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Abstract 

Cognitive impairment (CI) is one of the most prominent non-motor symptoms in Parkinson’s 

disease (PD). How brain network abnormalities contribute to CI in PD patients remain largely 

unclear. The goal of this study is to explore whether aberrations of brain network topology were 

causally associated with cognitive decline in PD patients. PD patients receiving magnetic 

resonance imaging from Parkinson’s Progression Markers Initiative (PPMI) database were 

specifically selected. According to the scores of Montreal Cognitive Assessment (MoCA), PD 

patients were classified into CI+ group (MoCA score ≤ 25) and CI- group (MoCA score > 25) to 

investigate whether clinical features and brain networks were significantly different between two 

groups. Mediation analysis was utilized to evaluate whether brain network alterations contributed 

to CI in PD patients. We revealed CI + group exhibited more severe non-motor symptoms 

compared to CI- group. In addition, age, excessive daytime sleepiness, and depressive symptoms 

were found to be significantly associated with CI of PD patients. Moreover, CI+ group exhibited 

statistically different local topological properties in structural network compared to CI- group. 

Furthermore, differential local topological metrics in structural network meditated the effects of 

age, excessive daytime sleepiness, and depression on cognitive decline of PD patients. Taken 

together, out study suggested that PD patients with CI exhibited notable disturbances of structural 

network topology, which mediated negative associations between of age, excessive daytime 

sleepiness, depression and cognitive decline of PD patients.  

Keywords: Parkinson’s disease, cognitive impairment, clinical symptoms, brain networks, 

graphical analysis. 

 

1. Introduction 

     Cognitive impairment (CI) is one of the most common non-motor manifestations in Parkinson’s 

disease (PD) [1] and significantly associated with disease progression and future prognosis [1-3]. 

Cognitive decline may occur at any disease stage, even at the early stage or the prodromal phase 

[1, 4-6]. Generally, PD patients can exhibit global cognitive decline and also specific impairment 

of cognitive domains, such as executive function [7, 8], verbal memory [9-11], episodic memory 

[12-14], visuospatial capacity [15, 16], and processing speed [17, 18]. Previous studies have shown 
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that age, education, baseline cognition, hypertension, motor symptoms, depression, excessive 

daytime sleepiness (EDS), and anxiety were associated with cognitive decline in PD patients [19-

24]. Consistently, our recent findings also showed that age was significantly associated with scores 

of multiple cognitive assessments in PD patients, including Symbol Digit Modalities Test (SDMT), 

Montreal Cognitive Assessment (MoCA), Benton Judgement of Line Orientation Test (BJLOT), 

Letter Number Sequencing Test (LNS), and Semantic Fluency Test (SFT), therefore, age is a 

cardinal demographic factor remarkably shaping cognitive ability in PD patients [25]. Interestingly, 

in a recent study, we also revealed that EDS was negatively associated with scores of BJLOT, 

SDMT, and MoCA [26]. Taken together, previous studies and our recent findings demonstrated 

that CI in PD patients was associated with multiple clinical features, including age and EDS. 

However, the specific neural mechanisms underlying the associations between these clinical 

features and cognitive impairment in PD patients remain largely unknown.  

    Functional magnetic resonance imaging (fMRI) is a wonderful tool to explore and evaluate how 

the functional and structural brain changes contributed to the onset and progression of 

neuropsychiatric diseases, including bipolar disorder, schizophrenia, PD, and Alzheimer’s disease 

(AD) [27-31]. In addition, fMRI has also been widely utilized to decipher the functional and 

structural abnormalities causally associated with cognitive deficits in PD patients [32-36]. Brain 

network analysis was an important neuroimaging approach [37-41] and has revealed widespread 

changes of structural and functional networks in PD patients with CI [34, 42-44]. Consistently, 

aberrations in both structural networks and functional network were found to be correlated with 

cognitive decline in PD patients [25, 34, 45]. For structural network, we recently revealed that 

small-world topology in structural network was significantly associated with verbal memory 

maintenance of PD patients [9]. Moreover, we also showed that global network metrics, such as 

global efficiency and local efficiency in structural network, partially mediated the age-dependent 

CI in PD patients [25]. For functional network, it has been shown that increased functional 

connectivity between left posterior cingulate cortex and left parahippocampal gyrus in default 

mode network (DMN) was associated with early cognitive decline in PD patients [42]. In addition, 

functional connectivity between left and right hippocampus in DMN was also associated with 

global and domain-specific cognitive decline in PD patients [34]. In agreement with these findings, 

the critical role of DMN in cognitive decline of PD patients has been supported by several previous 

studies [45-47]. Apart from DMN, other resting-state networks, such as frontostriatal network [33], 
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dorsal attention network [32], frontoparietal network [32], and salience network [48], were also 

found to be associated with CI in PD patients. Taken together, both structural and functional 

network measurements contributed to CI in PD patients.  

    As we mentioned above, multiple clinical characteristics, such as age, EDS, and depression, 

were associated with CI [22-25], however, the specific network mediators underlying the negative 

associations between these clinical characteristics and CI remained elusive in PD patients. 

Recently, we revealed global topology in structural network mediated the effects of age on 

cognitive decline in PD patients [25], whether local topology in structural network also mediated 

the associations between above clinical characteristics and CI in PD was tremendously unclear. In 

a recent study, we demonstrated local topology in structural network mediated the effects of age 

on LNS, BJLOT, and SDMT scores in PD patients [49], however, whether local topology in 

structural network also mediated the effects of age or other clinical characteristics (i.e., EDS) on 

MoCA scores were poorly understood. To identify the local structural network mediators 

associated with CI, PD patients (n = 145) were divided into CI+ group (MoCA score < 26) and CI- 

group (MoCA score ≥ 26) according to the Movement Disorder Society PD Mild Cognitive 

Impairment (MDS PD-MCI) criteria [50, 51]. As a consequence, the goal of current study is to 

investigate whether age, EDS, and depression shape cognitive decline by influencing local 

structural network topology of PD patients. Specifically, our objectives include: (i) to compare the 

clinical manifestations between CI- and CI+ patients; (ii) to validate whether age, EDS, and 

depression are associated with CI of PD patients; (iii) to compare the local topology of structural 

network between CI- and CI+ patients; (iv) to explore the associations between local topological 

measurements and CI, age, EDS, and depressive symptoms; (v) to investigate whether differential 

local topological metrics mediate the effects of age, EDS, and depression on CI of PD patients.  

 

2. Materials and Methods 

2.1. Participants 

    A total of 145 PD patients from Parkinson Progression Markers Initiative (PPMI) database [52, 

53] were included for analyses in the present study. The PPMI study was approved by the Ethics 

Committee of all participating sites and all participants signed informed consent prior to 

participation. The inclusion criteria for PD patients were as follows: (i) The participants were over 
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30 years of age; (ii) The participants met the MDS Clinical Diagnostic Criteria for PD; (iii) The 

participants received the evaluation of global cognition using MoCA; (iv) The participants 

received T1-weighted magnetization-prepared rapid acquisition gradient echo (MPRAGE) MRI 

and diffusion tensor imaging (DTI) simultaneously. The exclusion criteria for PD patients were as 

follows: (i) The participants showed obvious abnormalities in regular T1-weighted and T2-

weighted MRI; (ii) The participants were diagnosed with AD or other types of dementia except 

PD dementia; (iii) The participants were diagnosed with systemic diseases that cause cognitive 

decline, including cardiovascular, liver, kidney, or endocrine diseases; (iv) The participants had 

severe mental illness, such as schizophrenia and depression; (v) The participants were diagnosed 

with other central nervous system diseases associated with cognitive decline, such as Wernicke 

encephalopathy, traumatic brain injury, prion disease, and glioma. (vi) The patients were 

prescribed with medications that may cause cognitive decline, such as antiepileptic or 

antipsychotic drugs. In line with above inclusion and exclusion criteria, a total of 145 PD 

participants were included for the final analysis. Each included participant underwent a battery of 

neuropsychological examinations. The motor assessments included Hoehn and Yahr (H&Y) stages, 

Tremor scores, Total Rigidity scores, and the MDS Unified Parkinson’s Disease Rating Scale 

(UPDRS) scores (part III and total scores). The non-motor assessments included Epworth 

Sleepiness Scale (ESS), REM Sleep Behavior Disorder Screening Questionnaire (RBDSQ), Scale 

for Outcomes in Parkinson's Disease-Autonomic (SCOPA-AUT), 15-item Geriatric Depression 

Scale (GDS), State-Trait Anxiety Inventory (STAI), Hopkins Verbal Learning Test–Revised 

(HVLT-R: Immediate Recall and Delayed Recall), BJLOT, LNS, SFT, SDMT, and MoCA. The 

patients also obtained [123I] FP-CIT SPECT scans, which were examined in accordance with the 

technical manual of the PPMI study (http://ppmi-info.org/). The striatal binding ratios (SBRs) for 

bilateral caudate, putamen, and striatum were derived from SPECT scans. Specifically, the SBRs 

were calculated with the formula: (target region/reference region)-1, in which occipital lobe was 

the reference region. To examine the effects of CI on clinical assessments and local network 

topology, PD patients (n = 145) were classified into CI+ group (MoCA score < 26) and CI- group 

(MoCA score ≥ 26) according to the MDS PD-MCI criteria [50, 51], which entailed MoCA 

scores < 26. The clinical features of participants in each group were shown in Table 1 and Figure 

1.  

2.2. Image acquisition 
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    The MRI images were acquired in three dimensions using 3T Siemens scanners (TIM Trio or 

Verio) from Siemens Healthcare. The scanners utilized a MPRAGE sequence to obtain T1-

weighted MRI images. The T1 images were taken with the following settings: Repetition time (TR) 

= 2300 ms, Echo time (TE) = 2.98 ms, Voxel size = 1 mm3, Slice thickness = 1.2 mm, Twofold 

acceleration, and a sagittal-oblique angulation. The DTI was performed using the following 

settings: TR = 8,400-8,800 ms, TE = 88 ms, Voxel size = 2 mm3, Slice thickness = 2 mm, 64 

different directions, and a b-value of 1000 s/mm2.  

2.3. Imaging preprocessing 

    The DTI images of 145 PD patients were preprocessed using the FMRIB Software Library 

toolkit (FSL), which can be found at the following website: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki. 

In short, the initial processes involved correcting head motions, addressing distortions caused by 

eddy-currents, and mitigating susceptibility artifacts due to inhomogeneity of the magnetic field. 

Subsequently, DTI metrics including but not limited to fractional anisotropy (FA), mean 

diffusivity (MD), axial diffusivity, and radial diffusivity were produced. Afterwards, the images 

of each participant were reconstructed again in the standard MNI space to generate structural 

network matrix. 

2.4. Network construction 

    A free MATLAB toolkit called PANDA, available at http://www.nitrc.org/projects/panda/, was 

utilized to perform deterministic fiber tractography and create the white matter network. The Fiber 

Assignment by Continuous Tracking (FACT) algorithm was used to derive the white matter fibers 

throughout the entire brain connecting 90 nodes in the Automated Anatomical Labelling (AAL) 

atlas, including both cortical and subcortical areas. The FA skeleton threshold was set to 0.20, and 

a threshold of 45o was set for the fiber angle. Following the process of white matter tractography, 

a white matter network matrix was created for each participant. This matrix was based on the fiber 

number (FN) present in the structural network. 

2.5. Graph-based network analysis 

    The brain network measurements were calculated using GRETNA [54], a software that focuses 

on graphical analysis of networks in the brain. To calculate the global and nodal network 

measurements, a variety of network density thresholds ranging from 0.05 to 0.50 in steps of 0.05 
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were used. The area under curve (AUC) was computed for both global and nodal network 

measurements. The global network metrics included global efficiency, local efficiency, and small-

worldness properties, such as clustering coefficient (Cp), characteristic path length (Lp), 

normalized clustering coefficient (γ), normalized characteristic path length (λ), and small 

worldness (σ). The nodal network metrics included nodal betweenness centrality (BC), nodal 

degree centrality (DC), nodal Cp, nodal efficiency, nodal local efficiency, and nodal shortest path 

length. Previous studies have thoroughly documented the specific definitions for each network 

measurement [55-57].  

2.6. Statistical analysis 

2.6.1. Comparison of clinical variables 

    The unpaired t-test (CI- group vs CI+ group) was used to compare continuous variables. The χ2 

test was used to compare variables that were in categories. A p-value below 0.05 was considered 

to be statistically significant. 

2.6.2. Comparison of global network strength 

    Unpaired two sample t-test was conducted to evaluate and compare the overall connectivity 

strengths of brain networks between CI- group and CI+ group using Network-Based Statistic (NBS) 

software [58], which can be found at the following link: https://www.nitrc.org/projects/nbs/. A p-

value below 0.05 after false discovery rate (FDR) correction [59] was considered to be statistically 

significant. During the NBS analysis, covariates such as age, sex, years of education, and duration 

of the disease were adjusted. 

2.6.3. Comparison of topological network metrics 

    To compare the global and nodal network measurements, two-way ANOVA test was conducted, 

and FDR corrections were applied afterwards. A p-value lower than 0.05 after FDR correction was 

considered to have statistical significance. The AUC of global network metric was evaluated by 

conducting unpaired t-test, and a p-value lower than 0.05 was considered to be statistically 

significant. 

2.6.4. Comparison of white matter fiber numbers 
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    To compare the fiber numbers of key nodes, two-way ANOVA test was performed, and FDR 

corrections were applied afterwards. A p-value lower than 0.05 after FDR correction was 

considered to be statistically significant. 

2.6.5. Association analysis 

    The univariate correlation analysis and multivariate regression analysis with age, sex, disease 

duration, and years of education as covariates were used to perform association analysis. A p-value 

less than 0.05 was considered statistically significant for associations between MoCA scores and 

clinical variables. FDR-corrected p-value less than 0.05 was considered statistically significant for 

associations between clinical variables and graphical network metrics. 

2.6.6. Mediation analysis 

    The mediation analysis was carried out using IBM SPSS Statistics Version 26. The age, EDS, 

and depression were included as the independent variables. The MoCA scores or categorical CI 

(CI- = 1, CI+ = 2) were enrolled as dependent variables. The topological network metrics that were 

associated with MoCA scores served as mediators. We simulated the mediation effects of network 

metrics on the relationships between age, EDS, depression and MoCA scores. In the mediation 

analysis, confounding variables such as age, sex, disease duration, and years of education were 

adjusted. Standardized β, t, and p values were reported for mediation analysis. A p-value less than 

0.05 was considered to have statistical significance. 

3. Results 

3.1. Group differences in clinical assessments  

    The demographic and clinical data of CI- and CI+ patients were shown in Table 1 and Figure 1. 

Compared to CI- patients (n = 111), CI+ patients (n = 34) exhibited older age (p = 0.0015, 59.82 

± 9.23 vs 65.47 ± 7.64; Table 1), however, the sex distribution, years of education, duration of 

disease, and motor symptoms measured by UPDRS-III were not significantly different (all p > 

0.05). Interestingly, CI+ patients showed higher total UPDRS scores (p < 0.05; Fig. 1A), ESS 

scores (p = 0.0502; Fig. 1B), GDS scores (p < 0.05; Fig. 1C), SCOPA-AUT scores (p < 0.01; Fig. 

1D), STAI scores (p < 0.01; Fig. 1E) and lower scores of Immediate Recall of HVLT-R (p < 0.0001; 

Fig. 1F), Delayed Recall of HVLT-R (p < 0.0001; Fig. 1G), BJLOT (p < 0.05; Fig. 1H), LNS (p < 
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0.0001; Fig. 1I), SFT (p < 0.001; Fig. 1J), SDMT (p < 0.001; Fig. 1K) and MoCA (p < 0.0001; 

Fig. 1L).   

3.2. Associations between MoCA scores and clinical variables 

    To examine whether the effects of CI on clinical characteristics of PD were independent of 

confounding variables, multivariate regression analysis was performed with age, sex, years of 

education, and disease duration as covariates. As shown in Table 2, the MoCA scores were 

negatively associated with rigidity scores (p < 0.05), UPDRS-III scores (p = 0.05), UPDRS Total 

scores (p < 0.01), ESS scores (p < 0.01), GDS scores (p < 0.01), RBDSQ scores (p < 0.01), 

SCOPA-AUT scores (p < 0.01), STAI scores (p < 0.0001) and positively associated with scores 

of SFT (p < 0.001), SDMT (p < 0.0001), LNS (p < 0.0001), Immediate Recall (p = 0.0001) and 

Delayed Recall (p < 0.0001) of HVLT-R. When categorical CI (CI- = 1, CI+ = 2) entered as 

dependent variable in the multivariate regression analysis (Table S1), CI was positively associated 

with GDS scores (p < 0.05), STAI scores (p < 0.05) and negatively associated with scores of SFT 

(p < 0.05), LNS (p = 0.0002), Immediate Recall (p = 0.0002) and Delayed Recall (p < 0.0001) of 

HVLT-R. These results suggested that multiple non-motor features, such as depressive and 

anxious symptoms, were associated with cognitive decline in PD patients.  

3.3. Group differences of network metrics 

    The global network metrics, such as global efficiency and local efficiency, were not statistically 

different between CI- and CI+ patients (FDR-corrected p > 0.05). For nodal network metrics, CI+ 

patients showed lower BC in left calcarine, right superior occipital gyrus, left middle occipital 

gyrus, left thalamus and higher BC in bilateral putamen, right superior temporal gyrus, and 

bilateral middle temporal gyrus compared to CI- patients (all FDR-corrected p < 0.05; Fig. 2A). 

Additionally, CI+ patients had lower DC in right superior occipital gyrus and left thalamus 

compared to CI- patients (FDR-corrected p < 0.05; Fig. 2B). Moreover, CI+ patients showed 

higher nodal Cp in left middle frontal gyrus (FDR-corrected p < 0.05; Fig. 2C).  

3.4. Associations between network metrics and MoCA scores 

    To adjust the effects of potential confounding factors, such as age, sex, education, and disease 

duration, multivariate regression analysis was performed to examine the associations between 

MoCA scores and structural network metrics showing statistical difference in Figure 2. We found 
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MoCA scores were significantly associated with nodal BC in left calcarine, right superior occipital 

gyrus, and right middle temporal gyrus (FDR-corrected p < 0.05; Table S2). In addition, MoCA 

scores were also associated with nodal DC in right superior occipital gyrus and left thalamus and 

nodal Cp in left middle frontal gyrus (FDR-corrected p < 0.05; Table S2).  

3.5.The effects of age on MoCA scores and structural network metrics 

    As shown in Table 1, CI+ patients exhibited older age compared to CI- patients. Through 

association analysis, we also found age was significantly associated with MoCA scores (β = -0.08, 

p = 0.0004) and CI (β = 0.01, p = 0.0035), which was independent of sex, years of education, and 

disease duration. These results suggested that PD patients naturally developed age-dependent 

cognitive decline. To understand whether age also affected structural network, we analyzed the 

associations between age and structural networks using univariant Pearson correlation and 

multivariate regression analysis. As shown in Figure 3, age was significantly associated with BC 

in right superior occipital gyrus (FDR-corrected p < 0.05; Fig. 3A), left putamen (FDR-corrected 

p < 0.05; Fig. 3B), right superior temporal gyrus (FDR-corrected p < 0.05; Fig. 3C), right middle 

temporal gyrus (FDR-corrected p < 0.05; Fig. 3D) and DC in right superior occipital gyrus (FDR-

corrected p < 0.05; Fig. 3E) and left thalamus (FDR-corrected p < 0.05; Fig. 3F). Then, we assessed 

whether structural network metrics played a role in age-dependent cognitive decline in PD patients 

using mediation analysis. As shown in Figure 4, BC in right superior occipital gyrus (Fig. 4A) and 

right middle temporal gyrus (Fig. 4B) partially mediated the effects of age on MoCA scores in PD 

patients. Moreover, DC in right superior occipital gyrus (Fig. 4C) and left thalamus (Fig. 4D) also 

partially mediated the effects of age on MoCA scores in PD patients. When categorical CI entered 

as dependent variable in mediation analysis (Fig. S1), we also revealed that BC in right middle 

temporal gyrus (Fig. S1A) and DC in right superior occipital gyrus (Fig. S1B) and left thalamus 

(Fig. S1C) partially mediated the effects of age on CI in PD patients.  

3.6. The effects of EDS on MoCA scores 

    The Figure 1 showed CI+ patients had higher ESS scores compared to CI- patients (Fig. 1B). In 

Table 2, MoCA scores were significantly associated with ESS scores. Based on these findings, we 

hypothesized that EDS measured by ESS may contributed to CI by regulating structural network 

metrics in PD patients. Initially, ESS scores were significantly associated with DC in right superior 

occipital gyrus (Fig. S2A). Then, using mediation analysis, we demonstrated that DC in right 
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superior occipital gyrus mediated the negative association between ESS scores and MoCA scores 

(Fig. S2B). While the mediation analysis of DC in right superior occipital gyrus between ESS 

scores and CI failed to achieve statistical significance.  

3.7.The effects of depressive symptoms on MoCA scores 

    In the Figure 1, CI+ patients had higher GDS scores compared to CI- patients (Fig. 1C). 

Additionally, MoCA scores were significantly associated with GDS scores (Table 2). Given that 

depression was associated with cognitive decline in PD and GDS scores were significantly 

correlated with BC in right middle temporal gyrus (Fig. S3A), we examined whether BC in right 

middle temporal gyrus mediated the effects of depression on MoCA scores. Actually, we 

demonstrated that BC in right middle temporal gyrus mediated the effects of depressive symptoms 

on MoCA scores and cognitive decline (Fig. S3B-C). 

3.8. The effects of CI on the structural connectivity of key nodes 

    Because nodal network metrics of right middle temporal gyrus, right superior occipital gyrus, 

and left thalamus were associated with cognitive decline in PD patients, we examined whether CI 

shaped structural connectivity of these nodes. As shown in Supplementary Figure S4, the fiber 

numbers of right middle temporal gyrus, right superior occipital gyrus, and left thalamus were all 

significantly different between CI- and CI+ patients (Fig. S4A-C).  

4. Discussion 

    In this study, we replicated previous findings that global cognition in PD patients was 

significantly associated with age, EDS, depressive and anxious symptoms, as well as other clinical 

features. Compared to CI- patients, CI+ patients exhibited more severe non-motor symptoms. In 

addition, CI+ patients showed dramatical changes of local topological metrics in structural network 

compared to CI- patients. Furthermore, we demonstrated that different structural topological 

metrics mediated the negative associations between age, EDS, depression and MoCA scores of PD 

patients. Based on our findings, we concluded that local topology in structural network was 

significantly associated with PD-related CI.  

4.1. The associations between CI and clinical variables 
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    Apart from its typical motor symptoms, such as bradykinesia, static tremor, and rigidity, PD is 

associated with a heterogeneous nonmotor manifestations that remarkably contribute to the 

overall disease burden. CI is up to 6 times more common in PD patients than in the healthy 

individuals and is one of the key non-motor features [60]. CI can critically affect quality of life 

and has been proven to produce substantial economic impacts over the motor symptoms, even at 

the early stage of PD [61, 62]. According to previous literature, CI was associated with a multitude 

of clinical features, including age, education, baseline cognition, hypertension, motor symptoms, 

depressive symptoms, EDS, and anxiety levels [20-24, 63, 64]. In agreement with these results, 

we observed MoCA scores were significantly associated with age, UPDRS-III scores, ESS scores, 

GDS scores, and STAI scores (Table 2). Additionally, we also revealed CI was associated with 

age, GDS scores, and anxiety scores (Table S1). Consistently, CI+ patients showed older age, 

higher GDS scores, ESS scores, and STAI scores compared to CI- patients (Fig. 1). For education, 

no statistical association between years of education and MoCA scores (p = 0.0796) and CI (p = 

0.6690). Interestingly, UPDRS-III scores were almost significantly associated with MoCA scores 

(p = 0.0544) but not CI (p = 0.4784). Taken together, we concluded that PD-associated CI was 

associated with multiple clinical variables, especially age, depression, and EDS. Previous studies 

showed that APOE and SNCA polymorphisms were associated with CI in PD patients [20, 24], 

indicating CI in PD may be also modulated by genetic variations. In addition, PD-associated CI 

was also associated with multiple biochemical variables, such as blood levels of triglyceride and 

apolipoprotein A1, as well as CSF level of Kininogen-1 [6, 20]. These findings suggested that PD-

associated CI may have a complex pathophysiology and was associated with multi-level variables 

and characteristics.  

    Age was a major risk factor of PD and associated with both motor and non-motor symptoms 

[65, 66]. In our recent study, age was significantly associated with scores of LNS, BJLOT, SDMT, 

SFT, MoCA, and Immediate Recall of HVLT-R of PD patients, which supported that age was a 

key modifier of cognitive features in PD patients [25]. In current study, we also found age was 

associated with MoCA scores (β = -0.08, p = 0.0004) and CI (β = 0.01, p = 0.0035). Therefore, 

age was a major contributor of CI in PD patients. Indeed, age has been demonstrated to be a key 

predictor of CI in PD patients [21, 24]. EDS was one of the most prominent non-motor features of 

PD patients [67-70]. According to a previous meta-analysis, the prevalence of EDS in PD was 

approximately 35% and EDS was associated with worse motor and non-motor manifestations [70], 
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especially impairment of executive control and processing speed [22, 23]. In our study, we 

revealed that ESS scores were negatively associated with MoCA scores (p = 0.0013), suggesting 

EDS may contribute to CI in PD patients. Depression had deleteriously detrimental impacts on life 

quality of PD patients [71]. The incidence of depression in PD was approximately 20-30% [71]. 

Depression could precede the onset of motor symptoms; therefore, it has been considered as a 

prodromal PD [72, 73]. According to previous literature, depression is associated with CI in PD 

patients [74, 75], especially executive dysfunction [76]. In our study, GDS scores were negatively 

associated with MoCA scores (p = 0.0041) and positively associated with CI (p = 0.0146), which 

also supported depression was significantly associated with CI in PD patients. PD patients 

displayed high anxiety levels than healthy controls [77]. Anxiety was associated with both motor 

and non-motor symptoms in PD patients [63, 78-80]. Accumulated studies have shown that higher 

anxiety level was associated with CI of PD patients [63, 64, 78]. Consistently, in our study, we 

also found MoCA scores and CI were associated with anxiety levels measured by STAI, which 

suggested anxiety exerted an essential impact on cognitive ability of PD patients. Taken together, 

age, EDS, depression, and anxiety were important clinical variables tremendously associated with 

cognitive dysfunction in PD patients.  

4.2. The key nodes in structural network associated with PD-related CI 

    Cognitive decline is prevalent in PD patients and significantly associated with both motor and 

non-motor manifestations. However, the neural mechanisms underlying cognitive decline in PD 

patients remain largely unclear. fMRI has been used to decode the neural correlates of CI in PD 

patients and both structural and functional measurements were found to be associated with 

cognitive dysfunction in PD patients [25, 34, 45]. In our study, local topological metrics of multiple 

brain nodes were significantly different between CI- and CI+ patients. These nodes distributed in 

both cortical (temporal, occipital, and frontal lobe) and subcortical regions (bilateral putamen and 

thalamus) and have been found to be associated with human cognitive function in PD patients [81]. 

Consistently, most of these nodal metrics also exhibited cognitive level-dependent changes in PD 

patients [49]. Therefore, PD patients with CI displayed consistently specific patterns of structural 

network topology compared to PD patients without CI. In this study, nodal BC in left putamen and 

right putamen was significantly different between CI- and CI+ patients, which suggested putamen 

function and structure might be associated with cognitive function of PD patients. Actually, CI+ 
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PD patients was found to have reduced putamen volumes compared to controls and putamen 

volumes showed moderate associations with executive functions [81]. In addition, the functional 

connectivity between putamen and right cerebellum lobules VI/I was positively correlated with 

MoCA scores [82]. Furthermore, multiple metabolic pathways in putamen were also significantly 

different between CI- and CI+ PD patients [83]. Therefore, putamen may be impaired in CI+ PD 

patients and associated with cognitive decline. We showed BC and DC of left thalamus was 

significantly reduced in CI+ patients compared to CI- patients, indicating left thalamus was 

specifically impaired in CI+ patients. In agreement with our findings, left thalamus volume was 

found to be significantly reduced in CI+ patients [84]. Melief et al. (2018) have demonstrated that 

deficiency of glutamate signaling from thalamus to dorsal striatum induced the impairment of 

processing speed in PD [85]. Thus, thalamus may be also involved in the impairment of cognitive 

function in PD patients. We found BC and DC in core nodes of visual system (i.e., right superior 

occipital gyrus) were significantly different between CI- and CI+ patients, indicating that local 

network topology in visual network was preferentially impaired in CI+ patients. Actually, previous 

studies have shown that occipital regions were specifically impaired and associated with cognitive 

function in PD patients. For example, Chen et al. (2019) reported that reduced gray matter volume 

in the lateral occipital cortex was associated with cognitive dysfunction in PD patients [86]. 

Additionally, CI+ patients exhibited statistically significant increases of theta band powers in left 

occipital cortex, which was associated with visuospatial function of PD patients [87]. Furthermore, 

occipital hypoperfusion was considered to underlie impairment of visual cognition in PD patients 

without dementia [88]. These results suggested that the impairments of occipital regions may be 

associated with cognitive decline in PD patients. Additionally, we observed BC in bilateral 

temporal nodes were significantly increased in CI+ patients, suggested that the structure and 

function of bilateral temporal lobe was specifically affected in CI+ patients. According to previous 

studies, CI+ patients exhibited lower gray matter volume in temporal lobe compared to CI- patients 

[89]. In addition, Chiang et al. (2018) revealed that disruption of bilateral mesial temporal lobes 

in both architecture and functional connectivity contributed to CI in PD [90]. Moreover, the 

hypometabolism of left middle temporal gyrus was considered to be associated with cognitive 

deficits in PD patients [91]. Taken together, we concluded that CI-associated key brain nodes in 

PD distributed in temporal, occipital, and subcortical areas.  

4.3. Age, structural network, and PD-associated CI  
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    According to previous literature, PD patients exhibited extensive impairment of white matter 

integrity [92, 93], which was associated with faster disease progression in PD [94]. Additionally, 

the burden of white matter hyperintensity was a powerful predictor of cognitive decline in PD 

patients [95-97]. In a recent study, we revealed age-associated changes in white matter network 

metrics were causally associated with cognitive assessments of PD patients [25]. Specifically, age 

was negatively associated with hierarchy, global efficiency, local efficiency, small-worldness Cp 

and positively associated with small-worldness Lp, γ, and σ in structural network [25]. Through 

mediation analysis, we further demonstrated that global efficiency, local efficiency, and small-

worldness Lp of structural network mediated the negative relationship between age and semantic 

fluency of PD patients [25]. In addition, these global topological measurements also mediated the 

effects of age on SDMT scores in PD patients [25]. Importantly, age-dependent changes of white 

matter integrity also contributed to cognitive decline in PD patients. For instance, FA of bilateral 

inferior cerebellar peduncle partially mediated the effects of age on SDMT scores of PD patients 

[25]. However, the limitation of our recent study [25] was that no associations between global 

topological metrics and MoCA scores were observed, implying that local topological metrics may 

mediate the effects of age on MoCA scores. In current study, we initially revealed age was 

significantly associated with multiple local topological metrics in structural network, which further 

demonstrated that ageing is a major contributor of structural network abnormalities in PD [25]. 

Using mediation analysis, we further demonstrated that age-dependent decline of DC in right 

superior occipital gyrus and left thalamus contributed to CI in PD. In addition, we also revealed 

age-dependent increase in BC of right middle temporal gyrus was causally associated with CI in 

PD. In agreement with these results, recently, we also revealed DC of right superior occipital gyrus 

and BC of right middle temporal gyrus mediated the negative association between age and 

cognitive function of PD patients [49]. To summarize, our findings suggested that local topological 

metrics were associated with age-dependent cognitive decline in PD patients.  

4.4. EDS, structural network, and PD-associated CI 

    According to previous literature, EDS was associated with rapid motor progression and severe 

motor symptoms [22, 67, 98]. In addition, EDS was also linked to more severe non-motor 

symptoms, including depressive symptoms [68, 69, 99], cognitive decline [23, 100, 101], 

autonomic dysfunction [69, 99], and sleep disorders [22, 102]. In a recent study, we revealed DC 
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of left calcarine in structural network was negatively associated with ESS scores and DC of left 

calcarine in structural network mediated the effects of BIN3 rs2280104 on both ESS scores and 

EDS [26]. Therefore, local topological metrics were associated with EDS of PD patients. 

Consistently, in current study, we revealed ESS scores were significantly associated with DC of 

right superior occipital gyrus. Using mediation analysis, we further revealed that DC of right 

superior occipital gyrus mediated the negative association between ESS scores and MoCA scores. 

Interestingly, the significant association between DC of right superior occipital gyrus and cognitive 

function of PD patients has been revealed in a recent study [49]. These results suggested that 

reduction of DC in right superior occipital gyrus during aging also contributed to EDS-associated 

cognitive decline. 

4.5. Depression, structural network, and PD-associated CI 

    It has been shown that depressed PD patients showed significant changes in connecting white 

matter tracts among prefrontal-temporal regions compared to non-depressed PD patients and 

healthy controls [103]. In another study, depression scores were found to be associated with 

disruptions of white matter tracts connected to thalamic subnuclei [104]. Moreover, it seemed that 

the global efficiency and small-worldness Lp of the structural brain network were impaired in PD 

patients with depression [105]. These findings suggested that structural network impairments 

contributed to depression in PD patients. In current study, we revealed BC of right middle temporal 

gyrus in structural network was higher in CI+ patients than CI- patients, which was consistent with 

our recent study showing PD patients with lower SDMT scores exhibited greater BC of right 

middle temporal gyrus than PD patients with higher SDMT scores [49]. Here, we demonstrated 

that BC of right middle temporal gyrus mediated the effects of depressive symptoms on MoCA 

scores and CI of PD patients, suggesting higher BC of right middle temporal gyrus in PD was 

causally correlated with PD-related CI. Importantly, the significant association between BC of 

right middle temporal gyrus and cognitive function of PD patients has been confirmed in our recent 

study [49]. Taken together, our findings suggested that depression contributed to CI in PD via the 

regulation of local topological metrics in right middle temporal gyrus.  

4.6. Strengths and limitations of this study 

    In this study, we replicated previous findings that age, EDS, and depressive symptoms were 

significantly associated with cognitive decline of PD patients. Using network analysis and 
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mediation analysis, we demonstrated that different local topological metrics mediated the effects 

of age, EDS, and depression on global cognition of PD patients. Therefore, a major contributor of 

our study to the filed was that we provided network-level explanations to the associations between 

age, EDS, depression and cognitive decline in PD patients. Importantly, we identified some key 

nodes, such as right middle temporal gyrus and right superior occipital gyrus, were network 

mediators of cognitive decline in PD patients, which have been confirmed in a recent study [49]. 

Another interesting finding was that local topological metrics in white matter network greatly 

contributed to age-dependent cognitive decline in PD patients, which was consistent with our 

recent findings [49]. Recently, we have demonstrated that global network metrics contributed to 

semantic fluency and global cognition of PD patients [25]. Therefore, our findings expanded 

present understating of the network topological correlates mediating the effects of age on global 

cognition of PD patients. The limitation of this study was its cross-sectional design; thus, our 

findings were required to be validated in future longitudinal studies.  

5. Conclusions  

CI+ PD patients exhibited worse non-motor symptoms than CI- PD patients. Age, EDS, 

depression and anxiety were negatively associated with global cognition of PD patients. CI+ PD 

patients exhibited statistically different local topological properties in structural network compared 

to CI- PD patients. Different local topological metrics mediated the negative associations between 

age, EDS, depression and global cognition of PD patients.  
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Table 1 Clinical characteristics of CI- and CI+ patients 

Characteristics All patients 

(n = 145) 

CI- patients 

(n = 111) 

CI+ patients 

(n = 34) 

Statistic p value 

(χ2 or unpaired t-test) 

Age (years) 61.15 ± 9.18 59.82 ± 9.23 65.47 ± 7.64 **p = 0.0015 

Sex (Female/Male) 52/93 40/71 12/22 p > 0.9999 

Education (years) 15.23 ± 2.97 15.42 ± 3.03 14.62 ± 2.73 p = 0.1674 

Disease duration (years) 2.04 ± 2.15 2.13 ± 2.35 1.76 ± 1.33 p = 0.3891 

UPDRS-III 20.82 ± 9.67 20.33 ± 9.50 22.53 ± 10.20 p = 0.2578 

Values are mean ± standard deviation. Sex ratio was evaluated with Chi-square test, other 

characteristics were compared using unpaired t-test. **p < 0.01. Key: CI, Cognitive impairment; 

UPDRS-III, Unified Parkinson’s Disease Rating Scales part III.  
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Table 2 Associations between MoCA scores and clinical assessments. 

 

The data were shown as the β and p-values derived from multivariate regression analysis with age, sex, years of education, and disease 

duration as covariates. The motor function examination was assessed in ON state. p < 0.05 was considered statistically significant. 

Abbreviations: HY, Hoehn & Yahr; UPDRS, Unified Parkinson’s Disease Rating Scale; ESS, Epworth Sleepiness Scale; RBDSQ, REM 

Sleep Behavior Disorder Screening Questionnaire; GDS, Geriatric Depression Scale; SCOPA-AUT, Scale for Outcomes in Parkinson's 

Disease-Autonomic; SDMT, Symbol Digit Modalities Test; LNS, Letter Number Sequencing; SFT, Semantic Fluency Test Score; STAI, 

State-Trait Anxiety Inventory; BJLOT, Benton Judgement of Line Orientation; MoCA, Montreal Cognitive Assessment; HVLT-R, 

Hopkins Verbal Learning Test-Revised.   

 

 

 

 

Clinical assessments 

 HY stage Tremor Rigidity UPDRS-III UPDRS-Total ESS GDS RBDSQ 

β value 

 

p-value 

β = -0.01 

 

p = 0.4956 

β = -0.19 

 

p = 0.0921 

β = -0.22 

 

p = 0.0278 

β = -0.65 

 

p = 0.0544 

β = -1.65 

 

p = 0 .0012 

β = -0.41 

 

p = 0.0013 

β = -0.24   

 

p = 0.0041 

β = -0.24   

 

p = 0.0081  

Clinical assessments 
 

SCOPA-AUT  STAI BJLOT  SFT  SDMT LNS HVLT-R 

Immediate Recall  

HVLT-R 

Delayed Recall  

β value 

 

p-value 

β = -0.49   

 

p =0.0089 

β = -2.46 

 

p < 0.0001 

β = 0.11  

 

p = 0.0856 

β = 1.23   

 

p = 0.0004 

β = 1.51   

 

p < 0.0001 

β = 0.46 

 

p < 0.0001 

β = 0.63   

 

p = 0.0001 

β = 0.42   

 

p < 0.0001 
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Fig. 1. Group differences in clinical characteristics between CI- and CI+ patients. (A-E) CI+ 

patients exhibited higher scores of total UPDRS (A), ESS (B), GDS (C), SCOPA-AUT (D), and 

STAI (E) compared to CI- patients. (F-L) CI+ patients showed lower scores of Immediate Recall 

and Delayed Recall of HVLT-R, BJLOT, LNS, SFT, SDMT, and MoCA compare to CI- patients. 

The unpaired t-test (CI- group vs CI+ group) was used to compare clinical variables. p < 0.05 was 

considered to be statistically significant. *p < 0.05, ** p < 0.01, ***p < 0.001, **** p < 0.0001. 

Abbreviations: CI, cognitive impairment; UPDRS, Unified Parkinson’s Disease Rating Scale; ESS, 

Epworth Sleepiness Scale; GDS, Geriatric Depression Scale; SCOPA-AUT, Scale for Outcomes 

in Parkinson's Disease-Autonomic; STAI, State-Trait Anxiety Inventory; HVLT-R, Hopkins 

Verbal Learning Test–Revised; BJLOT, Benton Judgment of Line Orientation test; LNS, Letter 

Number Sequencing test; SFT, Semantic Fluency Test; SDMT, Symbol Digit Modalities Test; 

MoCA, Montreal Cognitive Assessment.  
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Fig. 2. Group differences in structural network metrics between CI- and CI+ patients. (A-C) 

Group differences in BC (A), DC (B), and nodal Cp (C) between CI- and CI+ patients. Two-way 

ANOVA test with FDR correction was performed. p < 0.05 after FDR correction was considered 

to have statistical significance. *p < 0.05, ** p < 0.01, ***p < 0.001, **** p < 0.0001. 

Abbreviations: CI, cognitive impairment; BC, Betweenness centrality; DC, Degree centrality; Cp, 

Clustering coefficient.  
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Fig. 3. Associations between age and nodal network metrics. (A-D) Age was significantly 

associated with BC of right superior occipital gyrus, left putamen, right superior temporal gyrus, 

and right middle temporal gyrus (FDR-corrected p < 0.05 in both Pearson correlation analysis and 

multivariate regression analysis). (E-F) Age was significantly associated with DC of right superior 

occipital gyrus and left thalamus (FDR-corrected p < 0.05 in both Pearson correlation analysis and 

multivariate regression analysis). The association analysis between graphical network metrics and 

age was conducted by Pearson correlation method and multivariate regression analysis with age, 

sex, disease duration, and years of education as covariates. FDR-corrected p < 0.05 was considered 

statistically significant. Abbreviations: BC, Betweenness centrality; DC, Degree centrality.  
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Fig. 4. Structural network metrics mediated the effects of age on MoCA scores. (A-B) BC of 

right superior occipital gyrus and right middle temporal gyrus mediated the effects of age on 

MoCA scores. (C-D) DC of right superior occipital gyrus and left thalamus mediated the effects 

of age on MoCA scores. During the mediation analysis, age, sex, disease duration, and years of 

education were included as covariates. p < 0.05 was considered statistically significant. 

Abbreviations: BC, Betweenness centrality; DC, Degree centrality; MoCA, Montreal Cognitive 

Assessment.  
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