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 Abstract 

Background 

Distinguishing diseases into distinct subtypes is crucial for study and effective treatment strategies. 

The Open Targets Platform (OT) integrates biomedical, genetic, and biochemical datasets to empower 

disease ontologies, classifications, and potential gene targets. Nevertheless, many disease annotations 

are incomplete, requiring laborious expert medical input. This challenge is especially pronounced for 

rare and orphan diseases, where resources are scarce. 

Methods 

We present a machine learning approach to identifying diseases with potential subtypes, using the 

approximately 23,000 diseases documented in OT. We derive novel features for predicting diseases 

with subtypes using direct evidence. Machine learning models were applied to analyze feature 

importance and evaluate predictive performance for discovering both known and novel disease 

subtypes.  

Results 

Our model achieves a high (89.4%) ROC AUC (Area Under the Receiver Operating Characteristic Curve) 

in identifying known disease subtypes. We integrated pre-trained deep-learning language models and 
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showed their benefits. Moreover, we identify 515 disease candidates predicted to possess previously 

unannotated subtypes. 

Conclusions 

Our models can partition diseases into distinct subtypes. This methodology enables a robust, scalable 

approach for improving knowledge-based annotations and a comprehensive assessment of disease 

ontology tiers. Our candidates are attractive targets for further study and personalized medicine, 

potentially aiding in the unveiling of new therapeutic indications for sought-after targets. 

 

Keywords: Disease subtypes; Disease ontology; Explainability; Machine learning; Medical language 

models; Ontology completion; Open Targets; Orphanet; Personalized medicine.  

1. Introduction 

Disease subtyping, also called disease stratification, enables a more precise understanding and 

characterization of various illnesses, paving the way for personalized treatments and improved patient 

outcomes. Disease subtypes can be delineated using genetic, molecular, or clinical attributes [1]–[3]. 

As personalized medicine advances, disease subtyping can advance our understanding of disease 

mechanisms across various medical disciplines [3], [14]. Moreover, it is needed for study, effective 

treatment, and discovering potential cures. Furthermore, certain drugs and treatments may be 

relevant only for specific subpopulations and disease manifestations [15], [16]. Disease progression 

can also be markedly different, requiring different clinical treatment regimes [17]–[19]. 

We concentrate on clinically significant differentiation, or subtyping, of diseases. For instance, variants 

of SARS-Cov-2 caused the COVID-19 pandemic. We claim that subvariants (e.g., delta, omicron) are not 

useful for clinical categorization. Instead, the partition of COVID-19 to patients experiencing an acute 

phase and others who exhibit persistent conditions known as long COVID dictates clinical importance. 

Another example of disease subtyping is evident in the differentiation between type 1 and type 2 

diabetes mellitus, where, despite the similarity in dysregulation of blood sugar levels, treatment 

approaches, disease management, and potential cures vary significantly. Neurodegenerative disorders 

like Alzheimer's and Parkinson's, although categorized clinically as neurodegenerative diseases, exhibit 

distinct molecular pathologies, subtypes, and diverse progressions and treatments. Advancing our 

understanding of Parkinson’s subtypes is pivotal for devising effective treatment strategies [1]. 
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Conversely, while various viruses can cause influenza, differentiating them based on their specific 

causal virus is clinically irrelevant since treatment and disease progression remain identical. 

Historically, the medical community has spearheaded efforts to identify the multifaceted nature of 

diseases. Clinicians primarily rely on the International Classification of Diseases (ICD), which undergoes 

periodic revisions [4]. For instance, Diabetes mellitus (ICD-10, E10-E14) is partitioned into Type 1 (E10), 

Type 2 (E11), and unspecified diabetes (E14), along with further subtypes [5], [6]. 

The Open Targets (OT) platform integrates a variety of molecular, genetic, and biomedical datasets, 

ontologies, and knowledge graphs [7]. Increasing quantities of semantic resources offer a wealth of 

knowledge but also increase the probability of wrong knowledge-based entries and error propagation 

[8]–[11]. Thus, developing automated approaches to both complete and correct potentially spurious 

entities in large knowledge bases is of paramount importance. The concept of accurate hierarchical 

categorization of diseases and phenotypes is further underscored by initiatives like the gene ontology 

(GO) project, where ontologies, phenotypes, and functions across species are mapped to coding genes 

[12]. The impact of the Gene Ontology (GO) project on automatic functional annotation tasks such as 

CAFA is unquestionable [10], [13]. CAFA (Critical Assessment of Functional Annotation) is an ongoing 

effort to evaluate and improve the computational annotation of protein functions. 

Existing ontologies are complex and may suffer bias due to many factors, including population 

prevalence and the number of researchers and clinicians working on the disease, factors that may 

impact their division into sub-categories in the literature as well as the quality of annotation [20]–[22].  

Most existing methodologies rely on inheriting or directly mapping disease levels from existing 

annotations and ontologies by strict, manually defined rule-based methods. One concentrated on a 

narrower domain, clustering specific cancer data, imaging, and non-biomedical data [23]. It did not 

endeavor to offer predictions across a broad spectrum of known diseases. Another approach used by 

OT data is to identify drug-disease associations, which is a different objective from ours [24]. Our work 

also relates to knowledge-based link prediction, and literature-based discovery [25]–[29]. However, 

these mainly aim to identify “horizontal links” between existing topics. In contrast, our objective is to 

flag topics that might have undiscovered subtopics, or missing “vertical” links. 

We propose a data-driven machine learning approach for ontology completion and correction, 

specifically applied to OT. OT integrates a wide variety of gold-standard curated ontologies and data 

sources, from which we curate a novel benchmark dataset for disease subtype prediction. This dataset 

can be used for evaluating and developing approaches for characterizing diseases. Furthermore, we 

present an approach for identifying and evaluating candidate diseases with potential novel subtypes 
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and mis-annotations, and a ranked list of predictions. We validate our novel candidates using ongoing 

research and future OT annotation updates. Our automated approach is interpretable, scalable and 

offers novel candidate disease subtypes for future research.  

We outline the key steps in our approach. First, we create a target matrix from the existing OT ontology 

for all diseases, defined as whether a disease has a subtype or not. Predictive features for each disease 

are derived from OT's direct evidence data sources. A machine learning model is trained on known 

targets. Predictions are formulated for every entry in the dataset through iterative rounds of hold-out 

cross-validation. Subsequently, we interpret and scrutinize the results and models. Instances where 

the predicted target consistently deviates from the known one, coupled with supplementary filtering, 

are identified as potential candidates for novel subtypes or highlight annotation inaccuracies. Our goal 

is to help find unknown disease subtype candidates within existing databases.  

2. Results 

2.1 Diverse Disease Ontologies    

A machine learning model for disease subtyping assessment and discovery was developed using the 

sources integrated into OT. An overview of these sources is demonstrated in Fig 1.  

Fig 1A is a disease perspective view of type 2 diabetes mellitus on the OT platform [30]. It encompasses 

text associated with the description, synonyms from various databases, and summary statistics for 

additional information, including ontologies, known drugs, clinical signs, symptoms, and bibliography. 

Fig 1B lists associated genes for type 2 diabetes mellitus ranked by global scores for the disease. The 

genes’ evidence is indicated by the heatmap, with genetic association from genome-wide association 

studies (GWAS), direct support from drugs, text mining, RNA expression, animal model studies, and 

more.   
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Fig 1. Example from Open Targets Platform for type 2 mellitus diabetes. (A) Description, disease 

ontology (including any subtypes), synonymous nomenclature, known drugs, bibliography, and clinical 

symptoms (B) Weighted evidence sources and domains for the disease, including genetics (genetic 

associations), somatic mutation, drugs, text mining, and more. Each column is colored by the intensity 

of the relevant score (normalized 0 to 1). The gene list is sorted by the overall association score. 

The final dataset held 17,222 diseases, of which 5,848 (34%) have known subtypes. Feature importance 

and model performance were evaluated in predicting targets with known subtypes. Our novel features 

demonstrate high importance and predictive power. In addition, these may support the discovery of 

novel therapeutic indications for highly pursued targets. 

2.2.  Performance Evaluation - Known Targets 

For the task of predicting known disease subtypes, we tested multiple machine-learning models, 

including logistic regression (LR), random forest (RF), CatBoost (a boosting tree model), as well as 

domain-specific baselines. Binary classification performance was evaluated using five-fold stratified 
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cross-validation [31]–[33] (Fig 2). Additional evaluation results are provided in Supplementary table 

S1, and the confusion matrix of the best, CatBoost, model in Supplementary Fig S1. 

 

 

Fig 2. Known subtypes model evaluation. Results shown 5-fold cross-validation, and standard deviation, 

for a selection of evaluated models. PRAUC: Area Under Precision-Recall Curve. No Text - CatBoost 

model with text embedding features excluded (see Methods: “Deep learning using Text features”). The 

remaining, non-baseline models used all features. Additional models and metrics results are reported 

in Supplementary table S1. 

For comparative analysis, we added to the assessment three domain-specific baselines. These are 

linear models trained exclusively on a single feature: (i) the disease's database source (e.g., Orphanet); 

(ii) the number of known phenotypes (“phenotype frequency”); (iii) The number of “siblings” a disease 

has in OT database, wherein all “siblings” share the same parent disease. All baselines outperform 

random guessing. All models substantially outperform the baselines (Fig 2). CatBoost had the best 

performance, achieving a ROCAUC (Receiver Operating Characteristic Area Under the Curve) of 89.4% 

(Figs 2-3). Accordingly, we used CatBoost for subsequent predictions of novel subtypes and analyses. 

This included extracting novel predictions and ablation analysis of the text features. We find that text 

features significantly enhanced performance when compared to a model devoid of text features (Fig 

2, “No text model”), yielding an AUC of 0.89, in contrast to 0.86 without these features.  
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Fig 3. Known subtype models comparison. Model test-set predictive performance is measured by 

ROCAUC (left) and PRAUC (right). 

2.3. Model Feature Importance 

The “known subtypes” model’s feature importance was extracted using SHAP (Fig 4A). We observe 

that the source database is a major feature, as we might expect (e.g., Orphannet diseases are more 

likely to be understudied and to lack subtypes). Diseases with a high amount of genetic and literature 

evidence score (Fig 1) are more likely to have subtypes. Specific disease phenotypes were strong 

features in aggregate, but consisted of hundreds of individual weaker features, and thus are not visible 

here; the engineered feature of the highest global frequency of an associated phenotype (“Max 

phenotype frequency”) is strong - we theorize it might help the model learn about diseases with easy 

versus hard to characterize phenotypes. The number of phenotypes is another interesting feature. 

disease with many different effects may be more complicated to stratify or maybe a combination of 

effects. The various text features from the pretrained biomedical large language model have a clear 

impact (see Methods: “Deep Learning Text Features”). These might help extract additional information 

about diseases from their descriptions or pre-existing literature. 
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Fig 4. Feature importance over data subsets. Shapley-based feature importance in disease subtype 

prediction for A) All data (Existing OT subtype annotations). B) Feature importance for subset with 

predicted novel subtypes, and no subtype in ground-truth. Top 15 features shown. See Methods for 

feature dictionary. 

2.4. Predicting Diseases with Novel Subtypes  

Given the strong performance of machine learning models in our evaluation, we used our model to 

predict disease subtypes for diseases that are not identified as such in the existing dataset. We applied 

a repeated-stability approach to identifying potential novel candidates. We report on cases where a 

model, retrained over multiple random data splits (using 8x5 repeated stratified cross-validation), 

consistently (eight out of eight times) predicts a different label than the recorded one per data point. 

The predicted data point is always part of the held-out test set. Thus, there are 8 held-out model 

predictions for every instance in the data. We identified 1,546 such cases, out of 17,222 records in the 

dataset. Of these, 515 (33%) are predicted to have subtypes, where none are recorded in the OT 

ground truth. The average prediction consistency was 84.9%. This approach is effectively an ensemble. 

In supplementary S5 we record the averaged model predictions on the held-out test set splits. This 

ensemble has better results than a single model, as might be expected (ROCAUC: 91.08, PRAUC: 86.61) 

[19], [34]. Thus, we used these as candidate predictions. The full list of candidate predictions is in 

Supplementary File S5.  
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Using SHAP we examined features’ contributions to model predictions, for the predicted novel 

subtypes subset only (Fig 4B), and observed that the top features (evidence source, phenotype etc) 

remain relatively stable in terms of rank importance and direction of effect, with the same effect as 

for known subtypes in the general population (Fig 4B), indicating that these cases are not anomalous 

in terms of their features compared to the background. We plotted the distribution of several “top” 

(selected by model importance) features, and observed a similar distribution overall (Fig 5), again 

reinforcing that the novel subtypes have similar properties to the ground-truth known subtypes. 
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Fig 5. Distribution of known vs novel subtypes. Violin-plots of selected features for 5.8K diseases with 

known subtypes vs. 531 predicted, candidate novel subtypes that have no known subtype. 

2.5. Evaluation of Predictions for Unknown Targets 

As there is no ground truth to evaluate the novel subtype predictions, we use the scientific literature 

as an external validation mechanism, as in [24]. We presume that potential subtypes might be 

discussed in the wider literature before any validation and integration into existing knowledge. From 

our models, we selected 800 predictions, sorted by highest predicted probabilities, evenly split with 

400 cases per target class. We searched for literature hits of these candidate diseases being mentioned 

as having a subtype, sub-manifestation, or pleiotropy in PubMed. We extracted the fraction of such 

cases relative to the total number of literature references for each disease (Supplementary Table S3). 

The difference between candidates categorized by their predicted subtype was statistically significant 

as determined by a one-sided unequal variance t-test (p-value = 2.6e-7), with predicted candidates 

having ~5 times as many results with subtypes (i.e., 2,100 vs. 400). 

We conducted a similar analysis on 300 of the stable predicted novel candidates (Supplementary Table 

S4), specifically those whose predictions deviated from existing annotations. For this subset, the 

literature search revealed no significant difference (p-value=0.27). This aligns with our hypothesis that 

these novel candidates are uncharacterized in existing studies. If our model's predictions were merely 

identifying diseases widely acknowledged to have a subtype but not yet annotated in OT, this would 

be evident by the literature search (i.e., numerous "subtype" mentions), which was not observed here. 

This observation bolsters our assertion that the model is highlighting truly unknown subtype 

candidates, rather than just inadequate or faulty annotations. 
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2.5.1 Temporal Validation of Candidates 

For further validation that our candidate predictions are meaningful, we downloaded an additional, 

18-month newer snapshot of the OT database (dated 12.2023). Of the 19,819 diseases that overlap in 

both versions (the total population), 1.2% (238) had subtypes added or removed entirely between 

versions. 1509 (92%) candidates were successfully matched by name, and of these, 48 (3.18% of the 

candidate sub-population) had their subtype annotations changed. The 3-fold proportional difference 

(3.18% vs 1.04% in the sub-population not containing candidates) is statistically significant (p-value 

<1e-05, one-way, two proportion z-test). This shows that our candidates are far more likely to have 

their existing annotation ground truth “fixed” in accordance with our predictions, relative to the 

overall population.  

2.5.2 Analysis of Database Source Distribution in Predictions 

A concern was whether the model was simply identifying surface-level patterns, such as associating all 

diseases from a specific data source, such as Orphanet (an orphan disease database) with a subtype. 

Such hidden confounders are common in many predictive scenarios [35], [36]. To validate the model, 

we examine the distribution of disease subtypes in our predictions against the known subtypes, 

focusing on their source database (Table 1). We find the distribution of our novel candidates slightly 

differs from the original dataset target at the database level. Notably, there is a lower frequency of 

subtypes in predictions from Orphanet. This gives further support to our identification of candidates 

using non-trivial patterns, and reducing bias towards existing annotation sources. 

Table 1 shows the distribution of diseases with known vs. predicted subtypes, grouped by the 6 largest 

database sources. Diseases’ subtype fraction is shown per source. “Original Source Subtype Fraction” 

depicts the percentage of diseases with a subtype in existing annotations. “Predictions Source Subtype 

Fraction” depicts the percentage of diseases with predicted subtypes in novel predictions. “Total 

Source Diseases'', indicates the total number of diseases (regardless of subtype) from a source.  

Table 1. Source subtype distribution 

Sourcea 
Original Source Subtype 

Fraction (%) 
Predictions Source 

Subtype Fraction (%) 
Total Source 

Diseases 

MONDO  37 35 8801 

EFO 28 22 4590 

Orphanet 28 23 2061 

HPO 36 32 1460 
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GO 56 55 352 

OBA 11 0 27 

aSources are described in [12], [58-62]. 

2.5.3 Understanding Potential Novel Disease Subtypes 

Following our model's identification of 515 diseases predicted to have subtypes not currently 

annotated in OT, understanding the significance of these findings becomes paramount. These 

candidates, selected based on their consistent predictions and absence of known subtyping, 

underscore the vast potential for refining our understanding of disease taxonomy. The top-ranked 

novel predictions were manually reviewed.  We provide several explanations for representative novel 

candidates (Table 2). Broadly, we note high-level causes that include: (P) Pleiotropic manifestations: 

different causes resulting in seemingly similar outcomes, leading to diseases with varied presentations. 

Additionally, overlapping clinical presentations can cause misdiagnosis. Examples include the 

confusion between CNS inflammatory disorders and multiple sclerosis (MS), neurodegenerative 

diseases and dementia [17-18,40]. (B) Variability in disease course and treatment: Clinical trajectory 

and therapeutic responsiveness can vary based on disease subtypes and interaction with patient 

characteristics (e.g., Parkinsons’ [1]). (H) “High-level” semantic terms: these are inherently broad and 

include a range of conditions, e.g., “infections”. Such cases are clear-cut and may be due to a lack of 

linkage of known terms between ontologies. 

In the cases of diseases predicted to be misannotated and to not have a subtype; some cases may 

simply be model errors, hence the need for a final layer of expert review. There are numerous valid 

explanations for why a disease may have an incorrect annotation, ranging from human error, database 

error, and annotator guidelines biases. We illustrate it by a hypothetical case of two different virus 

strain variants of the SARS-CoV-2 Omicron strain being classified as two distinct diseases. While they 

are caused by a separate strain, their disease manifestation and course of treatment overlaps with 

that of a flu-like illness. In this case, we claim that the distinction is not clinically meaningful, but could 

be recorded as such by mistake. Merging such subtypes would improve the database. Our temporal 

validation showed that our candidates are much more likely to be “interesting” and in need of 

reassessment in the OT database. 
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Table 2. Candidate novel subtypes’ explanation by categories 

Disease Explanation aRationale Ref 

COVID-19 
The spectrum of clinical presentations, from asymptomatic 
states to severe respiratory syndrome, and long-term 
impairment (“long COVID”) suggests potential subtypes. 

B 
[42], 
[43] 

Smallpox 

There are four types: ordinary; modified (mild, occurring in 
previously vaccinated persons); flat; and hemorrhagic. For 
example, the Smallpox vaccine does not protect against 
hemorrhagic smallpox. 

B  [63] 

Female breast 
carcinoma 

Varied molecular subtypes, defined by specific gene 
expression profiles, as well as anatomical regions, dictate 
prognosis and therapeutic responsiveness. 

P, B   

Nephropathy 
Kidney pathologies with distinct histological features and 
clinical courses. 

P, B   

Cardiovascular risk  

Disease families with broad risk factors, including 
environmental, genetic and genetic-environment 
interaction (GxE). For example, diabetes, or specific 
genetic risk factors. 

P, B 
[6], 
[15] 

Structural epilepsy 
Different brain anomalies can precipitate varied forms of 
epileptic seizures. It may coexist with tumors, cysts, stroke, 
or vascular malformations.  

P, B  [41] 

Parkinson disease, 
mitochondrial 

Neurodegenerative disorders, that though clinically 
overlapping, have distinct molecular pathologies, and 
treatment.. 

B  [1] 

(Multiple) malignant 
and non-malignant 
tumors 

Behavior, complications and treatment are influenced by 
specific mutations, patient genetics and risk factors (GxE), 
physical size, organ location. 

H  

Eye infections 
Distinct etiological agents, spanning bacteria, viruses, 
fungi, and parasites, involving distinct treatment and risks. 

H  

Alcohol dependence; 
Sexual and gender 
identity disorders; 
Speech disorder; 
Central nervous system 
development 

Semantically high-level categories, lacks breakdown to a 
clinically useful level, required for effective treatment 

H  
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Dysplasia 

A high-level family of conditions (encompassing “types of 
abnormal growth or development of cells, organs”, and 
resulting abnormalities. Different categories by delineation 
by microscopic (cell) level, organ (macroscopic), organ and 
cell type.  

H [44] 

aRationale: High level rationale codes: (P) Pleiotropic manifestations.  (B) Variability in disease course 

and treatment. (H) “High level” semantic terms. 

In the cases of diseases predicted to be misannotated and to not have a subtype; some cases may 

simply be model errors, hence the need for a final layer of expert review. There are numerous valid 

explanations for why a disease may have an incorrect annotation, ranging from human error, database 

error, and annotator guidelines biases. For example, a hypothetical case of 2 different variants of 

Omicron strain of SARS-CoV-2 being classified as two distinct diseases. While they are caused by a 

separate strain, it is the common state of sessional flu. In this case, we claim that the distinction is not 

clinically meaningful, but could be recorded as such by mistake. Merging such subtypes would improve 

the database. Our temporal validation showed that our candidates are much more likely to be 

“interesting” and in need of reassessment in the OT database. 

2.5.4 Understanding an Individual Prediction 

We present an illustratory model explanation example for a novel predicted subtype candidate, COVID-

19 (Fig 6), using the known subtypes model’s SHAP explanation. 

 
Fig 6.  SHAP explanations for COVID-19. Explanation of a single positive (“1” - has subtype) prediction 
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as a SHAP waterfall plot. The SHAP value of a feature represents the impact of the evidence provided 

by that feature on the model’s output. The waterfall plot shows how the SHAP values (evidence) of 

each feature move the model output from the prior expectation under the background data 

distribution, to the final model prediction given the evidence of all the features. Colour and direction of 

the arrows indicates the direction of effect. Feature values shown on the left in grey. 

Examples of exemplar disease text excerpts with of high, neutral and low values per each of the 

embedding dimensions (see 4.4) are shown (Table 3) 

Table 3. Text embedding explanations for COVID-19 

 

Text embedding 
dimension 

Sentences with high values in 
dimension 

Sentences with low values in 
dimension 

Sentences near median dimension 
value 

  

427 

malignant germ cell tumor 
pregnancy or perinatal disease 
neutrophil count 
radiation 

circumscribed cutaneous 
aplasia of the vertex 
necrotizing sialometaplasia 
2-3 toe syndactyly 
symphalangism with multiple 
anomalies of hands and feet 
short toe 

ciliary dyskinesia, primary, 45 
syndromic obesity 
human herpesvirus 7 
seropositivity 
pseudobulbar palsy 
coxa vara 

621 

haddad syndrome 
combined oxidative 
phosphorylation defect type 27 
x-linked intellectual disability-
acromegaly-hyperactivity 
syndrome 
dental enamel pits 
acute lung injury 

keratinization disease 
urinary bladder, atony of 
abnormality of the urinary 
system physiology 
bladder neck obstruction 
urinary tract smooth muscle 
contraction 

shortening of all distal 
phalanges of the fingers 
hereditary geniospasm 
autosomal recessive 
hypohidrotic ectodermal 
dysplasia 
amyotrophic lateral sclerosis 
type 18 
n-acetylaspartate deficiency 

21 

mucocutaneous leishmaniasis 
fanconi anemia 
complementation group d1 
tuberculous fibrosis of lung 
bovine respiratory disease 
complex 
dacryocystitis - osteopoikilosis 

benign neoplasm of adrenal 
gland 
adrenal gland neoplasm 
non-functioning endocrine 
neoplasm 
adrenocortical adenoma 
benign endocrine neoplasm 

inherited creutzfeldt-jakob 
disease 
kallmann syndrome 
alopecia - contractures - 
dwarfism - intellectual disability 
syndrome 
polycythemia 
negative regulation of immune 
response 

674 

deafness - hypogonadism 
ovarian failure 
perrault syndrome 

integumentary system cancer 
muscle cancer 
malignant dermis tumor 
appendix cancer 

wide mouth 
symptomatic form of hemophilia 
a in female carriers 
thyroid gland hyalinizing 
trabecular tumor 
syndromic gastroduodenal 
malformation 
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3. Discussion 

Discovering disease subtypes is an important problem in medicine, with applications in both basic 

research and personalized treatment. That a disease may even potentially have subtypes is not an 

obvious fact. Historically, diagnoses like "female hysteria" led to ineffective treatments, 

overshadowing the recognition of genuine diseases or conditions [37]. It wasn't until later that such 

broad diagnoses were deconstructed into specific diseases. Parkinson's Disease, which can be caused 

by drug toxicity or vascular malfunction, is another major example.  There is considerable work     into 

finding subtypes that can help treat patients and predict the future course of the disease’s progression 

[1], [17]. 

Our hypothesis posits that diseases with distinct subtypes are discernible based on intrinsic aspects of 

the disease itself as well as meta-features relating to its research. Consider cancer diseases that are 

mostly driven by somatic mutations as opposed to predisposition germline genetic variants. Single-

gene disorders are often inherited but they may split into early and late onset diseases that might be 

addressed differently in clinical terms. In this aspect, early and late onset of diseases are documented 

to Alzheimers [67]), Parkinson [1],[68] and numerous autoimmune conditions (e.g., Crohn's disease, 

myasthenia gravis). Thus, we focused our features on representing these aspects of different diseases. 

We also address “meta-science” aspects about diseases, such as their research process, and limits on 

studying them. For example, diseases with many distinct animal models (as reported by OT), extensive 

literature and many candidate drugs, are less likely to be categorized as “orphans” than those 

observables only in humans. Furthermore, some phenotypes are easier to observe, measure and 

categorize, while others may be more nuanced. Obvious cases include developmental disease causing 

facial deformities vs mental health conditions. Our features help the models learn these various 

aspects, in a way which aims to be largely objective, with the goal of learning from the intrinsic 

characteristics of the diseases themselves, as opposed to approaches that might be more biased 

towards existing literature and annotations, such as text mining [34], [38], [39]. This approach can yield 

better predictive performance than underlying, partial annotations or rule-based systems, as has been 

observed in other works, such as healthcare mortality prediction[19]. 

Possible confounders are the rarity of diseases. This can be partially quantified by the disease's 

population prevalence, using the UK biobank (UKB) [40] population frequency. Another metric of rarity 

is the classification of a disease as an "orphan disease", which is determined by its source (e.g., listed 

in Orphanet). Interestingly, the UKB calculated prevalence has low feature importance, and is not an 

impactful feature to the model predictions (Fig 4). Its removal did not affect model evaluation results 

(not shown), further emphasizing that our task is indifferent to it. Thus, we disqualify it as a 
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confounding proxy for model performance. On the other hand, the source feature is important overall. 

We evaluated a model using only the source database feature (Fig 3), and observed it to be significantly 

inferior, yielding a ROCAUC score of just 0.55, indicating that source is also not sufficient to explain the 

model’s performance. The same findings held for our other evaluated baselines. 

Novel disease subtypes partitioning represents a challenging problem for both clinical and 

scientometric researchers. Despite the high quality medical ontologies already integrated into OT 

database, many diseases with similar symptoms may result from different causes, such as with 

pleiotropic genetic diseases, but they may not be annotated as such, even when pleiotropy is known 

(but their subtypes are not well defined), especially when the subtypes of pleiotropy are ambiguous 

[45]–[47]. This creates challenges when using OT to retrieve missing target-indication hypotheses due 

to the absence of direct candidates. While genetic association evidence on target-disease pairs can 

offer insights into relatedness [24], for our targets we lack actual negatives, or even a proxy measure 

such as annotation quality. 

 When awareness of possible subtypes exists, their identification and validation is currently manual, 

demanding exhaustive work by experts, who must also propagate their work into existing knowledge 

bases while drumming up awareness and consensus. Diseases common in developed countries, where 

clinicians have the resources to work with researchers may be more likely to be distinct, as opposed 

to neglected diseases in economically disadvantaged countries where doctors may not have the 

capacity to get their work published [48]–[50]. This issue may be worse for rare orphan diseases, which 

may have only a handful of dedicated researchers, reducing the chances of distinct manifestations 

being recognized and correctly annotated in knowledge bases. 

To date, these limitations have restricted disease subtype discovery to a purely manual process, 

motivating our novel approach. We integrate OT direct evidence about each disease, including genetic, 

physiological and clinical features which are evaluated for prediction of which diseases have subtypes 

using machine learning models. We integrate unique features for each disease to represent their 

underlying properties, enhancing the identification of novel pleiotropies or overlooked annotations. 

Ultimately, our model produces a ranked shortlist of both new and potentially misclassified subtypes, 

which can then be validated by domain experts (S5). 

3.1 Potential Implications 

The methodologies in our study, including the combination of machine learning with OT, could extend 

to broader works. In clinical diagnostics; the increased identification and annotation of disease 
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subtypes could provide better diagnoses, disease progression tracking and more personalized 

treatments and enhanced patient outcomes. In drug development, a nuanced understanding of 

disease subtypes can significantly benefit pharmaceutical research. By pinpointing specific diseases 

likely to have diverse pathologies, therapies and druggable, can be targeted with greater precision. 

3.2 Conclusions 

Annotating disease subtypes is crucial for enhancing our understanding of pathology and refining 

therapeutic strategies. By delineating diseases into subtypes, we pave the way for targeted research 

and treatment. We show that known disease subtypes can be mostly characterized automatically, that 

several diseases are likely to have uncharacterized subtypes, and a stability approach to identify them 

as a prelude to expert refinement and confirmation. 

4. Methods 

4.1. Overview Processing of Open Targets Dataset 

Data was downloaded from Open Targets, as of July 2022 (7.22).  The primary OT data sets used 

were associationByOverallDirect, diseaseToPhenotype, associationByDatasourceDirect, diseases. The 

subtype target was defined using the OT diseases dataset, according to whether a disease has any 

child links (“has_children”). The overall distribution of subtypes (“children”) across diseases is shown 

in Fig 7. We kept only direct associations, as we determined that indirect associations may leak 

target information.  
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Fig 7 - Subtypes per disease in Open Targets. The number of ‘children’ is shown. For 77% of the 

diseases, no partition to subtypes were recorded (marked as 0). 

The initial dataset held 23,074 candidate diseases. We removed 2,817 irrelevant “diseases” relating 

to lab measurements (e.g., “IgG index” “BMI”). Diseases with the same name were aggregated 

together, with any “positive” target label taking precedence. 6,643 (32.8%) of disease terms have a 

known subtype. 3,035 terms with near-identical names (after removing white-space and lower 

casing) were merged, with positive subtype label taking precedence. The final modelling dataset held 

17,222 diseases, of which 5,848 (34%) have at least 1 known subtypes. The temporal validation 

dataset uses a snapshot of the OT diseases table from 12.2023  

4.2. Model Training and Evaluation 

For most models, default hyperparameters were employed, with mean imputation of missing 

variables. For the tree models, we adjusted training class weights loss using the “square root balanced” 

hyperparameter. Logistic regression, K-nearest neighbours (KNN), linear support vector machine, 

histogram gradient boosting and random forest models were implemented using scikit-learn [31]. 

CatBoost, a boosting tree model, used the library of the same name. Features with a variance lower 

than 5e-4 were dropped. Tree models were used and favoured due to their speed, interpretability and 

historically superior performance on tabular data tasks. We also found that the tree models had the 

best performance on the task, as expected [19]. 

To evaluate the prediction of known disease subtypes, we employed stratified 5-fold cross-validation 

across all data points. In each iteration, the dataset was divided into training and testing sets, 

comprising 80% and 20% of the data, respectively. After training the model on the training set, 

predictions were made on the test set and recorded. The overall results were then assessed based on 

the accumulated test split outcomes. We also explored stratifying splits by ancestor disease groups, 

ensuring that training and testing sets did not share diseases with a common high-level ancestor. This 

was done to minimize bias from known diseases. Interestingly, this stratification had a marginal impact 

on performance, with the disease-stratified setup registering a 1% increase in absolute terms. Given 

these unexpected findings, we opted for the baseline split over the disease-stratified approach in all 

configurations, especially considering our consolidation by disease name. 

Shapley (SHapley Additive exPlanations) values are used for summarizing feature importance to the 

trained model [51]. SHAP values are a popular method for interpreting feature importance, both 

globally, for specific data partitions or explaining individual predictions. It is used to show the relative 
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contribution of each feature to the model's output, also taking into account the contribution of other 

features to the model. 

4.3. Generation of New Features 

Features were extracted from OT direct evidence data sources. These included indicators of disease 

associated phenotypes and genomic transcript targets, and evidence scores per association. For 

example, the feature “Genetic association” refers to the evidence score from genetic association 

sources, “Literature” to literature evidence, “animal models” to the amount of evidence for a disease 

based on animal studies, and so on.  For computational reasons, the genetic associations and 

phenotype sources were filtered to keep only those appearing at least 30 times in the dataset, and 

these were used as features, including their evidence scores. A novel approach [19], [36] of 

compressing these sparse features using a truncated singular matrix decomposition representation 

of ~512 dimensions worked well in terms of performance and compute (not shown), but reduced 

interpretability, and thus was not used in the final model analysis. “Phenotype counts” is the number 

of distinct phenotypes associated with a disease (regardless of individual phenotype frequency or 

evidence score). “Max Phenotype frequency” is the overall frequency of the associated phenotype 

with the highest frequency in the data. 

Engineered and aggregated features were extracted from the sources, including aggregated statistics 

(e.g., value mean, max, min, standard deviation, number of unique values, count of total 

occurrences)[19], [52]. The relative ratios of each evidence source type in relation to others was also 

extracted, e.g., the fraction of total evidence for a disease based on each type of evidence-source, and 

if a specific source was the largest or smallest ranked source (e.g., the feature “Literature ratio to 

biggest” is the amount of evidence from the Literature divided by the largest evidence source for the 

disease, which can also be the literature). For each disease we extracted the number of evidence 

counts per disease, per data source and data type, as well as additional features from the “disease” 

data including the total number of therapeutic areas, the existence of synonyms for a disease term, 

the number of direct parents, siblings (sharing the same direct parent) and ancestors for a disease in 

the OT graph, as well as the difference and ratio between the 2 features: “Ancestors sub parents” - 

the difference between the total number of ancestors and the number of direct parents for a disease. 

“Average associated evidence score” is the average confidence score of all evidences associated with 

a disease from all sources.  

Overall disease population prevalence is estimated using the UK Biobank (UKB) [40]. The UKB contains 

demographic, lifestyle and medical information for 500,000 UK citizens. We matched 8,445 diseases 
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to 663 ICD-10 medical diagnosis codes in the UKB, using Data-Field 41202 - “ICD10 diagnoses”. We 

crossmatched this with the overall frequency of these codes in the population as a feature used by the 

models. This feature did not contribute to model performance, and mainly served to help disprove 

whether diseases’ overall population prevalence rate might be a strong, potentially confounding 

feature [53]. 

4.4. Deep Learning Text Features 

Using the state of the art techniques introduced in recent works combining tabular and pre-trained 

language models [19], [35], [54], [55], we used deep learning large language model pretrained on 

biomedical concepts, BioLORD-STAMB2-v1[56], to derive embedding features for each disease using 

its name and description. In brief, a pretrained neural network language model, trained to predict 

masked words in a text is taken, and the outputs from its final output layer is extracted and averaged 

across each token in the text. This mean-pooled output is used for features. Thus, texts are embedded 

in a vector space such that semantically similar text is close. We tried additional sentence-transformer 

language models, including all-MiniLM-L12-v2 [64], BioLord-2023 [65], BGE-en-base, and GTE-en-base 

[67], but their performance was slightly inferior (87~88 AUC, not shown). 

This approach lets us combine the benefits of large language models and deep representations in a 

simple, scalable way with our own features, while reducing possible name bias (e.g., diseases called 

“syndrome 1” - which could result in overfitting from a token-level finetuned language model) [55], 

[57]. These features are denoted as “Text Embedding X'' in Fig 3, where X represents a vector in the 

embedding. For interpretability, we implemented an automated explanation framework showing 

exemplars of high, neutral and low values per embedding dimensions (Table 3), inspired by approaches 

in automated-machine learning works[35], [36], [52]. It is available in our codebase.  

5. Data Availability 

Datasets used in the study are available on Open Targets: https://www.opentargets.org.  

Code and results available online: https://github.com/ddofer/OpenTargets-DiseaseSubtype 

List of Abbreviations 

CV: Cross validation. EFO: Experimental factor ontology. GxE: Gene x environment. GO: Gene ontology. 

GWAS: Genome-wide association studies. HPO: Human phenotype ontology. LR: Logistic regression. 
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OBA: Ontology of biological attributes. OT: Open Targets. PRAUC: Area under the precision-recall 

curve. ROCAUC: Receiver operating characteristic area under the curve. RF: Random Forest. UKB: 

United Kingdom BioBank. SHAP: Shapley additive explanations.  

Supplementary Data 

Figure S1 -”Figure-S1-ConfusionMatrix _CatboostModelCV.png” - Confusion matrix figure (From the 

Catboost  known subtype model, cross validation output) 

Table S1 - “S1-Known disease subtype models evaluation.csv” - Evaluation metrics and multiple model 

results on known subtypes prediction 

Table S2 - “S2-candidate_errors_predictions.csv” - Novel candidate predictions, including ground truth 

and novel predictions and features for the 1531 cases where predictions differ from ground truth 

consistently. 

Table S3 - “S3-Literature_esearch_KnownSubtypes-800_esearch_res.csv” - Literature search results 
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