are observed, i.e., for 0 7  8�, 8�, 8� 7 1, we assume: 

(1) 8� 7 ,�� � �|� � �	 7 1 � 8�, 

(2) ,�'���	 � 0|� � �, � � �	 � ,�� 2 �|� � �, � � �	 2 8� 3�
 �99 � 7 �, 

(3)  ,�'��� � 1	 � 0|� � �, � � �	 � ,�� 2 � � 1|� � �, � � �	 2  8�. 

 

To estimate hazard, we consider event likelihoods and censoring separately since censoring is 

random and ignorable. The likelihood contribution of observation .  for hazard estimation is 

given by [10, 13]. 
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:� � �%���|�		���1 � %���|�		���� ∏ �1 � %��|�	��
��� 	  . 

 

The summation of negative log-likelihood is 

 

: � � ∑ �!� log %���|�	 ? �1 � !�	 log(1 � %���|�	) ? ∑ log(1 � %��|�	)������
�
��� "   

  

   � � ∑ ∑ �1��� - �	/@���	 log %��|�	 ? �1 � @���		 log�1 � %��|�		0"�
���

����

���  .  (9) 

 

Let ,�� 2 �|� � �	 � �/1�� 2 �|� � �	0 � 1��|�	.  There are two possibilities: � 2 �  and 

� � �.  When � � �, it indicates that � is not censored. We need to specify !� � 1. Therefore, 

the survival-based negative log-likelihood is given by: 

 

: � � ∑ ∑ �1��� 2 �	 log 1������

���
�
��� |��	 ? !�/1 � 1��� 2 �	0 log�1 � 1��|��		" (10) 

 

Finally, we consider the probability mass function (PMF) - based estimation. By definition of 

hazard rate, we obtain that 

 

%�1|�	 � ,�� � 1|�	 � 3�1|�	 .       (11) 

 

1�1|�	 � ,�� 2 1|�	 � 1 � ,�� � 1|�	 � 1 � 3�1|�	 .   (12) 

 

Assume one-hot encoded label /1��� � �	0��� . Then, we have 

%���|�	 � 3���|�	 .         (13) 
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Using equations (9) and (13), we obtain the PMF-based negative log-likelihood: 

 

: � � ∑ !� log 3���|�	�
���  ,        (14) 

 

where each uncensored observation contributes to this likelihood. 

Define the stochastic time-to-event (infection) generative function A���. 	. Assume that potential 

outcomes ��  are sampled from the distribution ,������|� � �	. Let ,�����|� � �, � � �	 be an 

event time distribution. Then, the negative log-likelihood loss function 9�*��	, A����		 can be 

written as 

 

9(*��	, A����	) � � log ,�����|� � �, � � �	  

                          � �/! log 3�����|�, �	 ? �1 � !	 log 1�����|�, �	0 .                        (15) 

 

In general, using only the samples at risk with treatment status �, we define the loss function 

 

: � ��,�	��~���	.�/9(*��	, A����	)0 ,         (16) 

 

A treatment-specific hazard function  %�
� ��|�	 can be estimated by minimizing the following 

empirical risk function: 

 

%B�
� ��|�	 � argmin��,	�! ��,�	��~��,		�,�	���/9 E*��	, A�,���	F0 ,    (17) 
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where  G is the hypothesis class or hazard function domain, and  

 ,�,�(�, *��	) � ,�*��	 � 1, �|'��� � 1	 � '��� � 1	 � 0, � � �	 , 

,�,���	 � ,��|'��� � 1	 � '��� � 1	 � 0, � � �	  

%�
� ��|�	 � ��,	"�,�	��#

��,		��
  . 

 

If the loss function is the log-likelihood loss function, then minimization (17) corresponds to 

optimizing the likelihood of the hazard.  

,�,���	 is often called observational (at risk) covariate distribution. The distribution ,�,���	 

varies over time. Hence, treatment assignment will bias the estimation of the treatment effect. 

The ideal case for estimating the treatment effect is optimizing the loss function over the 

population at baseline. However, covariate shift in observational studies will exist and 

complicate the circumstance. Denote the marginal distribution of the covariates X at the baseline 

as X0 ~ P0(X), three major sources will cause the changes of observational covariates distribution 

from baseline distribution ,$��	  to ,�,���	 , including the treatment assignment bias and 

confounding, censoring and event-induced shifts [10]. 

The first source comes from treatment assignment bias and confounding. As discussed above, the 

observation covariate (at risk) distribution ,�,���	 depends on the assignment of the treatment. If 

in practice, the treatment violates the complete random assumption, then the covariate 

distribution will not be equal to the baseline covariate distribution ,$��	. 

The second source comes from censoring. The treatment specific censoring hazard may depend 

on the covariates and treatment, i.e., %���|�, �	 is a function of treatment � and covariates �. 

Censoring bias may cause the changes of populations at risk. In other words, 

 ,�,����	 H ,�,�
��	 H ,$��	 , 
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,�,���	 H ,���,���	  for all � 2 1. 

The third source comes from time-dependent effect and effect-induced covariate shifts. Both 

natural and vaccine immunity wanes over time. The effects of vaccine decrease when the time 

elapsed since vaccination. For example, the emergence of hypermutated new virus variants may 

cause escape from vaccine–induced immune responses. The gut microbiome in an individual’s 

host cells changes over time, which may cause shifts in the covariates in the population and even 

affect the immune responses to vaccination.  

The importance weighting techniques were used to reweight the empirical risk. The survITE 

model [10] uses weight defined as the ratio of the target density ,$��	 and observes density 

distribution ,�,���	:  

 

I�,�
% ��	 � ��	��

��,		��
� ��	���	�& '�,(���

�	�,�& '�,(���
  

             � �	�& '�,(���

�	�& '�,(��|��
  

              � �	�& '�,(���

�	�& '�|(��,���	(��|��
  

             � �	,�
)�	��*�	�,��

,         (18) 

where  

,�,� � ,(�� - �, � � �), J���	 � ,�� � �|� � �	 and K���, �	 � ,(�� - �L� � �, �	. 

 

J���	 is often called the propensity score, and K���, �	 is the probability to be at risk. 

Since the hazard parameter %���|�	 and risk probability K���, �	 are unknown, the weights are 

also unknown.  For large �, survITE also requires weight I�,�
% ��	 to satisfy the following normal 

distribution [10]: 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 25, 2023. ; https://doi.org/10.1101/2023.09.24.23296040doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.24.23296040
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

��~��,		��MI�,���	N � 1 or 

O ,�,���	 I�,���	5� � 1 . 

 

Therefore, we define the weight distribution as 

 

,�,�
+ � I�,���	,�,���	 .         (19) 

 

Domain-invariant representation is a useful technique to adapt the domain. Define a 

representation function learned by neural networks [14]: Φ��	: R S �. The time-varying hazard 

estimator  %B�
� ��|�	  is a function of representation: %B�

� ��|�	 � A�Φ��		 . We require the 

representation Φ��	 should minimize the integral probability metric (IPM) between covariate 

distributions at baseline ,$ and ,�,�
+ . According to Fredrik et al. [15-16], there is an upper bound 

for the counterfactual generalization error of a representation function Φ, hence the optimization 

of the model would be minimization of the upper bound or loss function.  

Next, we will introduce loss function and use it for estimation %B�
� ��|�	. 

Loss Function 

Summarizing the analysis above, we introduce loss function for estimating individualized 

treatment effects from observational studies. The loss function borrowed from Cyrth et al. [10] 

is:  

 

:,�-�T., T�	 � :��/0�T., T�	 ? U:�12�T.	 ,         (20) 

where 
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:��/0�T., T�	 �
�

����

∑ ∑ / �

��,	

��  9�@���	, %�,�(Φ���	)	 ? �

��,	

�1 � ��	9�@���	, %$,�(Φ���	)�:�&�'�
����

��� ) ]                  

(21) 

 

:�12�T.	 � ∑ ∑ V�WW��Φ���	"���
� , �Φ���	"�:�& '�,����	����

�����4$,�5                             (22) 

 

Φ���	 � ''��� , T.	, ''�. , . 	 is a neural network function implementing Φ���	, 

%�,�(Φ���	) � ''�Φ���	, �, �, T�	, '' represented neural networks implementing  %�,�(Φ���	), 

��,� � |���, �	|, ���, �	 � �.|'��� � 1	� � '��� � 1	� � 0 X �� � �, . � 1, … , �" , 

'���	 � 1(�� � �, ∆� 1), '���	 � 1(�� � �, ∆� 0), 

∆� 1�� � �	 , 

V�WW�. 	 is the Wasserstein distance which measures the difference of the distributions of ,$ and 

,�,�
+ . 

The parameters T., T� are the trained and estimated for the representation function Φ��	 and the 

hazard function. %�,��x	 can be estimated by minimizing the loss function :,�-�T., T�	.  

Data Source 

We apply the proposed model to estimate COVID-19 vaccination effectiveness in reducing 

break-through infection risk. Analysis cohort is obtained from Optum Electronic Health Records 

(EHR) research database. The Optum Research Database is an administrative claims database 

containing data from 160 million individuals and electronic health records for more than 80 

million individuals nationally [17]. 
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Laboratory and immunization data in Optum research database are manipulated. The COVID-19 

infection is defined as SARS-CoV-2 laboratory test positive result. Break-through infection is 

defined as COVID-19 infection after patients get their second dose of vaccine. To analysis 

specific COVID-19 variant, the specimen collection dates restricted between June 1st 2021 and 

November 30th 2021, the period with Delta variant mainly spread in the United States. Four 

vaccine types mRNA-BNT162b2 (Pfizer–BioNTech), mRNA-1273 (Moderna), AZD-1222 

(AstraZeneca) and Ad26.COV2. S (Johnson & John- son–Janssen) - are recorded in the data, and 

the overall vaccine efficacy is estimated for all kinds of vaccine.  

The demographic variables controlled in the model include age, gender, race, ethnicity and 

geographic region. 

Results 

Study Population 

Data of patients who have COVID-19 test in the period from June 1st 2021 to November 30th 

2021 were extracted from Optum research database. After data clean and manipulation, there 

were 957, 613 patients remaining in the dataset. In the 957, 613 patients, 127, 313 patients were 

fully vaccinated and 830, 300 patients did not have any dose of COVID-19 vaccines. In order to 

obtain balanced dataset for each treatment arms (fully vaccine vs non-vaccine), we randomly 

sampled 127, 313 patients in non-vaccine group. The final analyzed cohort contained 254, 626 

patients. The demographic characteristics of the cohort is shown in Table 1.  

Vaccine Effectiveness against Break-through Infection  
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Daily vaccine effectiveness was estimated by three models, survITE model [10], COX regression 

model [11] and RSF model [12]. The assumed follow-up time is 180 days (from June 1st 2021 to 

November 30th 2021).  

This research also compared the survival probabilities and cumulative hazard functions between 

vaccine and non-vaccine groups. Since the survival probability and hazard function at each time 

point cannot be obtained by the package from COX regression model [11], the results of survITE 

model [10] and RSF model [12] were shown. 

Figure 1 demonstrated  the estimated vaccine effectiveness against break-through infection at 

different time points from three models, survITE model [10], COX regression model [11] and 

RSF model [12]. The mean vaccine effectiveness obtained by survITE model is 0.49, with 

maximum value at time point = 73 days, then vaccine effectiveness fell down with time passed. 

The mean vaccine effectiveness obtained by COX regression model is 0.88, with maximum 

value at time point = 29 days, then vaccine effectiveness slowly fell down with time passed. The 

mean vaccine effectiveness obtained by RSF model is 0.61, with maximum value at time point = 

101 days, then vaccine effectiveness fell down with time passed.  Figure 1 showed that  the 

vaccine effectiveness estimated  by the Cox regression model was much higher than the 

estimated by two other methods.  

Figure 2 shows the survival probabilities of break-through infection obtained by proposed model 

at different time points, here vaccine and non-vaccine groups were plot separately. Figure 2 

shows that survival probability of break-through infection for vaccine group was higher than 

non-vaccine group.  
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Figure 3 plotted the  cumulative hazard function curves at different time points estimated by the 

survITE model (a) and RSF model (b) for the vaccine and non-vaccine groups. Figure 3 showed 

that difference in the cumulative functions between the vaccine and non-vaccine groups 

estimated by the  SurvITE model was smaller that that estimated by the RSF models. Since the 

software for Cox regression model does not provide calculation of  the survival probability and 

hazard functions, Figure 3 did not include the results of the Cox regression models.  

Figures 4 and 5 illustrated the survival probabilities  of break-through infection for vaccine and 

non-vaccine groups estimated by the survITE and RSF models,  respectively. The difference in 

estimations of survival probabilities between the survITE and RSF models was small.  

Figures 6 and  7 illustrated the cumulative hazard functions of break-through infection for 

vaccine and non-vaccine groups, estimated by the  survITE and RSF models, respectively.  We 

observed from Figures 6 and 7 that the  difference in the estimated  hazard function between  the 

survITE and RSF models in the vaccine group was smaller than that in the non-vaccine group.  

Discussion 

In this report, the EHR dataset was used for the estimation of COVID-19 vaccine effects. The 

Optum EHR dataset was cleaned and manipulated. Since there were several different types of 

coronaviruses, to reduce the bias caused by virus type, the observation time interval was 

restricted into the period from June 1st,  2021 to November 30th,  2021. And since the vaccine 

types in dataset were not indicated, the VE estimation  included mRNA-BNT162b2 (Pfizer–

BioNTech), mRNA-1273 (Moderna), AZD-1222 (AstraZeneca) and Ad26.COV2. S (Johnson & 

John- son–Janssen).   
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The estimated daily VE values from the three models, survITE model, Cox regression model and 

RSF model had revealed the changing trend of VE with time. The three curves showed similar 

trend in the beginning of observational time interval, the VE increased after the injection of 

vaccine, but the results of three models showed different speed for VE increasing. Cox 

regression model showed that the VE increased rapidly and reached a peak in a very short time 

period (29 days) after fully vaccinated, and the increasing speed for the other two models 

(survITE: 73 days, RSF: 101 days) is relatively low. After reached a peak, VE started to 

decrease, and both survITE model and RSF model  more rapidly decrease than Cox regression 

model. The changing trends of VE for three models  approximately followed other vaccine 

effectiveness studies [6-7].  

The selection bias and covariate shift exist in observational data research, and the dataset used in 

this research also encountered with these problems. Since survITE model applied counterfactual 

reasoning by representation learning from demographic variables of patients, which decreased 

the covariate shift and selection bias in the real-world problems, the calculation of hazard 

function would be closer to the real value. The Cox regression model was based on Cox PH 

model. Althouth it introduced the dynamic elements in the calculation, it  still could not 

eliminate the selected bias and variable shift  generated from observational data and 

overestimated the VE. RSF model was a forest ensemble learner for analysis of right-censored 

survival data [18]. And it seemed that the estimated VE from RSF model was lower than Cox 

regression model, but higher than survITE model. This may imply that the RSF model could 

eliminate some effects due to selection bias and variate shift, but still was not be able to 

unbiasedly estimate the VE.   
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Afterall, from the results of three models, we observed that based on Optum EHR dataset, 

COVID-19 vaccine increased the survival probability of an individual from getting breakthrough 

infection and the VE of COVID-19 against breakthrough infection  increased after injection of 

vaccine. However, selection bias and variable shift widely exist. Most statistical methods  for VE 

estimation are based association.  Vaccine effectiveness (VE) estimation is a heterogeneous 

treatment effects from time-to event data. It consists of two parts: (1) estimating treatment effects 

for potential binary or continuous  outcomes and (2) predicting survival outcomes.  Three 

factors: (1) confounding, (2) censoring and (3)  a variety of covariate shift  will bias the 

estimation.  The VE estimation involves hazard and survival functions which are determined by 

the dynamics of the underlying stochastic processes. The complex stochastic processes in turn 

lead to the shift of variates.  These features make the time to event outcomes significantly 

different from the regression targets which leads to modeling the time-to-event outcomes 

difficult and the biased VE estimation.    

Widely used Cox regression model is not causally interpretable even if in a randomized survival 

study [19], [20]. The HR obtained  from the Cox regression model cannot be given a causal 

interpretation. The shift of covariates will change the selection and change the hazard ratios, 

which in turn change the VE. The VE is not only measured by the vaccine, but also by the 

stochastic virus, biologic properties of the individuals, other public health interventions,  and 

environments. Therefore, the Cox regression model overestimated the VE. 

 In contrast, the SurvITE formalized   the survival treatment effect problem in terms of empirical 

risk minimization,  used neural network- based model for balanced representations and designed 

specific  loss functions  with some regularizations for estimation of treatment-specific target 

parameters (hazard and survival functions) which took mitigate the impact of shifts of covariates 
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on the parameter estimation into account.  Thereforfe, the VE estimated by the SurvITE was less 

biased than the COX regression and RSF models.  

Limitations of SurvITE  are as follows. The SurvITE still relies on  a set of strong assumptions 

which have not been validated in both theory and practice. Random censoring is an additional 

assumption added to  the standard ‘no hidden confounders’ assumption in classical treatment 

effect estimation, which may invalid any meaningful causal estimation of heterogeneous VE 

estimation.  

Data availability 

All datasets used in this work are available on request. 

Code availability  

The code for estimation of  vaccine effects will be  submitted to github very soon. 
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Table 1. Demographic characteristics of the cohort. 
 Age Group Number of Individuals Gender Number of Individuals 

< 12 yr  27,325 (10.73%) Female 143,163 (56.22%) 

12-17 yr 20,995 (8.25%) Male 111,463 (43.78%) 

18-34 yr 51,503 (20.23%) Ethnicity Number of Individuals 

35-49 yr 44,936 (17.65%) Hispanic 20,189 (7.93%) 

50-64 yr 53,966 (21.19%) Non-Hispanic 186,639 (73.3%) 

>=65 yr 55,901 (21.95%) Unknown 47,798 (18.77%) 

Race Number of Individuals COVID Infection Status Number of Individuals 

Africa American 20,999 (8.25%) Positive 29,211 (11.47%) 

Asian 6,009 (2.36%) Negative 225,415 (88.53%) 

Caucasian 141,764 (55.68%) Fully vaccine 127,313 (50%) 

Other/Unknown 85,854 (33.72%) Non-Vaccine 127,313 (50%) 

Geographic Region   South 29,992 (11.78%) 

Midwest 80,687 (31.69%) West 25,563 (10.04%) 

Northeast 52,289 (20.54%) Other/Unknown 66,095 (25.96%) 
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Figure 1.  Vaccine effectiveness comparison among survITE model, Cox regression model and

RSF model. 

 

 

 

 

 

 

Figure 2.  Survival probabilities at different time points estimated  by survITE model (a) and

RSF model (b) for vaccine and non-vaccine groups. 
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Figure 3.  Cumulative hazard functions at different time points estimated by survITE model (a)

and RSF model (b) for vaccine and non-vaccine groups. 

 

(a) 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 25, 2023. ; https://doi.org/10.1101/2023.09.24.23296040doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.24.23296040
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 25, 2023. ; https://doi.org/10.1101/2023.09.24.23296040doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.24.23296040
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 4. The survival probabilities of vaccine group at the different time points estimated  by

two models: survITE  and RSF models. 
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Figure 5. The survival probabilities of non-vaccine group at the different time points estimated

by two models: survITE  and RSF models. 
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Figure 6. The cumulative hazard functions of the vaccine group at the  different time points

estimated  by two  models: survITE model and RSF model. 
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Figure 7. The cumulative hazard functions of the non-vaccine group at the  different time points 

estimated  by two  models: survITE model and RSF model. 
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