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Development of deep learning models to assess the degree
of cognitive impairment on magnetic resonance imaging (MRI)
scans has high translational significance. Performance of such
models is often affected by potential variabilities stemming
from independent protocols for data generation, imaging equip-
ment, radiology artifacts, and demographic distributional shifts.
Domain generalization (DG) frameworks have the potential to
overcome these issues by learning signal from one or more
source domains that can be transferable to unseen target do-
mains. We developed an approach that leverages model in-
terpretability as a means to improve generalizability of clas-
sification models across multiple cohorts. Using MRI scans
and clinical diagnosis obtained from four independent cohorts
(Alzheimer’s Disease Neuroimaging Initiative (ADNI, n = 1, 821),
the Framingham Heart Study (FHS, n = 304), the Australian
Imaging Biomarkers and Lifestyle Study of Ageing (AIBL, n =

661), and the National Alzheimer’s Coordinating Center (NACC,
n = 4, 647)), we trained a deep neural network that used model-
identified regions of disease relevance to inform model training.
We trained a classifier to distinguish persons with normal cogni-
tion (NC) from those with mild cognitive impairment (MCI) and
Alzheimer’s disease (AD) by aligning class-wise attention with a
unified visual saliency prior computed offline per class over all
training data. Our proposed method competes with state-of-
the-art methods with improved correlation with postmortem
histology, thus grounding our findings with gold standard evi-
dence and paving a way towards validating DG frameworks.
K E YWORD S
Domain generalization, Alzheimer’s disease, cognitive
impairment, magnetic resonance imaging
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1 | INTRODUCTION

Alzheimer’s disease (AD) is a progressive syndrome lead-
ing to loss of brain function that affects memory, think-
ing, language, judgment and behavior. The approach
to dementia diagnosis involves careful consideration of
the patient’s demographics and symptoms, family, so-
cial and medical history, neurologic examination, cogni-
tive, behavioral, and functional assessments along with
neuroimaging [1, 2]. Magnetic resonance imaging (MRI)
is typically recommended to evaluate the structural
changes in the patient’s brain that correspond to volume
loss and atrophy patterns suggestive of AD and rule out
other patterns indicative of non-AD syndromes. Com-
putational methods based on advanced machine learn-
ing techniques are increasingly considered to automat-
ically process the MRI scans and classify persons with
ADdementia from thosewith normal cognition (NC) and
mild cognitive impairment (MCI) [3, 4, 5, 6]. Some of re-
cently reported frameworks have relied on trainingmod-
els using data collected from a single cohort followed
by evaluation on independent test cohorts [6]. Such
model development strategies can establish a proof-of-
principle, but may lack generalizability because data col-
lected from multiple cohorts may contain variabilities
stemming from independent scanning protocols, diver-
sity of the study population and other sources. More-
over, while recent efforts on public data sharing have fa-
cilitated data access more easily, there is a greater need
to develop models that result in generalizable, consis-
tent findings.

Recently, domain generalization (DG) approaches are
being considered to train robust deep learning models
that account for cohort-specific variabilities and work
well across multiple datasets [7, 8, 9, 10, 11, 12, 13,
14, 15]. Most methods attempt to mitigate the distri-
butional variance between domain-specific feature rep-
resentations. We submit that additional aspects such
as orienting the models to focus on disease-related in-
formation while performing model training can be a tar-
geted approach to meet the objective of creating gener-
alizable architectures for disease classification.

1.1 | Related work

DG frameworks are typically designed to learn a ro-
bust signal and a set of patterns possibly from single
or multiple source domains with the aim of transferring
them to unseen target domains. The expectation is that
such frameworks lead to minimal performance degrada-
tion on the unseen target environment. In the setting
of single-source DG, the model trained on this source
learns robust representations that can generalize to out-
of-distribution data. Single-sourceDGmethods can also
be applied to a multi-source setting, as training is done
over pooled data across the different source domains [8].
Also, multiple source domains can be used for training
domain-invariant feature representations that general-
ize well to unseen target data.

Most DGmethods were originally designed to bench-
mark natural imaging datasets, with a limited number
of frameworks focused on medical imaging data [9, 10].
A group of methods have been proposed to tackle DG
via data manipulation, which could either be data aug-
mentation or generation [16, 17, 18, 19, 20]. One of
those methods is Mixup[16], a data-agnostic routine
that constructs virtual training examples as convex com-
binations of pairs of examples and their labels sam-
pled at random from the training distribution. Mixup
aims to regularize the neural network to favor linear
behavior in-between training examples[16]. Another
group of methods used representation learning to ad-
dress domain shift, mainly by learning domain-invariant
representations and feature disentanglement [11, 12,
21, 22, 13, 15, 23]. Donini and co-workers proposed
a multi-source algorithm that uses empirical risk mini-
mization (ERM), which became the standard approach
to the DG problem. ERM aims to minimize the training
risk across all source domains[11]. Recently, Kreuger
and colleagues introduced risk extrapolation (REx) for
out-of-distribution (OOD) generalization and proposed
a penalty on the variance of training risks (V-REx). They
showed that reducing differences in risks with V-REx
can reduce a model’s sensitivity to a wide range of ex-
treme distributional shifts[12]. Li et al. (2018), on the
other hand, proposed using the maximummean discrep-
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ancy (MMD) measure with autoencoders to align distri-
butions across different domains via adversarial train-
ing [13]. Another work introduced representation self-
challenging (RSC) to force the model to discard dom-
inant features activated on the training data and ac-
tivate remaining features that correlate with ground-
truth labels [15]. Further, there exists a line of work
that used meta-learning for DG. One of the proposed
meta-learning methods was MLDG, meta-learning for
domain generalization, which simulates domain shift
during training by synthesizing virtual testing domains
within each mini-batch [14].

Our method is orthogonal to previous work on learn-
ing domain-invariant feature representations, with the
contribution of using interpretability to extract disease-
relevant information for feature alignment. Related prior
work used model explanations as means of disentan-
gling domain specific information from otherwise rele-
vant features[24]. Ourmethod, on the other hand, lever-
ages feature contributions to final correct predictions as
prior knowledge of model-identified disease biology to
guide model attention during training. We focus on the
single-source DG setting, as it is the more feasible sce-
nario in clinical settings, where the model has access to
only one source domain for training. The model’s gener-
alizability is then evaluated on external cohorts known
as the target domains.

1.2 | Contributions

Our work falls under the umbrella of interpretabil-
ity, where we use feature contributions to adjust fi-
nal predictions and emphasize disease-relevant fea-
tures. Through attention-based supervision, the model
learns to focus on disease-correlated regions using pre-
computed class-wise saliencymap priors with voxel con-
tributions. Themain contributions of this paper are sum-
marized as follows:

• We developed an interpretability-based computa-
tional framework to train deep neural networks that
focus on model-identified disease regions of interest
as a means to generalize across multiple cohorts.

• Using MRI scans and clinical data obtained from mul-
tiple cohorts, we developed a classifier that distin-
guishes between persons with NC, MCI and AD.

• We demonstrated that our method competes with
state-of-the-art DGmethods in the real-world single-
source setting.

• Finally, we showed that our interpretable findings
correlate strongly with postmortem histology, iden-
tifying disease presence in brain regions that are
known to classically associate with disease.

2 | METHODS

2.1 | Study population

We obtained brain MRI scans and corresponding clini-
cal and demographic data on participants from four dif-
ferent cohorts: the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) (n = 1, 821) [25], National Alzheimer’s
Coordinating Center (NACC) (n = 4, 647)[26], the Aus-
tralian Imaging Biomarkers and Lifestyle (AIBL) study of
ageing (n = 661) [27], and the Framingham Heart Study
(FHS) [28, 29] (n = 304). There were 3, 697 cases with
normal cognition (NC), 2, 323 cases with mild cognitive
impairment (MCI), and 1, 413 cases with Alzheimer’s dis-
ease (AD) across all cohorts (Table 1). The selection cri-
terion included T1-weighted 1.5 and 3 Tesla MRI scans
of individuals aged 55 years and older taken within ±6
months from the date of clinically confirmed diagnosis
[6]. We considered the MRI scan taken at the closest
date to the diagnosis whenmultipleMRIs were available
per person. Any cases including AD with mixed demen-
tia, non-AD dementias, history of severe traumatic brain
injury, depression, stroke, and brain tumors, as well as in-
cident major systemic illnesses were excluded. We con-
sidered the single-source setting for DG, where training,
internal validation and testing of the models were per-
formed on one source cohort, whereas external valida-
tion and testing were performed on the target cohorts.
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TABLE 1 Study population. MRI scans and corresponding clinical and demographic data were collected across
four different cohorts: the Alzheimer’s Disease Neuroimaging Initiative (ADNI), the National Alzheimer’s
Coordinating Center (NACC), the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL), and the
Framingham Heart Study (FHS). The models were trained and tested to differentiate persons who have either
normal cognition (NC), mild cognitive impairment (MCI) or Alzheimer’s disease dementia (AD). Education information
on the AIBL dataset was not available. ∗FHS education code: 0 = high school did not graduate, 1 = high school
graduate, 2 = some college graduate, 3 = college graduate.

Dataset Group Age, years Education, years Gender MMSE APOE4
[participants] mean [std] median [std] male count(%) median [std] positive count(%)

ADNI
NC [n=481] 74.3±6.0 16.3±2.7 235(48.9%) 29.1±1.1 138(29.6%)
MCI [n=971] 72.8±7.7 15.9±2.8 572(58.9%) 27.6±1.8 438(47.2%)
AD [n=369] 74.9±7.8 15.2±3.0 203(55.0%) 23.2±2.1 229(64.3%)
p-value < 0.001 < 0.001 0.001 < 0.001 < 0.001

NACC
NC [n=2524] 69.8±9.9 15.92±3.0 871(34.5%) 29.0±1.3 599(30.0%)
MCI [n=1175] 74.0±8.7 15.4±3.4 555(47.2%) 26.8±2.5 322(38.7%)
AD [n=948] 75.0±9.1 14.6±3.6 431(45.5%) 20.5±5.7 346(52.2%)
p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

AIBL
NC [n=480] 72.5±6.2 N.A. 203(42.3%) 28.7±1.2 12(2.5%)
MCI [n=102] 74.7±7.1 N.A. 53(52.0%) 27.1±2.1 12(11.8%)
AD [n=79] 73.3±7.8 N.A. 33(41.8%) 20.4±5.5 14(17.7%)
p-value 0.006 N.A. 0.189 < 0.001 < 0.001

FHS
NC [n=212] 73.4±9.6 1.8±0.9* 112(52.8%) 28.1±1.7 42(20.2%)
MCI [n=75] 76.2±6.8 1.6±1.0* 34(45.3%) 27.2±2.0 17(23.6%)
AD [n=17] 78.8±7.2 1.8±1.0* 4(23.5%) 24.0±2.1 7(43.8%)
p-value 0.007 0.272 0.049 < 0.001 0.088

2.2 | MRI processing pipeline

We uniformly applied a series of image processing steps
to all the MRI scans. First, we reconfigured the scans’
orientation to follow that of the MNI space. We then
used the FSL brain extraction tool to generate a mask
that identified brain voxels comprising gray and white
matter, cerebrospinal fluid, and subcortical structures,
including the brain stem and cerebellum. In this step,
any pixels corresponding to white matter, cerebrospinal
fluid, brain stem and cerebellum were removed. Follow-
ing skull stripping, we applied a preliminary linear regis-
tration of the MRIs to the Montreal Neurological Insti-
tute (MNI-152) coordinate system. Skull stripping and
linear registration were once again applied to remove
any brain tissue outside of the full registered brain and

enhance alignment with the template. Then, intensity
artifacts were removed via bias field correction to in-
crease data homogeneity. Finally, a nonlinear warp of
the Hammersmith Adult brain atlas was applied to the
post-processed MRIs to obtain the parcellated brain re-
gions. The above preprocessing steps were done follow-
ing Qiu et al. (2022) [30].

2.3 | Computational framework

We developed our computational framework for the
task of classification of 3D volumetric brain scans into
NC, MCI, and AD. The building blocks of our framework
are a feature extractor, a class-wise attention module,
and a classifier network (Fig. 1). The training pipeline
consists of two stages: the first is training a baseline

 . CC-BY 4.0 International licenseIt is made available under a 
who has granted medRxiv a license to display the preprint in perpetuity. 

 is the author/funder,(which was not certified by peer review)The copyright holder for this preprint 2023. 
this version posted September 25,; https://doi.org/10.1101/2023.09.22.23295984doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.22.23295984
http://creativecommons.org/licenses/by/4.0/


Lteif et al. 5

Data preprocessing

Model training

Multi-center data

T1-weighted MRIs Preprocessed MRI 
registered to the 

MNI152 space

Input: 3D MRI

True 
label

NC

MCI

AD

Classifier

. .
 . . .

 .

. . .

. . .

. . .

SHAP priors

of
fli
ne

SHAP

Attention module

F′￼i,k
Hi,k

Mi,k

=
F′￼i,k × Mi,k

Fi

Lsim =
N

∑
i

K

∑
k

d(Mi,k, SHAPk) Ltotal = LWCE + λLsim

LWCE( ̂y, y)

NACC ADNI1 ADNI2

ADNI3 ADNIGO AIBL FHS

Max pool

Conv3D + BN + ReLU

Feature extractor

Conv3D
Conv3D + Max Pool + BN + ReLU

Align

σ

σ

F IGURE 1 Schematic of the disease-informed domain generalization framework. MRI scans from various
cohorts were processed via an image processing pipeline that was previously described [6]. Our approach takes 3D
MRIs as input from the source domain and learns their feature representations in the latent space, and uses an
attention module to learn class-specific saliency maps. These maps are then used to predict a class label (NC, MCI,
or AD). We used SHAP offline to generate the averaged saliency maps, which we refer to as disease-informed prior
knowledge, of NC, MCI, and AD classes over all samples of the source domain used for model training.

model for the offline computation of class-wise priors,
and the second is training a new independent model
with the supervision of these priors.

Feature extractor. We chose the UNet3D [31]
architecture and started from a pretrained Models

Genesis checkpoint on chest CT scans [32, 33].
Models Genesis are generic pre-trained 3D models
for 3D medical image analysis. They were trained in a
self-supervised robust manner, and outperformed mod-
els trained from scratch [33]. To adapt the network to
our classification task, we discarded the decoder mod-
ule and kept the encoder of the UNet3D network as the
feature extractor for our framework.

Classifier module. We used a global average pool-

ing (GAP) layer[34] followed by a softmax function as
the classifier for the three-way classification of NC,MCI,
and AD. Our choice of a GAP layer as opposed to a
fully connected layer as the classifier encourages spa-
tial awareness. While the latter takes in as input a fea-
ture map pooled over the channel dimension and then
flattened into a one-dimensional vector, the former re-
ceives a stack of 3D feature maps with the channel di-
mension K being equivalent to the number of classes,
and pools over the spatial dimensions thereby preserv-
ing spatial information per channel.

Attention supervision. We added an attention mod-
ule between the feature extractor and the classifier to
learn class-wise attention over the source domain. It
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F IGURE 2 Orthogonal projections of the
pre-computed AD-specific SHAP prior used in our
computational framework. The above projections
correspond to the averaged saliency maps with respect
to correct predictions of AD over all samples of the
source domain. We projected the resulting map to 2D
space onto the coronal, sagittal, and axial axes,
respectively.

takes as input the feature maps Fk output by the fea-
ture extractor, and passes it through a 3D convolutional
layer to get F ′

k
. The learnt attention maps are denoted

byMk ∈ ÒK×D×H ×W , where K is the number of classes,
and D , H , andW are the depth, height, and width of the
attention map, respectively. The final output of the at-
tention module is then the element-wise multiplication
of F ′

k
andMk . The class-wise attention maps were later

used in the second stage of training for alignment with
visual saliency priors computed per class over the train-
ing data.

Training. In the first phase of training, we computed
visual saliency maps over correct predictions by a base-
linemodel trainedwithweighted cross-entropy over the
training data. To achieve this task, we used SHapley Ad-
ditive exPlanations (SHAP) to compute the feature con-
tributions per class [35]. For the purpose of smoothing
out sample noise and variance, we used an averaged
saliency map over samples of the same class as a rep-
resentation of class-wise saliency. Fig. 2 shows visu-
alizations of the pre-computed SHAP prior specific to
the AD class. For the purpose of visualization, Shapley
values were scaled to the range of [−1, 1], which we
chose to correctly represent negative and positive voxel
contributions as in the original range. Once the SHAP
priors were generated, we ran our explainability-based

strategy to regularize the model through a combined
weighted cross entropy (1) and similarity loss (2). We
applied augmentation techniques to the training data us-
ing the Medical Open Network for AI (MONAI) frame-
work [36], which included random contrast adjustment,
random bias field, random spatial cropping, upsampling,
and intensity scaling. We found that intensity scaling to
the range [0, 1] worked best for data normalization of
structural MRI scans.

LWCE ( ŷ , y ) = −
N∑
i

wyi .yi log( ŷi ), (1)

such that N spans the minibatch dimension, and wyirefers to the weight assigned to all samples belonging to
the ground-truth class yi . Class weights are computed
by taking the inverse of the total count of samples be-
longing to each class, so that underrepresented classes
have a higher weight.

After having the SHAP maps generated offline per
class, we used a similarity loss defined in (2) to minimize
the distance between each sample’s extracted feature
maps and the retrieved SHAP prior with respect to the
same class as the ground truth label of that sample.

Lsim =
N∑
i

K∑
k

d (Mi ,k , SHAPk ), (2)

with d being the distance metric of choice, which,
in our case, is the L2 norm. We used the L2 norm
loss to increase the semantic consistency between
the attention maps Mi ,k and SHAP priors SHAPk
corresponding to class k ∈ [1,K ], thereby encouraging
the model to focus its attention on disease-relevant
regions that the pre-computed priors highlighted in the
brain.

The final loss is then:
L = LWCE + λLsim , (3)

where λ is a hyper-parameter that can be optimized.
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2.4 | Neuropathological validation

To validate model predictions with gold standard biolog-
ical evidence, we correlated deep feature contributions
with region-specific neuropathological scores obtained
from autopsy on persons who had their last MRI within
a year of their demise. We quantified regional disease
presence based on the degree of amyloid β deposits,
neurofibrillary tangles (NFT), and neuritic plaques (NP)
on histology. These three pathologies are hallmarks of
AD that increase in density and/or spread through the
brain as the disease progresses, and they are associated
with tissue/cellular damage and death [37].

We obtained 23 participants from ADNI (n = 13)
and FHS (n = 10) who had MRI scans taken within one
year of death with available regional semi-quantitative
histopathology scores. Presence and density of amyloid
β deposits, neurofibrillary tangles, and neuritic plaques
were assessed in the entorhinal, hippocampal, frontal,
temporal, parietal, and occipital cortices. The regions
were proposed based on the NIA-AA protocol for stan-
dardized neuropathological assessment of AD. Severity
of the assessment was categorized into four score cate-
gories: 0 (None), 1 (Mild), 2 (Moderate), and 3 (Severe)
[38]. We used the trained models to run inference on
those cases and saved their corresponding class-wise
attention maps for computation of region-level scores.
Since postmortem histology grades assess for the pres-
ence of disease in the respective brain regions, we used
the AD-specific attention map to compute region-level
attention scores as model evidence for the prediction of
AD. Using the MNI-152 template, we obtained a brain
parcellation for each of the MRIs and aggregated voxel
attention values per region, normalized by region vol-
ume. Once model scores were computed, we ran the
Spearman’s rank correlation coefficient test with pathol-
ogy grades of amyloid β , neurofibrillary tangles, and neu-
ritic plaques in the various pre-identified brain regions.

3 | EXPERIMENTAL SETUP

We considered the NACC dataset as the source domain
for training, validation and internal testing, and used
ADNI, AIBL, and FHS as the target domains for exter-
nal testing. All experiments were run with k -fold cross
validation over the source domain with k = 5, and the
average metrics over the five runs with their standard
deviation were reported. Since the source domain we
have access to suffers from class imbalance, wherein
MCI and AD cases are significantly less than NC cases,
we used stratified k -fold cross validation to ensure the
target classes follow the same ratio in each fold as in the
full dataset. We used a split ratio of 3 : 1 : 1, where 60%
of the data were used for model training, 20%were used
for internal validation, and the rest for internal testing.
We trained our models for 60 epochs with 200 steps, i.e.,
weight updates, per epoch. We also compared against
two state-of-the-art methods in the single-source DG
setting: RSC[15] andMixup[16]. After hyper-parameter
tuning, we chose a λ = 5× 10−5 for our training strategy
and an α = 0.2 for the Mixup[16] method. Due to large
size of the input image, i.e., (182×218×182) per MRI, we
could only fit a batch size of 2 into GPUmemory (48GB)
and had to resort to gradient accumulation over 8 steps
to simulate a final batch size of 16, since the small batch
size rendered weighted random sampling ineffective for
mitigating class imbalance. We also modified the state-
of-the-art DG methods to use weighted cross-entropy
across all experiments, as their implementation was not
designed to deal with heavy class imbalance.

3.1 | Performance metrics

Along with model accuracy, we reported the macro F1-
score averaged over five folds as it better represents
a balanced score between precision and recall through
their harmonic mean. The macro F1-score in multi-class
classification is the average of F1-scores over all classes
(4). A higher macro F1 score represents lower false pos-
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TABLE 2 Model performance. We trained our model on the NACC cohort and used the ADNI, AIBL, and FHS
cohorts as target domains. We reported accuracy on the test split of NACC, and on the entirety of the target
datasets. Performance metrics including accuracy, macro F1-score and MCC are reported on each case. Note that
model training was done via 5-fold cross validation on the NACC dataset, and testing was done on each of the
models. Results are reported as mean ± standard deviation. The bold font is used to report the best model
performance in each column.
Method Attention Pretrained Source ADNI AIBL FHS Target Mean
Baseline[32] ✗ ✗

Ac
cu
ra
cy

(%
)

52.5±5.4 38.9±2.7 54.1±11.5 38.6±10.0 43.9±6.9
Baseline[32] ✓ ✗ 52.7±2.5 42.9±0.6 52.6±4.8 42.7±4.5 46.1±2.5
Baseline[32] ✓ ✓ 64.3±4.0 42.7±1.4 66.1±3.7 48.1±7.2 52.3±2.9
RSC[15] ✓ ✓ 55.5±3.4 43.8±3.8 44.8±9.0 35.9±9.2 41.5±3.0
Mixup[16] ✓ ✓ 62.8±1.5 43.5±2.0 65.2±3.6 34.3±2.8 47.7±2.1
Ours ✓ ✗ 51.6±2.3 44.0±0.4 47.3±3.3 37.1±3.6 42.8±1.6
Ours ✓ ✓ 66.5±1.3 42.9±1.5 73.4±2.4 49.1±6.5 55.1±2.9

Baseline[32] ✗ ✗

M
ac
ro

F1
Sc
or
e

0.50±0.04 0.39±0.03 0.44±0.06 0.33±0.07 0.39±0.05
Baseline[32] ✓ ✗ 0.50±0.02 0.44±0.01 0.45±0.02 0.37±0.03 0.42±0.01
Baseline[32] ✓ ✓ 0.58±0.02 0.44±0.02 0.54±0.02 0.40±0.05 0.46±0.02
RSC[15] ✓ ✓ 0.52±0.01 0.44±0.03 0.42±0.02 0.32±0.07 0.39±0.02
Mixup[16] ✓ ✓ 0.58±0.01 0.44±0.02 0.54±0.03 0.30±0.02 0.43±0.02
Ours ✓ ✗ 0.50±0.02 0.45±0.00 0.42±0.02 0.34±0.03 0.40±0.01
Ours ✓ ✓ 0.60±0.02 0.44±0.02 0.58±0.02 0.41±0.04 0.48±0.02

Baseline[32] ✗ ✗

M
CC

0.27±0.04 0.13±0.03 0.21±0.06 0.11±0.06 0.15±0.05
Baseline[32] ✓ ✗ 0.26±0.04 0.18±0.02 0.21±0.03 0.13±0.03 0.17±0.02
Baseline[32] ✓ ✓ 0.40±0.04 0.21±0.03 0.34±0.02 0.19±0.37 0.25±0.02
RSC[15] ✓ ✓ 0.31±0.02 0.18±0.02 0.23±0.01 0.10±0.03 0.17±0.01
Mixup[16] ✓ ✓ 0.39±0.02 0.19±0.01 0.33±0.03 0.11±0.02 0.21±0.02
Ours ✓ ✗ 0.26±0.04 0.18±0.01 0.18±0.02 0.11±0.03 0.16±0.02
Ours ✓ ✓ 0.42±0.02 0.21±0.03 0.40±0.02 0.20±0.03 0.27±0.03

itives, i.e., recall, and false negatives, i.e., precision.

Macro F1 =
K∑
k

2 × Precisionk × RecallkPrecisionk + Recallk (4)

such that,
Precisionk =

Mk k∑
i Mi k

(5)
Recallk =

Mk k∑
i Mk i

(6)

We also reported Matthew’s Correlation Coefficient
(MCC), using Scikit-Learn’s [39] formula for multi-class

classification (7). An advantage of having MCC as a
single-value classification metric is that it is perfectly
symmetric, unlike precision and recall that can be af-
fected by swapping positive and negative classes. In ad-
dition, it quantifies how well the model is doing at pre-
dicting each class, regardless of class imbalance.

MCC =
c × s − ∑K

k pk × tk√
(s2 − ∑K

k p2
k
) × (s2 − ∑K

k t 2
k
)

(7)
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(a) tSNE plot on MRI embeddings from a vanilla UNet3D trained on NACC only. The red boxes highlight the main
clusters of AIBL embeddings.

(b) tSNE plot on MRI embeddings from a UNet3D trained using our proposed framework.
F IGURE 3 Visualization of MRIs in the latent space. (a) We generated MRI embeddings at the attention module
level from a vanilla UNet3D model trained on the NACC cohort without domain generalization, and visualized them
in a 2D space using t-SNE. (b) We generated MRI embeddings from the same UNet3D architecture trained using our
domain generalization framework, and visualized them in a 2D space using t-SNE. For both plots, data from the four
cohorts (NACC (n = 4, 647), ADNI (n = 1, 821), AIBL (n = 661) and FHS (n = 304)) were used.

such that,

tk =
K∑
i

Mi k (8)

pk =
K∑
i

Mk i (9)

c =
K∑
k

Mk k (10)

s =
K∑
i

K∑
j

Mi j (11)

where M refers to the confusion matrix, K the total
number of classes, tk the number of times class k truly
occured, pk the number of times class k was predicted,
c the total number of samples correctly predicted, and
s the total number of samples.
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3.2 | Computing infrastructure

We used PyTorch (v1.13.1) and a NVIDIA A6000 graph-
ics cardwith 48GBmemory on aGPUworkstation to im-
plement the model. The training speed was about 2.25s
/ iteration, and it took less than 24 hours to reach con-
vergence with a batch size of 16 after gradient accumu-
lation. The inference speed was < 0.2s per MRI.

3.3 | Data and code availability

All the MRI scans and corresponding clinical and de-
mographic data can be downloaded freely from ADNI,
NACC and AIBL websites. FHS data is available upon
request and subject to institutional approval. Python
scripts and manuals are available on GitHub.1

4 | RESULTS

We compared the results of our computational frame-
work against state-of-the art DGmethods for the single-
source setting in Table 2. We used a vanilla UNet3D
model trained without DG on the NACC cohort as the
baseline on which we ran three different experiments:
one trained from scratch and not using attention (row
1), another also trained from scratch but with our at-
tention module (row 2), and the third trained starting
from the pretrained Models Genesis[32, 33] check-
point with our attention module (row 3). First, the two
methods we compared against, RSC[15] and Mixup[16],
did not show improvement over the baseline. In fact,
performance was deteriorated going from row 3 to row
4 by 10.8% in terms of target mean accuracy, 0.07 (7%)
in terms of target mean macro F1-score, and 0.08 (4%)
in terms of target mean MCC. The same pattern of per-
formance degradation was observed going from row 3
to row 5, with a 4.6% lower target mean accuracy, a
0.03 (3%) lower target mean macro F1-score, and 0.04
(2%) lower target mean MCC. These results imply that
although these methods were proven to boost perfor-
mance and robustness to distributional shifts on natural
and synthetic imaging benchmarks, they do not trans-

1https://github.com/vkola-lab/d3g.git
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1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Correlation

Not available p < .05 p < .01 p < .001

F IGURE 4 Correlation of model-generated
attention scores with post-mortem histology.
Pathology grades of amyloid β , neurofibrillary tangles
and neuritic plaques in various brain regions on
deceased ADNI and FHS participants were obtained
(n = 23). We compared model-identified importance in
these brain regions with the degree of pathology
severity, and compared them against predictions
obtained using other well-known domain
generalization methods.

late to real-world clinical data, in our case, volumet-
ric structural brain MRIs. On the other hand, training
using our method improved performance, outperform-
ing RSC[15], Mixup[16], and the baseline across the re-
ported target mean metrics. We showed a 2.8% im-
provement over the baseline (row 3 vs. 7) in terms of
target mean accuracy. In fact, our method was able to
achieve a 73.4% accuracy on the target cohort AIBL, a
7.3% improvement over the baseline (row 7 vs. 3). This
improvement is also reflected in the MCC value which
increased by 0.07 (3%) from row 3 to row 7.
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(a) Correlation of attention maps with the presence of
amyloid β deposits.
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(b) Correlation of attention maps with neurofibrillary tangles.

1.0
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0.0

0.5

1.0
Baseline RSC Mixup Ours

(c) Correlation of attention maps with neuritic plaques.
F IGURE 5 Visualization of correlations between
model attention scores and post-mortem histology.
We obtained region-specific pathology grades of
amyloid β , neurofibrillary tangles and neuritic plaques
on deceased ADNI and FHS participants (n = 23). We
computed Spearman’s rank correlation coefficient
between model-derived attention scores and the
region-specific pathology grades and projected them
on the corresponding brain regions.

The above quantitative results were reflected in the
tSNE visualizations we presented in Fig. 3 of the base-
line model trained without DG (row 3 in Table 2) and
the model trained with our computational framework
(row 7 in Table 2). While (a) shows the MRI embed-
dings learned by the baseline model clustered by cohort,
(b) shows that our approach to aligning model atten-
tion with SHAP priors reduces cohort-specific cluster-
ing. In particular, the remarkable improvement in accu-
racy over the baseline on the AIBL cohort shows in the
dispersion ofMRI embeddings belonging to AIBL (green)
across the tSNE plot in (b) as opposed to clear clusters
highlighted by the red boxes in (a). These results indi-
cate that even though the SHAP priors used in training
were derived only from the source domain, they effec-
tively reduced the distributional variance across source
and target domains.

We further validated our method with gold standard
evidence of disease pathology and compared it against
the other methods, reporting the results in the form
of a correlation heat map in Fig. 4. We showed that
not only did our method correlate more strongly with
postmortem histology scores than other methods, but
also, our results were more consistent across the three
stains. Correlation of our method with pathology in
the amygdala, hippocampus, parahippocampal and am-
bient gyri was positive for amyloid β , neurofibrillary tan-
gles, and neuritic plaques. We then projected the com-
puted correlation values onto their corresponding brain
regions and displayed the projections (Fig. 5). Subfig-
ure (a) shows an improved correlation for our method
with pathology grades of amyloid β in the hippocampal
region and the middle frontal gyrus of the frontal lobe.
Correlation in these brain regions is also consistent with
pathology grades of neurofibrillary tangles and neuritic
plaques (subfigures (b) and (c)). As for the other evalu-
ated methods, shown in the first three columns of each
subfigure, the correlations were lower with pathology
grades in the hippocampus of amyloid β , neurofibrillary
tangles, and neuritic plaques, except for the baseline
method in subfigure (c) that had a positive - although
lower than ours - correlation. In addition, our method
showed the highest correlation in the parahippocam-

 . CC-BY 4.0 International licenseIt is made available under a 
who has granted medRxiv a license to display the preprint in perpetuity. 

 is the author/funder,(which was not certified by peer review)The copyright holder for this preprint 2023. 
this version posted September 25,; https://doi.org/10.1101/2023.09.22.23295984doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.22.23295984
http://creativecommons.org/licenses/by/4.0/


12 Lteif et al.

pal and ambient gyri with pathology grades of neuritic
plaques in subfigure (c). Our method demonstrated high
correlations with specific brain regions, notably the hip-
pocampal and parahippocampal areas, which were visu-
ally represented in the pre-computed AD-specific SHAP
priors (Fig. 2). These regions contributed positively to
model predictions of AD, indicating the effectiveness of
our technique in aligning model attention with estab-
lished knowledge regarding disease indicators. Such ob-
servations indicating improved model correlation with
regions that are well-known to be implicated with dis-
ease grounded our model predictions with biological ev-
idence.

5 | DISCUSSION

This work presents a computational framework for DG
that adds disease-driven interpretability to deep learn-
ing models for Alzheimer’s disease prediction on vol-
umetric MRI scans. While most of the existing meth-
ods focus on achieving high model performance on un-
seen data, they do not directly account for the under-
lying disease biology during model development. We
achieved this goal by refining the model’s attention to
focus on brain regions that are most associated with dis-
ease based on pre-computed feature contributions. In
such fashion, our method distinguishes itself by incor-
porating disease-driven interpretability into the training
process. The added interpretability can provide a better
understanding of the underlying disease mechanisms
and aid in the clinical decision-making process. We com-
pared the performance of our method with previously
published DG frameworks, and showed that our ap-
proach shows competitive performance while incorpo-
rating disease relevance into the model training process.
We confirmed the degree to which our attention-based
supervision strategy ultimately reflected disease biology
by comparing model attention in predefined brain re-
gions with postmortem neuropathology scores. Over-
all, our approach to creating a generalizable framework
complements other published work in the literature.

We observed that our model achieved consistent,

favorable performance on the test cohorts relative to
other DG frameworks. While extensive testing is re-
quired to confirm any modeling framework’s superiority
in accurate prediction of disease, it is worth noting that
model performance based on accuracy alone without
downstream evidence of correlation with a reference
standard may not be appealing in the context of medical
machine learning. As such, classifying persons with NC
from those who haveMCI or AD solely onMRIs is a clin-
ically challenging task, and often not part of routine clin-
ical neurology work-up. Neurologists use a spectrum of
patient data along with MRIs to assess a person’s cogni-
tive status. Nevertheless, our proposed framework has
utility in the objective interpretation of brain MRIs, and
broadly in the quantification of findings indicative of dis-
ease. Besides minimizing subjectivity, it also potentially
fills gaps in healthcare settings where there is a lack of
neuroradiology expertise.

Our study has a few limitations. Due to mem-
ory limitations, we resorted to offline computation of
the saliency maps based on correct predictions by the
trained baseline model. We also acknowledge that
SHAP prior computation is solely dependent on the
baseline model used, i.e., the quality of prior knowl-
edge and correctness of feature contributions extracted
from the model are directly correlated with model per-
formance. Also, it is possible that the offline computa-
tion and aggregation of class-specific SHAP maps may
have reduced instance-to-instance variability and mini-
mized radiologic artifacts, thereby facilitating model at-
tention on disease pathology. In addition, it is possible
that the model was able to capture the fine-grained na-
ture of disease markers due to our choice of the voxel-
wise L2 distance metric. We utilized this loss function
to increase the semantic similarity between model at-
tention and prior maps at the voxel level.

In conclusion, our work contributes to the growing
field of interpretable deep learning in medical imaging,
paving the way for more accurate and personalized diag-
noses of cognitive disorders. By highlighting the specific
brain regions that contribute most significantly to dis-
ease, our approach can provide valuable insight into dis-
ease mechanisms and aid in developing targeted inter-
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ventions. Furthermore, the disease-driven interpretabil-
ity of our framework can help build trust and under-
standing between clinicians and patients, which is cru-
cial for effective healthcare delivery.
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