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Abstract 16 

 17 

The role of gene-environment (GxE) interaction in disease and complex trait architectures is 18 

widely hypothesized, but currently unknown. Here, we apply three statistical approaches to 19 

quantify and distinguish three different types of GxE interaction for a given trait and E variable. 20 

First, we detect locus-specific GxE interaction by testing for genetic correlation (rg) < 1 across E 21 

bins. Second, we detect genome-wide effects of the E variable on genetic variance by leveraging 22 

polygenic risk scores (PRS) to test for significant PRSxE in a regression of phenotypes on PRS, 23 

E, and PRSxE, together with differences in SNP-heritability across E bins. Third, we detect 24 

genome-wide proportional amplification of genetic and environmental effects as a function of the 25 

E variable by testing for significant PRSxE with no differences in SNP-heritability across E bins. 26 

Simulations show that these approaches achieve high sensitivity and specificity in distinguishing 27 

these three GxE scenarios. We applied our framework to 33 UK Biobank traits (25 quantitative 28 

traits and 8 diseases; average N=325K) and 10 E variables spanning lifestyle, diet, and other 29 

environmental exposures. First, we identified 19 trait-E pairs with rg significantly < 1 (FDR<5%) 30 

(average rg=0.95); for example, white blood cell count had rg=0.95 (s.e. 0.01) between smokers 31 

and non-smokers. Second, we identified 28 trait-E pairs with significant PRSxE and significant 32 

SNP-heritability differences across E bins; for example, BMI had a significant PRSxE for 33 

physical activity (P=4.6e-5) with 5% larger SNP-heritability in the largest versus smallest 34 

quintiles of physical activity (P=7e-4). Third, we identified 15 trait-E pairs with significant 35 

PRSxE with no SNP-heritability differences across E bins; for example, waist-hip ratio adjusted 36 

for BMI had a significant PRSxE effect for time spent watching television (P=5e-3) with no 37 

SNP-heritability differences. Across the three scenarios, 8 of the trait-E pairs involved disease 38 

traits, whose interpretation is complicated by scale effects. Analyses using biological sex as the E 39 

variable produced additional significant findings in each of the three scenarios. Overall, we infer 40 

a significant contribution of GxE and GxSex effects to complex trait and disease variance. 41 

 42 

  43 
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Introduction 44 

 45 

Although gene-environment (GxE) interactions have long been thought to impact the 46 

genetic architecture of diseases and complex traits1–4, the overall contribution of these effects 47 

remains unclear. Previous studies have detected GxE at a limited number of specific loci5–7 48 

(including studies that associated genotype to phenotypic variance without knowing the 49 

underlying E variable8–12). Previous studies have also proposed variance components methods 50 

for detecting genome-wide contributions of GxE to complex trait heritability13–18, but these 51 

methods have not been applied at biobank scale across a broad range of traits. Thus, the overall 52 

contribution of GxE to trait architectures is currently unknown. In addition, the relative 53 

importance of different types of GxE (e.g., locus-specific GxE, genome-wide effects of E on 54 

genetic variance, genome-wide effects of E on both genetic and environmental variance) is 55 

currently unclear. Studies of GxSex interaction face similar challenges19–24. 56 

 57 

Here, we apply three statistical approaches to quantify and distinguish three different 58 

types of GxE interaction for a given trait and E variable. First, we detect locus-specific GxE 59 

interaction by testing for genetic correlation25 (rg) < 1 across E bins. Second, we detect genome-60 

wide effects of the E variable on genetic variance by leveraging polygenic risk scores26,27 (PRS) 61 

to test for significant PRSxE28,29 in a regression of phenotypes on PRS, E, and PRSxE, together 62 

with differences in SNP-heritability30–34 across E bins. Third, we detect genome-wide 63 

proportional amplification of genetic and environmental effects as a function of the E variable by 64 

testing for significant PRSxE with no differences in SNP-heritability across E bins. We analyze 65 

33 traits from the UK Biobank35 (25 quantitative traits and 8 diseases; average N=325K), 66 

quantifying the contributions of each type of GxE effect across 10 E variables spanning lifestyle, 67 

diet, and other environmental exposures, as well as contributions of GxSex effects. 68 

 69 

Results 70 

 71 

Overview of methods 72 

 73 

We aim to detect genome-wide GxE, i.e., GxE effects aggregated across the genome. We 74 

consider three potential scenarios that give rise to genome-wide GxE for a given trait and E 75 

variable (Figure 1a). In the first scenario (Imperfect genetic correlation), there is an imperfect 76 

genetic correlation across E bins due to different SNP effect sizes in different E bins. In the 77 

second scenario (Varying genetic variance), there are differences in SNP-heritability across E 78 

bins due to uniform amplification of SNP effect sizes across E bins; the environmental variance 79 

may either remain constant or vary across E bins. In the third scenario (proportional 80 

amplification), the genetic and environmental variance vary proportionately across E bins due to 81 

proportionate scaling of SNP effect sizes and environmental effect sizes across E bins, so that 82 

SNP-heritability remains the same across E bins. We conceptualize these three scenarios as 83 

acting at different levels in a hierarchy that leads from genetic variants to pathways to complex 84 

traits or disease (see Discussion). 85 

 86 

The three scenarios can be formalized under the following model: 87 

 88 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 18, 2024. ; https://doi.org/10.1101/2023.09.22.23295969doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.22.23295969
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3

�� � � �����

�

� � �������

�

� � 	�������

�

� 
� � �
���  , #�1�  

 89 

where ��  denotes the phenotype for individual �, ���  denotes the genotype of individual � at SNP 90 �, �� denotes the effect size of SNP i, ��  denotes SNP-specific GxE effects, ��  denotes the E 91 

variable value for individual �, 	 quantifies the amplification of genetic effects across E values, 92 
�  denotes environmental effects, and � quantifies the amplification of environmental effects 93 

across E values. In Scenario 1, ��  will be nonzero. In Scenario 2, 	 will be nonzero. In Scenario 94 

3, 	 and � will be nonzero and equal. 95 

 96 

In this study, we apply three statistical approaches (Figure 1b) to UK Biobank data to 97 

detect genome-wide GxE, analyzing 33 traits (25 quantitative traits and 8 diseases; average 98 

N=325K) and 10 environmental variables as well as biological sex. First, we detect Imperfect 99 

genetic correlation (Scenario 1) by estimating the genetic correlation of effect sizes between sets 100 

of individuals binned on their E variables using cross-trait LD Score regression25 (LDSC) 101 

(Methods). For non-binary E variables, we estimate the genetic correlation between the most 102 

extreme quintiles of the E variable; for binary E variables, we estimate the genetic correlation 103 

between individuals in each E bin. Second, we employ PRSxE regression28,29, defined as a 104 

regression of the phenotype on the PRS26,27 multiplied by the E variable across individuals, to 105 

detect both Varying genetic variance (Scenario 2) and Proportional amplification (Scenario 3) 106 

(Methods); we note that PRSxE regression is not sensitive to changes in environmental variance 107 

only (Methods). We use PRS computed by PolyFun-pred27 for all analyses involving PRS. We 108 

do not standardize the E variables, and we correct for main and interaction effects of several 109 

covariates (Methods). Finally, we distinguish between Scenario 2 and Scenario 3 by estimating 110 

the SNP-heritability within each E bin using BOLT-REML33 and testing for significant 111 

differences between E bins (most extreme quintiles for non-binary E variables; each bin for 112 

binary E variables).  113 

 114 

We assign a trait-E pair to Scenario 1 if it has a genetic correlation across E bins < 1 115 

(regardless of whether it differs in SNP-heritability or has a significant PRSxE regression term); 116 

we assign a trait-E pair to Scenario 2 if it has both a significant PRSxE regression term and a 117 

significant difference in SNP-heritability across E bins; finally, we assign a trait-E pair to 118 

Scenario 3 if it has a significant PRSxE regression term with no significant difference in SNP-119 

heritability across E bins (Figure 1c). We note that for some trait-E pairs, we detected both 120 

locus-dependent GxE (Scenario 1) and non-locus-dependent GxE (Scenario 2 or Scenario 3). In 121 

the Supplementary Note, we provide interpretations of test outcomes that do not correspond to 122 

exactly one of the three scenarios. We estimate the excess trait variance explained by genome-123 

wide GxE as follows. In Scenario 1, we transform the estimate of genetic correlation across E 124 

bins to the variance scale (Methods; Supplementary Note). In Scenario 2 and Scenario 3, we 125 

approximate the relative amount of trait variance explained by GxE effects (relative to the 126 

genetic variance) as the trait variance explained by PRSxE effects divided by the trait variance 127 

explained by the PRS; this approximation is valid under a model in which the PRSxE effects are 128 

proportional to the GxE effects (Methods). All reported variances are transformed to the liability 129 

scale for disease traits. We have released open-source software implementing the above 130 

approaches (see Code Availability), as well as their output from this study (see Data 131 

Availability). 132 
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 133 

Simulations 134 

 135 

We performed simulations of the three Scenarios to evaluate the properties of the three 136 

statistical approaches. We assigned individuals to one of two E bins and simulated genetic 137 

effects at 10,000 causal SNPs based on the Scenario and E bin. We simulated sample sizes 138 

specific to each statistical approach to match our real data analyses (see below). In Scenario 1, 139 

we set the SNP-heritability to 25% and varied the genetic correlation from 99% to 94%. In 140 

Scenario 2, we set the genetic correlation to 100%, set the SNP-heritability to 25% in one E bin, 141 

and varied the SNP-heritability from 26% to 30% in the other E bin. In Scenario 3, we amplified 142 

the (genetic and environmental components of) phenotypes in one E bin by a range of values 143 

from 1.025  to 1.1. In each Scenario, we report the proportion of significant tests (P<0.05, which 144 

is fairly similar to our significance threshold for real traits; see below) for each of our three 145 

approaches: Genetic correlation (N=67K individuals per E bin), PRSxE regression (training 146 

N=337K, testing N=49K), and SNP-heritability by E (N=67K individuals per E bin). Because 147 

linkage disequilibrium (LD) does not impact GxE effects, we simulated genotypes without LD. 148 

We adjusted the methods used in our simulations accordingly. For Genetic correlation, we used 149 

cross-trait LD score regression in the special case of no LD25. For PRSxE regression, we used a 150 

simple shrinkage estimator in the special case of no LD to compute PRS. For SNP-heritability by 151 

E, we estimated SNP-heritability using LD score regression in the special case of no LD36. 152 

Further details of the simulation framework are provided in the Methods section. 153 

 154 

In Scenario 1, the Genetic correlation approach reported a significant test in 93% of 155 

simulations when the true genetic correlation was 97% or smaller, whereas the PRSxE regression 156 

and SNP-heritability by E approaches were well-calibrated (Figure 2a and Supplementary 157 

Table 1). In Scenario 2, the PRSxE regression approach reported a significant test in 88% of 158 

simulations when the SNP-heritability difference was 4% or larger, and the SNP-heritability by E 159 

approach reported a significant test in more than 88% of simulations when the SNP-heritability 160 

difference was 2% or larger, whereas the Genetic correlation approach was well-calibrated 161 

(Figure 2b and Supplementary Table 1). In Scenario 3, the PRSxE regression approach 162 

reported a significant test in 88% of simulations when the proportional amplification was 1.075 163 

or larger, whereas the Genetic correlation and SNP-heritability by E approaches were well-164 

calibrated (Figure 2c and Supplementary Table 1). In null simulations (heritable trait with no 165 

GxE), all three statistical approaches were well-calibrated (Supplementary Figure 1). 166 

 167 

We compared our framework with GxEMM16, a variance components-based framework 168 

that implements two GxE tests: 1) a test for polygenic GxE under homoskedasticity (GxEMM-169 

Hom), and 2) a test for polygenic GxE under heteroskedasticity (GxEMM-Het). We note that 170 

GxEMM-Hom and GxEMM-Het do not precisely map to the 3 scenarios that we study here. In 171 

addition, because GxEMM is a variance components-based framework, it is currently unable to 172 

scale to biobank-sized datasets. We evaluated the performance of GxEMM on a sample size of 173 

10,000 individuals, as in the simulations of ref. 16. We evaluated our statistical approaches using 174 

matched sample sizes, with 5,000 individuals per binary E bin and 10,000 test individuals for 175 

PRSxE regression. We kept the training data set size the same as in our main simulations 176 

(N=337K). In Scenario 1, the GxEMM-Hom test reported a similar proportion of significant tests 177 

as the Genetic correlation approach, whereas the GxEMM-Het test reported roughly half as many 178 
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significant tests (Supplementary Figure 2). In Scenario 2, the GxEMM-Het test was less 179 

powerful than the PRSxE regression and SNP-heritability by E approaches, whereas the 180 

GxEMM-Hom test was well-calibrated (Supplementary Figure 2). In Scenario 3, the GxEMM-181 

Het test was less powerful than the PRSxE regression approach, whereas the GxEMM-Hom test 182 

was well-calibrated (Supplementary Figure 2). Thus, at sample sizes that permit computational 183 

tractability, GxEMM is generally less powerful than our framework (and cannot distinguish 184 

Scenario 2 and Scenario 3). 185 

 186 

Recognizing that “E variables” may be significantly heritable (see below), we tested 187 

whether E variables that are heritable and genetically correlated to the trait induce false positives 188 

in our PRSxE regression approach. We performed null simulations in which the E variable had 189 

SNP-heritability of 25% (matching the trait) and was 100% genetically correlated to the trait. We 190 

binned individuals based on the E variable and performed the PRSxE regression test. We 191 

determined that there was no inflation in test statistics (Supplementary Figure 3). Thus, the 192 

PRSxE regression is robust to E variables that are heritable and genetically correlated to the trait. 193 

 194 

Our framework also estimates the excess trait variance explained by GxE effects, beyond 195 

what is explained by additive effects (for brevity, we refer to this as variance explained). We 196 

determined that estimates of trait variance explained were accurate in each of Scenario 1 197 

(regression slope = 0.98; Supplementary Figure 4a), Scenario 2 (regression slope = 0.85; 198 

Supplementary Figure 4b), and Scenario 3 (regression slope = 1.05; Supplementary Figure 199 

4c). We note that in both Scenario 2 and Scenario 3, G effects are correlated with GxE effects, as 200 

a correlation5etweenen genetic variance (G2) and the E variable implies a correlation between G 201 

and GxE. Current variance components methods do not account for this correlation and may 202 

therefore produce biased estimates of variance explained by GxE; we have verified this in 203 

simulations (Supplementary Table 2). Here, we report the difference in variance explained by a 204 

model including an interaction term (PRS+PRSxE terms) over a base model (PRS only) that 205 

does not include an interaction term, which is robust to this correlation (Methods and 206 

Supplementary Figure 4).  207 

 208 

In summary, our simulations indicate that our statistical approaches attain high sensitivity 209 

and specificity in classifying trait-E pairs into the distinct scenarios of GxE considered here and 210 

produce accurate estimates of excess trait variance explained by GxE. 211 

 212 

Identifying gene-environment interactions across 33 complex traits/diseases and 10 E variables 213 

 214 

We analyzed individual-level data for N=384K unrelated European-ancestry individuals 215 

from the UK Biobank35. We selected 33 highly heritable (z-score for nonzero SNP-heritability36 216 

> 6) and relatively independent (squared genetic correlation25 < 0.5) traits and diseases 217 

(Supplementary Table 3). In addition, we selected 10 relatively independent E variables 218 

spanning lifestyle, diet, and other environmental exposures (r2 < 0.1; primarily from ref. 14; 219 

Supplementary Figure 5; see Methods). We note that these E variables are all significantly 220 

heritable, although the heritability tends to be low (mean SNP-heritability = 6%, max SNP-221 

heritability = 15%; Supplementary Table 4). We assessed statistical significance using a 222 

threshold of FDR<5% across traits and E variables for a given statistical test (see Methods); in 223 
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practice, this FDR threshold corresponded to a P-value threshold of �0.01, which is fairly 224 

similar to our simulations. 225 

 226 

Trait-E pairs assigned to Scenario 1 (Imperfect genetic correlation) are reported in Figure 227 

3a and Supplementary Table 5. We identified 19 trait-E pairs with genetic correlation 228 

significantly less than 1 (FDR<5%; average genetic correlation: 0.95), implicating 12 of 33 traits 229 

(including 11 quantitative traits and 1 disease) and 9 of 10 E variables tested. The implicated 230 

traits included 9 blood cell and biochemistry traits, as well as height, BMI, and asthma. On 231 

average, these interactions explained 0.30% of trait variance across all quantitative traits and 232 

0.19% of observed-scale variance across all diseases analyzed. The lowest genetic correlation 233 

significantly less than 1 was 0.85 (se=0.06) for asthma x time spent watching television, 234 

explaining 1.5% of trait variance. The significant GxE interaction for BMI and smoking status 235 

(explaining 0.4% of trait variance) was consistent with results from ref. 14. Trait-E pairs assigned 236 

to Scenario 2 (Varying genetic variance) are reported in Figure 3b and Supplementary Table 5. 237 

We identified 28 trait-E pairs with significant PRSxE interaction (FDR<5%) and a significant 238 

SNP-heritability by E test (FDR<5%), implicating 13 of 33 traits (including 6 quantitative traits 239 

and 7 diseases) and 9 of 10 E variables tested. On average, these interactions explained 0.13% of 240 

trait variance across all quantitative traits and 8.8% of observed-scale variance across all diseases 241 

analyzed; the latter value is highly relevant for prediction of disease risk on the observed scale 242 

but is unlikely to reflect liability-scale GxE variance (see below and Discussion). Because 243 

standard interaction tests can be anti-conservative due to unmodeled heteroskedasticity37, we 244 

repeated our PRSxE interaction analysis using Huber-White variance estimators38,39 (Methods). 245 

We determined that results were highly concordant with our primary PRSxE interaction analysis 246 

(mean Pearson correlation in p-values for interaction across trait-E pairs: 97%; Supplementary 247 

Table 6), suggesting that our findings are not driven by unmodeled heteroskedasticity. Trait-E 248 

pairs assigned to Scenario 3 (Proportional amplification) are reported in Figure 3c and 249 

Supplementary Table 5. We identified 15 trait-E pairs with significant PRSxE interaction 250 

(FDR<5%) but a non-significant SNP-heritability by E test (FDR<5%), implicating 11 of 33 251 

traits (all quantitative traits) and 9 of 10 E variables tested. On average, these interactions 252 

explained 0.17% of trait variance across all quantitative traits and 0% of observed-scale variance 253 

across all diseases analyzed.  254 

 255 

We analyzed matched quantitative and disease traits in order to assess whether the large 256 

observed-scaled variances for diseases in Scenario 2 were recapitulated for the quantitative traits. 257 

We matched three diseases (type 2 diabetes, hypercholesterolemia, hypertension) to highly 258 

genetically correlated quantitative traits (�� � 50%� (HbA1c, LDL, systolic blood pressure). 259 

First, for type 2 diabetes and HbA1c (�� � 0.66), of the 4 E variables assigned to Scenario 2 for 260 

type 2 diabetes (average observed-scale variance explained = 17% across 4 E variables; 261 

maximum of 18% for alcohol consumption), no E variable was assigned to Scenario 2 for HbA1c 262 

(Supplementary Table 7). Second, for hypercholesterolemia and LDL (�� � 0.71�, of the 5 E 263 

variables assigned to Scenario 2 for hypercholesterolemia (average observed-scale variance 264 

explained = 6.2% across 5 E variables; maximum of 6.6% for physical activity), only 1 E 265 

variable was assigned to Scenario 2 for LDL (average variance explained = 0.01% across 5 E 266 

variables; non-significant for physical activity) (Supplementary Table 7). Third, for 267 

hypertension and systolic blood pressure (�� � 0.80�, of the 2 E variables assigned to Scenario 2 268 

for hypertension (average observed-scale variance explained = 2.7% across 2 E variables; 269 
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maximum of 2.7% for time spent napping), no E variable was assigned to Scenario 2 for systolic 270 

blood pressure (Supplementary Table 7). Thus, the large observed-scaled variances for diseases 271 

in Scenario 2 were not recapitulated for the matched quantitative traits (see Discussion).  272 

  273 

We checked whether any trait-E pairs were assigned to more than one Scenario. We 274 

determined that 2 trait-E pairs were assigned to both Scenario 1 and Scenario 2 (BMI x alcohol 275 

consumption and BMI x Townsend deprivation index); 0 trait-E pairs were assigned to both 276 

Scenario 1 and Scenario 3; and 0 trait-E pairs were assigned to both Scenario 2 and Scenario 3 277 

(which is not possible based on their definition). We also identified 108 trait-E pairs with a 278 

significant SNP-heritability by E test but non-significant PRSxE interaction (Supplementary 279 

Table 8); our primary interpretation is that this is due to changes in environmental variance 280 

rather than GxE interaction (Methods), but we cannot exclude the possibility that this is due to 281 

GxE interaction that we have incomplete power to detect. 282 

 283 

Examples of quantitative trait-E pairs assigned to each scenario are reported in Figure 4 284 

and Supplementary Table 9. First, white blood cell count x smoking status was assigned to 285 

Scenario 1 (Figure 4a). The Genetic correlation approach estimated a genetic correlation 286 

between smokers and non-smokers of 0.95, which is significantly less than 1 (P=6.7e-7; FDR < 287 

5%), explaining 0.5% of the variance of white blood cell count (vs. SNP-heritability of 30%). On 288 

the other hand, the PRSxE regression approach (P=0.46) and SNP-heritability x E approach 289 

(P=0.39) produced non-significant results. We note that smokers had 0.09 s.d. higher mean white 290 

blood cell count than non-smokers (T-test P<1e-16), as previously reported40. Second, BMI x 291 

physical activity was assigned to Scenario 2 (Figure 4b). The PRSxE regression approach 292 

(P=4.6e-5) and SNP-heritability x E approach (SNP-heritability of 0.38 for highest E quintile vs. 293 

0.33 for lowest E quintile; P<7e-4) both produced significant results (FDR < 5%), explaining 294 

0.16% of the variance of BMI (vs. SNP-heritability of 33%). On the other hand, the genetic 295 

correlation approach produced a non-significant result (P=0.43). We note that BMI and physical 296 

activity were correlated (r=-0.09, P<1e-16) as previously reported41. Third, WHRadjBMI x time 297 

spent watching television (TV time) was assigned to Scenario 3 (Figure 4c). The PRSxE 298 

regression approach produced a significant result (P=5e-3; FDR < 5%), explaining 0.95% of the 299 

variance of WHRadjBMI. On the other hand, the genetic correlation approach (P=0.29) and 300 

SNP-heritability x E approach (P=0.08) produced non-significant results. We note that 301 

WHRadjBMI and TV time were correlated (r = 0.08, P<1e-16). 302 

 303 

In summary, we detected GxE interaction in each of the three scenarios across the 33 304 

traits and 10 E variables analyzed. We estimate that these GxE effects explain 0.6% of trait 305 

variance across all quantitative traits and 9.0% of observed-scale variance across all diseases 306 

analyzed, compared to average SNP-heritability of 29% (s.e. 3% across traits). 307 

 308 

Identifying gene-sex interactions across 33 diseases/complex traits 309 

 310 

We analyzed the same 33 traits for GxSex interaction using the same 3 statistical 311 

approaches. Traits assigned to Scenario 1 (Imperfect genetic correlation) are reported in Figure 312 

5a and Supplementary Table 10. We identified 18 quantitative traits and 4 diseases with cross-313 

sex genetic correlation significantly less than 1 (FDR<5%; average genetic correlation: 0.92), 314 

consistent with previous results22. On average, these interactions explained 2.6% of trait variance 315 
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across all quantitative traits and 2.4% of observed-scale variance across all diseases analyzed. 316 

The lowest significant genetic correlation was 0.66 for WHRadjBMI22, explaining 17% of trait 317 

variance. Traits assigned to Scenario 2 (Varying genetic variance) are reported in Figure 5b and 318 

Supplementary Table 10. We identified 6 quantitative traits and 6 diseases with significant 319 

PRSxSex interaction (FDR<5%) and a significant SNP-heritability by Sex test (FDR<5%). On 320 

average, these interactions explained 0.13% of trait variance across all quantitative traits and 321 

5.6% of observed-scale variance across all diseases analyzed; the latter value is highly relevant 322 

for prediction of disease risk on the observed scale but is unlikely to reflect liability-scale GxSex 323 

variance (see below and Discussion). Traits assigned to Scenario 3 (Proportional amplification) 324 

are reported in Figure 5c and Supplementary Table 10. We identified 8 quantitative traits and 0 325 

diseases with significant PRSxSex interaction (FDR<5%) but a non-significant SNP-heritability 326 

by Sex test (FDR<5%). On average, these interactions explained 0.06% of trait variance across 327 

all quantitative traits (a very small contribution) and 0% of observed-scale variance across 328 

diseases analyzed. Of the 30 traits implicated across three scenarios, we identified 7 traits 329 

assigned to both Scenario 1 and Scenario 2, and 5 traits assigned to both Scenario 1 and Scenario 330 

3 (Supplementary Table 10). We also identified 2 traits with a significant SNP-heritability x 331 

Sex test but non-significant PRSxSex interaction (Supplementary Table 11); our primary 332 

interpretation is that this is due to changes in environmental variance rather than GxSex 333 

interaction (Methods).  334 

 335 

We again analyzed matched quantitative and disease traits to assess whether the large 336 

observed-scaled variances for diseases in Scenario 2 were recapitulated for the quantitative traits.  337 

First, for type 2 diabetes and HbA1c (�� � 0.66), type 2 diabetes was assigned to Scenario 2 338 

(observed-scale variance explained = 15%), but HbA1c was not assigned to Scenario 2 339 

(Supplementary Table 12). Second, for hypercholesterolemia and LDL (�� � 0.71�, 340 

hypercholesterolemia was assigned to Scenario 2 (observed-scale variance explained = 5.9%), 341 

and LDL was also assigned to Scenario 2 but with much lower variance explained (0.56%) 342 

(Supplementary Table 12). Third, for hypertension and systolic blood pressure (�� � 0.80�, 343 

hypertension was assigned to Scenario 2 (observed-scale variance explained = 2.5%), and 344 

systolic blood pressure was also assigned to Scenario 2 but with much lower variance explained 345 

(0.50%) (Supplementary Table 12). Thus, the large observed-scaled variances for diseases in 346 

Scenario 2 were not recapitulated for the matched quantitative traits (see Discussion).  347 

 348 

Examples of quantitative traits with significant GxSex assigned to each Scenario are 349 

reported in Figure 6 and Supplementary Table 13. First, neuroticism score was assigned to 350 

Scenario 1 (Figure 6a). The Genetic correlation approach estimated a cross-sex genetic 351 

correlation of 0.90, which is significantly less than 1 (P=3.5e-9; FDR < 5%), explaining 5.0% of 352 

the variance of neuroticism score. On the other hand, the PRSxSex regression approach (P=0.58) 353 

and SNP-heritability by Sex approach (P=0.45) produced non-significant results. We note that 354 

males had lower prevalence of neuroticism than females (1.6% vs. 2.3% in top score for 355 

neuroticism, P<1e-16), as previously reported42. Second, systolic blood pressure was assigned to 356 

Scenario 2 (Figure 6b). The PRSxSex regression approach (P=3.8e-5) and SNP-heritability by 357 

Sex approach (SNP-heritability of 32% for males and 27% for females; P=2e-15) both produced 358 

significant results (FDR < 5%), explaining 0.14% of the variance of systolic blood pressure (vs. 359 

SNP-heritability of 28%). In addition, the genetic correlation approach produced a significant 360 

result (P=7e-5), explaining 2.5% of the variance of systolic blood pressure (Scenario 1); this 361 
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implies that multiple types of GxSex interaction impact systolic blood pressure. We note that 362 

males had higher systolic blood pressure than females (P<2e-16), as previously reported43. Third, 363 

HDL cholesterol was assigned to Scenario 3 (Figure 6c). The PRSxSex regression approach 364 

produced a significant result (P<2e-16; FDR < 5%), explaining 0.4% of the variance of HDL 365 

cholesterol. On the other hand, the SNP-heritability by Sex approach (P=0.09) was not 366 

significant. However, the genetic correlation approach estimated a cross-sex genetic correlation 367 

of 0.93, which is significantly less than 1 (P=5e-6; FDR < 5%), explaining 3.5% of the variance 368 

of HDL cholesterol (Scenario 1); this implies that multiple types of GxSex interaction impact 369 

HDL cholesterol. We note that males had 0.83 s.d. lower HDL cholesterol than females (P<1e-370 

16). 371 

 372 

In summary, we detected GxSex interaction in each of the three scenarios across the 33 373 

traits analyzed. We estimate that these GxSex effects explain 2.8% of trait variance across all 374 

quantitative traits and 8.0% of observed-scale variance across all diseases analyzed, compared to 375 

average SNP-heritability of 29% (s.e. 3%).  376 

 377 

Discussion 378 

 379 

We have applied three statistical approaches to detect, quantify, and distinguish the genome-380 

wide contributions of three different types of GxE interaction (Figure 1a) across 33 UK Biobank 381 

traits, analyzing 10 E variables spanning lifestyle, diet, and other environmental exposures as 382 

well as biological sex. We determined that GxE interactions (involving these E variables) and 383 

GxSex interactions each explained a significant fraction of phenotypic variance, representing an 384 

appreciable contribution to trait architectures. It is possible that GxE interactions involving E 385 

variables not studied here could explain even more phenotypic variance. However, the much 386 

higher (observed-scale) variance explained by GxE and GxSex effects (in Scenario 2) for disease 387 

traits than for quantitative traits is complicated by scale effects (see below). 388 

 389 

Our finding of distinct explanations underlying GxE interactions (Figure 1a) motivates a 390 

unified model consistent with this finding. We propose a model in which GxE occurs at different 391 

levels of a hierarchy that leads from genetic variants to pathways to complex traits or disease 392 

(Supplementary Figure 6). In this model, Scenario 1 (Imperfect genetic correlation) occurs 393 

when an E variable modifies the effects of individual variants (or sets of variants), differentially 394 

impacting different parts of the genome; Scenario 2 (Varying genetic variance) occurs when an E 395 

variable modifies all of the pathways underlying genetic risk, uniformly impacting genetic 396 

variance; and Scenario 3 (Proportional amplification) occurs when an E variable modifies all 397 

aspects of trait biology, proportionately impacting both genetic and environmental variance. 398 

Under this model, an E variable can modify any point along the hierarchy from genetic variants 399 

to pathways to complex traits or disease. Further investigation and validation of this model is a 400 

direction for future research. 401 

 402 

Our study represents an advance over previous studies investigating genome-wide GxE. 403 

First, we distinguish three different types of GxE interaction: Imperfect genetic correlation, 404 

Varying genetic variance, and Proportional amplification (Figure 1a; also see Supplementary 405 

Figure 6). Second, most variance components methods for detecting genome-wide GxE13–15,17,18 406 

cannot detect genome-wide GxE unless SNP-heritability varies across E bins (Scenario 2). An 407 
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exception is GxEMM16, which detects other types of GxE by explicitly modeling genetic and 408 

environmental variance that varies with the E variable; however, GxEMM is less 409 

computationally tractable and generally less powerful than our framework (Supplementary 410 

Figure 2). Third, variance components methods that assume independence between G and GxE 411 

effects are susceptible to bias if G and GxE effects are correlated, but our statistical approaches 412 

are robust to this possibility (Supplementary Figure 4. Fourth, previous methods have not been 413 

applied at biobank scale across a broad range of traits; the statistical approaches that we propose 414 

are computationally scalable to very large data sets (see Methods), enabling our biobank-scale 415 

analyses implicating 60 trait-E pairs with significant GxE and 30 traits with significant GxSex. 416 

Fifth, a recent study reported that GxSex acts primarily through amplification24 (Scenario 2 and 417 

Scenario 3), but our analyses of GxSex determined that Imperfect genetic correlation (Scenario 418 

1) explained a larger proportion of trait variance than amplification; in addition, ref. 24 did not 419 

estimate contributions to trait variance and did not distinguish between Scenario 2 and Scenario 420 

3, as we do here. 421 

 422 

Our study has several implications. First, our results narrow the search space of traits and E 423 

variables for which genome-wide association studies of GxE interactions are most likely to be 424 

fruitful; in particular, trait-E pairs with substantial trait variance explained by Scenario 1 425 

(Imperfect genetic correlation) (Supplementary Table 5) should be prioritized for locus-specific 426 

analyses, in preference to trait-E pairs with trait variance explained by Scenario 2 or Scenario 3. 427 

Second, our results imply that there is broad potential to improve polygenic risk scores (PRS) by 428 

leveraging information on E variables in training and/or test samples44. Third, there is broad 429 

potential to prioritize individuals for which a lifestyle intervention to modify an E variable would 430 

be most effective based on their genetic profile. Fourth, previous work has suggested that 431 

population-specific causal effect sizes in functionally important regions may be caused by 432 

GxE45, motivating efforts to partition the imperfect genetic correlations across E bins that we 433 

have identified across functionally important regions. Fifth, the significant contribution of GxE 434 

to trait architectures—even when restricting to the limited set of E variables that we analyzed 435 

here—implicates GxE effects as a factor in “missing heritability”, defined as the gap between 436 

estimates of SNP-heritability30 and estimates of narrow-sense heritability46 (e.g. from twin 437 

studies47); although GxE effects are not included in the definition of narrow-sense heritability, 438 

they can inflate twin-based estimates of narrow-sense heritability, analogous to GxG effects48. 439 

All of these implications motivate directions for future research. 440 

 441 

Our study has several limitations. First, our analyses assess GxE and GxSex interaction for 442 

disease traits on the observed scale (and then transform estimates to the liability scale), 443 

consistent with prevailing approaches for variance component analysis of disease traits31–34. Our 444 

analyses of matched quantitative and disease traits (Supplementary Table 7, Supplementary 445 

Table 12) strongly suggest that the much higher (observed-scale) variance explained by GxE and 446 

GxSex effects (in Scenario 2) for disease traits than for quantitative traits (Supplementary 447 

Table 14; also see Figure 3b and Figure 5b) is a consequence of analyzing disease traits on the 448 

observed scale, and unlikely to reflect liability-scale GxE or GxSex variance; directly modeling 449 

GxE or GxSex interaction on the liability scale50,51 is an important direction for future research. 450 

Nonetheless, these observed-scale interactions are likely to be highly relevant for prediction of 451 

disease risk on the observed scale. Second, the E variables that we analyzed comprise an 452 

extremely limited subset of the set of E variables that may contribute to GxE effects (and their 453 
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values may be subject to measurement error); even when GxE effects are detected, the 454 

implicated E variable may be tagging an unmeasured causal E variable with larger GxE effects. 455 

Third, our use of PRSxE regression to detect GxE is limited by the accuracy of PRS and may 456 

require larger training sample sizes (enabling more accurate PRS) to be well-powered, 457 

particularly for less heritable traits. The average accuracy of the PRS across traits in the held-out 458 

set of 49K individuals was 9.2%, as measured by r2 between predicted and true phenotypes 459 

(Supplementary Table 3). Fourth, our estimates of the trait variance explained by GxE effects 460 

detected via PRSxE analyses assume that PRSxE effects extrapolate linearly to GxE effects 461 

(Methods); we believe that this is a reasonable assumption, but we cannot formally exclude the 462 

possibility that genetic effects captured by PRS interact differently with an E variable than 463 

genetic effects not captured by PRS. Fifth, most of the E variables that we study are weakly 464 

heritable (Supplementary Table 4), raising the possibility of GxG (rather than GxE) effects; we 465 

consider GxG to be an unlikely explanation given the E variables’ low SNP-heritabilities, but we 466 

cannot formally exclude this possibility. Sixth, our use of PRSxE regression to detect GxE may 467 

be anti-conservative due to unmodeled heteroskedasticity37; however, we obtained nearly 468 

identical results using Huber-White variance estimators (also known as robust regression38,39) 469 

(Supplementary Table 6), suggesting that this does not impact our findings. We note that we 470 

observe many instances of differences in trait variance across E variables (Supplementary 471 

Table 8), but these alone are not indicative of GxE interactions. Seventh, our use of PRSxE 472 

regression to detect GxE may produce false positives if there is a nonlinear relationship between 473 

E and trait value; we included an E2 term in PRSxE regressions to ameliorate this possibility but 474 

determined that inclusion or exclusion of the E2 term had little impact on our results 475 

(Supplementary Table 15), suggesting that nonlinear effects do not greatly impact our findings. 476 

Eighth, we have analyzed British-ancestry samples from the UK Biobank, but an important 477 

future direction is to extend our analyses to cohorts of diverse genetic ancestry52,53, which may 478 

differ in their distributions of E variables, tagging of causal E variables by measured E variables, 479 

and/or causal GxE effects (analogous to differences in main G effects45,54). Eighth, we do not 480 

analyze GxAge interaction (and we note the limited age variation in UK Biobank samples; age = 481 

55 � 8 years), but we highlight GxAge interaction and longitudinal data as important directions 482 

for future research51,55,56. Despite these limitations, our work quantifies and distinguishes three 483 

different types of GxE interaction across a broad set of traits and E variables. 484 

 485 

Code Availability 486 

 487 

Cross trait LDSC: https://github.com/bulik/ldsc 488 

BOLT-LMM: https://alkesgroup.broadinstitute.org/BOLT-LMM/downloads/ 489 

PRSxE regression: Will be added upon publication. 490 

Code to reproduce analysis: Will be added upon publication. 491 

 492 

Data Availability 493 

 494 

We will make the results of the three statistical approaches we use here publicly available upon 495 

publication.  496 

 497 
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 506 

Methods 507 

 508 

Data sources and preprocessing 509 

 510 

We used data from the UK Biobank in all our analyses. For polygenic score-based analyses that 511 

required a training and testing dataset, we used a set of 337K unrelated white British individuals 512 

for training27. For testing, we used a set of 49K European individuals who are unrelated to each 513 

other and to the training cohort27. Note that while “testing” typically refers to a setting where the 514 

ultimate goal is to assess PRS accuracy, here we use it to refer to the set of samples we in which 515 

we run a regression of phenotype on PRSxE and covariates. We used polygenic scores generated 516 

by ref. 27. We used the linear scoring function in Plink v1.957 to compute polygenic scores in the 517 

set of 49K test individuals.  518 

 519 

Choice of traits and environmental variables 520 

 521 

We chose a set of 33 traits with SNP heritability Z scores > 6 and squared genetic correlation less 522 

than 0.5 (Supplementary Table 3, Supplementary Table 4). We chose a set of 10 E variables, 523 

including 5 previously analyzed E variables from ref. 14 and 5 additional E variables (Air 524 

pollution, time spent napping, sleeplessness, Diet, wheat consumption) (Supplementary Figure 525 

5).  526 

 527 

To compute the Diet variable, we performed PCA on a covariance matrix consisting of several 528 

diet variables: cooked vegetable intake, salad intake, fresh fruit intake, processed meat intake, 529 

poultry intake, beef intake, pork intake, coffee intake (Supplementary Figure 7). We used the 530 

function prcomp in R and extracted the first PC. 531 

 532 

Genetic correlation approach to detecting GxE 533 

 534 

We performed GWAS using BOLT-LMM26 within bins of E variables. Then, we used bivariate 535 

LD Score regression36 to estimate the genetic correlation between the top and bottom quintiles of 536 

E variables; for binary E variables, we estimated the genetic correlation between individuals in 537 

each E bin. We used imputed SNPs with MAF > 0.01% and used the --no-intercept option to 538 

increase our power. Computed a Z score testing against the null hypothesis that the genetic 539 

correlation is 1 as: 540 

 541 

� �  1  ��!"# $  

 542 

PRSxE regression approach to detecting GxE 543 
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 544 

Our PRSxE regression takes the following form:  545 

 546 % � &'( � � � &'( ) � � *#  
 547 

where Y is the trait value, PRS is the polygenic score for the trait (see Data sources and 548 

preprocessing), E is the environment variable, and C is a set of covariates. For all analyses, we 549 

correct for the following covariates: age, sex, 10 genetic PCs computed in the held-out set, the 550 

squared E variable: E2 , age*sex, E*age, E*sex. We carried out this regression using the Python 551 

package statsmodels v0.14. We also compute a ‘base’ model, which is the same regression 552 

without the PRSxE term. We use the p-value associated with the PRSxE term in the interaction 553 

model to assess significance.  554 

 555 

To test whether our results were driven by heteroskedasticity, we performed the same analysis 556 

using robust standard errors as implemented in statsmodels using the ‘H1’ covariance matrix 557 

(Supplementary Table 12). 558 

 559 

We note the PRSxE regression test is not expected to produce a significant finding if the 560 

environmental variance changes as a function of E but the genetic variance does not change as a 561 

function of E, because the PRS does not measure changes in environmental variance. 562 

 563 

SNP-heritability by E approach to detecting GxE 564 

 565 

We used BOLT-REML33 v2.3.6 to compute heritability in bins of E variables.  566 

To test for a significant difference in heritability between two bins, we computed a Z score as: 567 

  568 

� �  +�
�  +�

�

,-�
� � -�

�
 

where 1 and 2 index the E bins. 569 

 570 

False Discovery Rate (FDR) control 571 

 572 

We chose a 5% FDR control separately for each statistical approach (Genetic correlation, PRSxE 573 

regression, and SNP-heritability by E) using the qvalue R package58. We ensured our one-sided 574 

test against a null genetic correlation of 1 did not produce a skewed P-value distribution, which 575 

could indicate improper choice of a one-sided test. We chose to control the FDR separately for 576 

GxE and GxSex analyses because we expected the proportional of truly null tests to be different 577 

between GxE and GxSex. In particular, we expected to find more truly positive GxSex tests 578 

given previous studies22,24. Consistent with this, we found the qvalue procedure for estimating 579 

the proportion of truly null hypotheses failed in the GxSex analyses and we had to set the 580 

proportion of true null tests (.�) to 1, which is equivalent to the Benjamini-Hochberg 581 

procedure59. Story and Tibshirani60 argue this is much more conservative than the qvalue 582 

procedure. Our choice to control each E variable together is conservative, but accounts for non-583 

zero correlations between E variables.  584 

 585 

Classification of trait-E pairs into Scenarios 586 
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 587 

We combined the results of the three statistical approaches to classify trait-E pairs into 3 distinct 588 

scenarios. We classified trait-E pairs into Scenario 1 if the Genetic correlation was significantly 589 

less than 1. We classified trait-E pairs into Scenario 2 if the SNP-heritability by E and PRSxE 590 

regression approaches were significant. We classified trait-E pairs into Scenario 3 if the PRSxE 591 

regression approach was significant but the SNP-heritability by E approach was not significant. 592 

It is possible that the SNP-heritability by E approach is significant but the PRSxE regression 593 

approach is not significant, which should not be viewed as an instance of GxE because the SNP-594 

heritability difference may be driven by changes to the environmental variance rather than the 595 

genetic variance. In addition, it is possible for trait-E pairs to be classified into both Scenario 1 596 

and Scenario 2, or both Scenario 1 and Scenario 3, but not both Scenario 2 and Scenario 3 597 

because significance or non-significance of the SNP-heritability by E approach are mutually 598 

exclusive.  599 

 600 

Scalability of statistical approaches 601 

 602 

We consider the scalability of the three statistical approaches we use here. First, there is the 603 

computational cost of producing the input to our statistical approaches. For the genetic 604 

correlation test, this consists of running GWAS in bins of E variables. There are many scalable 605 

approaches for this, including BOLT-LMM26, regenie61, and fastGWA62. For PRSxE regression, 606 

this consists of computing PRS weights. There are many scalable approaches for this including 607 

BOLT-LMM26,  PRScs63, SBayesR64, and LDpred265. SNP-heritability by E does not require 608 

generating additional input. In these analyses, we use BOLT-LMM for GWAS, which has a 609 

runtime that scales with O(MN), where M is the number of SNPs and N is the sample size of 610 

individuals. For PRSxE regression we use weights computed by Weissbrod et al 202227, who did 611 

not publish an analysis of runtime. Second, there is the computational cost of the statistical 612 

approaches themselves. For genetic correlation, we use cross-trait LDSC25, which runs in 613 

seconds (< 30s for the SNP sets that we analyze here). For PRSxE regression, we use a multiple 614 

regression, which also runs in seconds (< 30s for the sample size that we analyze here). For SNP-615 

heritability by E, we use BOLT-REML33, which has a runtime that scales with O(MN). 616 

 617 

Simulations 618 

 619 

To test the power of each approach, we simulated 1,000 replicates of each scenario. In all cases, 620 

we simulated two E bins and varied the parameters according to the respective generative 621 

models. For each replicate, we simulated M=10,000 causal SNPs with effect sizes drawn from a 622 

specified distribution. We generated unlinked genotypes with binomial sampling from an allele 623 

frequency of 0.5.  624 

 625 

We simulated causal effect sizes for each scenario as follows: 626 

 627 

Scenario 1 628 

/�� ��
0 1 2 34005 , 6-�

�/8 �/8�/8 -�
�/89: 

 629 
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We simulated -�
� � 0.25 and varied � to produce genetic correlations 630 �� < =1, 0.99, 0.98, 0.97, 0.96, 0.95, 0.94@. 631 

 632 

Scenario 2 633 

/�� ��
0 1 2 34005 , 6 -�,�

� /8 -��-��/8-��-��/8 -�,�
� /8 9: 

 634 

 635 

We simulated -��
� =0.25 and set -��

�  to produce a difference in heritability: 636 =0, 0.01, 0.02, 0.03, 0.04, 0.05@ . Our choice of covariance ensures the genetic correlation is one. 637 

 638 

Scenario 3 639 

 640 

/�� ��
0 1 2 34005 , 6-�

�/8 - �
� /8- �

� /8 - �
� /89: 

 641 

We set -�
� � 0.25. To simulate proportional amplification, we multiplied the phenotypes for 642 

individuals in environment 2 by a constant: =1.0,1.025,1.05,1.075,1.1@. 643 

 644 

Using the simulated causal effect sizes, we simulated GWAS effect size estimates as: 645 

��
B 1 2���, �1  +�

��/82 � 

 646 ��
B 1 2���, 	�
��

��/�

�
) 647 

 648 

where 1 and 2 index the environments and N denotes GWAS sample size. We estimate +�
�  from 649 

the simulated causal effect sizes by first computing the C�statistic (C� D 2 ) �E�), then 650 

computing +�
� � �

�
�FC�  1G, where � denotes the mean computed over the independent 651 

SNPs25.  652 

We compute the genetic correlation as: 653 

�� � �E�
��E�

H ̂+�,�
� )  ̂+�,�

�

 

 654 

where T denotes the transpose. We compute standard errors for the estimates using a jackknife 655 

over SNPs, where we leave out one SNP at a time because they are independent. 656 

 657 

To simulate PRSxE, we first simulated causal effect sizes for 10,000 independent SNPs. Then, 658 

we compute PRS weights analytically as: 659 

 660 

���� � J +�
�

+�
� � 82K  �.L  
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 661 

This simple shrinkage estimator can be interpreted as the posterior mean causal effect size under 662 

a normal prior (in the special case of no LD), and is similar to the posterior mean causal effect 663 

size under a point-normal prior (in the special case of no LD) when the genetic architecture is 664 

highly polygenic66, as simulated here.  665 

 666 

We estimate +�
� without knowledge of the E bins, mimicking estimation of SNP-heritability 667 

across the 337K individuals; we estimate +�
� as the sum of squared standardized effect sizes 668 

(averaged across E bins). 669 

 670 

We also evaluated the performance of GxEMM in detecting GxE in Scenarios 1, 2, and 3. We 671 

followed the simulation framework in the original publication and simulated 1,000 causal SNPs 672 

and 10,000 individuals. We simulated a binary E variable and drew SNP effects according to 673 

each Scenario. We performed two tests within the GxEMM framework: 1) IID versus Hom, 674 

which tests for polygenic GxE under homoscedasticity, and 2) Free versus Hom, which test for 675 

polygenic GxE allowing for heteroskedasticity. We performed a Wald test as implemented in 676 

GxEMM and compared the point estimates of heritability in the free model to the simulated 677 

heritability in each of the environments. We performed 100 simulation replicates.  678 

 679 

To compare GxEMM with our tests, we simulated data under the same framework with matched 680 

sample sizes. Specifically, for genetic correlation and SNP-heritability x E, we simulated 5,000 681 

individual per E bin (total N=10,000). For PRSxE, we used a training set sample size of 337K, 682 

which matches the real data, and a held out set of N=10,000.  683 

 684 

Estimation of trait variance explained 685 

 686 

For trait-E pairs in Scenario 1, we compute the trait variance explained by GxE as �1  ���/2 for 687 

binary E variables (where rg is the genetic correlation between the two E bins) (Supplementary 688 

Note) and 
�
��

��
 for continuous E variables (where rg is the genetic correlation between the top 689 

and bottom quintiles of E values). To obtain the transformation for continuous E variables, we 690 

used our simulations (see above) to examine the relationship between estimated genetic 691 

correlation and the variance explained by GxE. We found when we binned the E variable into 5 692 

bins and computed the genetic correlation between the top and bottom bins, the transformation 693 
�
��

��
 produced accurate estimates of the variance explained by GxE. For trait-E pairs in Scenarios 694 

2 or 3, we divide the variance explained by the PRSxE regression term by the variance explained 695 

by the PRS and multiply by the SNP-heritability. We verified these scaling procedures produce 696 

accurate estimates of the excess variance explained by GxE in simulations (Supplementary 697 

Figure S4). For Scenario 1, we simulated a continuous E variable with mean 0 and variance 1 698 

for 337K individuals. We simulated main genetic effects drawn from a normal distribution with 699 

mean 0 and variance 0.25 and environment interaction effects from a normal distribution with 700 

mean 0 and variance across a range of parameters (1e-1 to 1e-5) for 5,000 SNPs. We binned 701 

individuals into 5 bins and ran a GWAS in the top and bottom bins and compute the genetic 702 

correlation between the bins. Then, we scaled the estimates according to the formula above 703 

(Supplementary Figure S4a). For Scenarios 2 and 3, we simulated 1,000 causal SNPs from a 704 

normal distribution with mean 0 and variance 0.25. We simulated a continuous E variable with 705 
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mean 0 and variance 1 for 49K individuals. We set the amplification parameter to 0.1 and 706 

generated phenotypes according to Eq. 1 (Overview of methods). We performed GWAS and 707 

estimated PRS weights as in the Simulations section. Then, we ran the PRSxE test and computed 708 

the variance explained. We then compared this to the true variance explained (Supplementary 709 

Figure S4b, S4c). This scaling assumes that PRSxE effects linearly extrapolate to GxE effects. 710 

We do not use the estimates of differences in SNP-heritability by E to estimate the variance 711 

explained by GxE. When reporting average variance explained per trait, we computed the R2 for 712 

each trait using a model including all marginally significant (FDR < 5%) interaction terms for 713 

that trait (Supplementary Table 14). 714 
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 715 

Figure 1. Overview of 3 GxE Scenarios and statistical approaches to detect and distinguish 716 

between them. (a) Relative values of genetic (blue) and environmental (orange) variance in each 717 

Scenario. (b) Statistical approaches to detect and distinguish between each Scenario. (c) Flow 718 

chart for classifying results into Scenarios. 719 
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 720 

Figure 2. Detecting and distinguishing between 3 Scenarios of GxE interaction in 721 

simulations. Rows denote 3 Scenarios (1-3), and columns denote 3 statistical approaches. (a) 722 

Proportion of significant tests for Scenario 1 (Imperfect genetic correlation) across 3 statistical 723 

approaches. (b) Proportion of significant tests for Scenario 2 (varying genetic variance) across 3 724 

statistical approaches. (c) Proportion of significant tests for Scenario 3 (proportional 725 

amplification) across 3 statistical approaches. Error bars denote standard deviations across 100 726 

simulation replicates. Numerical results are reported in Supplementary Table 1. 727 

 728 
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 729 

Figure 3. Detecting, quantifying, and distinguishing between 3 Scenarios of GxE 730 

interaction across 33 traits and 10 E variables. Traits are listed on the y-axis and estimates of 731 

excess variance explained by GxE are reported on the x-axis. Only significant results are 732 

reported (FDR < 5% across traits and E variables, computed separately for each Scenario). For 733 

traits with multiple significant E variables in a given Scenario, results for each significant E 734 

variable are reported separately using bars with smaller thickness. Disease traits are denoted with 735 

black dots. (a) Results for trait-E pairs in Scenario 1: Imperfect genetic correlation. (b) Results 736 

for trait-E pairs in Scenario 2: Varying genetic variance; we note that BMI has significant GxE 737 

for Townsend deprivation (red), physical activity (purple), and alcohol consumption (black). (c) 738 

Results for trait-E pairs in Scenario 3: Proportional amplification. Numerical results are reported 739 

in Supplementary Table S5.  740 
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 741 

Figure 4. Examples of 3 Scenarios of GxE interaction. (a) White blood cell count x smoking 742 

status is consistent with Scenario 1: Imperfect genetic correlation. (b) BMI x physical activity is 743 

consistent with Scenario 2: Varying genetic variance. (c) Waist-to-hip ratio adjusted for BMI x 744 

Time spent watching TV is consistent with Scenario 3: Proportional amplification. Numerical 745 

results are reported in Supplementary Table S8. 746 

 747 

 748 

 749 
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 750 

Figure 5. Detecting, quantifying, and distinguishing between 3 Scenarios of GxSex 751 

interaction across 33 traits. Traits are listed on the y-axis and estimates of excess variance 752 

explained by GxSex are reported on the x-axis. Only significant results are reported (FDR < 5% 753 

across traits, computed separately for each Scenario). Disease traits are denoted with black dots. 754 

(a) Results for traits in Scenario 1: Imperfect genetic correlation. (b) Results for traits in Scenario 755 

2: Varying genetic variance. (c) Results for traits in Scenario 3: Proportional amplification. 756 

Numerical results are reported in Supplementary Table S9.  757 

 758 

 759 
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 760 

Figure 6. Examples of 3 Scenarios of GxSex interaction. (a) Neuroticism score x Sex is 761 

consistent with Scenario 1: Imperfect genetic correlation. (b) Systolic blood pressure x Sex is 762 

consistent with Scenario 1 and Scenario 2. (c) HDL Cholesterol x Sex is consistent with Scenario 763 

1 and Scenario 3. Numerical results are reported in Supplementary Table S11. 764 

  765 
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 908 

Supplementary Material 909 

 910 

 911 

Figure S1 Results of 3 statistical approaches for detecting GxE in null simulations with no 912 

GxE. (a) Proportion of significant tests for genetic correlation across 3 scenarios. (b) Proportion 913 

of significant tests for PRSxE regression across 3 scenarios. (c) Proportion of significant tests for 914 

SNP-heritability by E across 3 scenarios. Error bars denote standard deviations across 100 915 

simulation replicates.  916 

 917 

 918 

 919 

Figure S2 Comparison of three statistical approaches for detecting GxE to ExEMM in 920 

simulations. a) Scenario 1 with varying true genetic correlation across E, b) Scenario 2 with 921 

varying heritability in the second environment, c) Scenario 3 with phenotypic amplification 922 

across E bins.  923 
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 925 

Figure S3 Null simulations of a heritable and genetically correlated E variable. We 926 

simulated an E variable that is 100% genetically correlated to the phenotype with the same 927 

heritability (h2=25%). Each point is the result of a PRSxE regression test from a single 928 

simulation (N=100 simulations). We find no inflation of the test statistic under this null model. 929 

 930 

 931 

Figure S4 Accuracy of estimates of excess trait variance explained by GxE interaction in 932 

simulations. a) genetic correlation in Scenario 1, b) PRSxE in Scenario 2, and c) PRSxE in 933 

Scenario 3. For all plots, the black line corresponds to the y=x line and the x and y axes are both 934 

on a log scale. 935 
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 937 

Figure S5 Phenotypic correlations between E variables. X denotes non-significant 938 

comparisons at a p-value threshold of 0.05/11. 939 
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940 

Figure S6 Conceptual model linking three scenarios of GxE. Scenario 1 can be 941 

conceptualized as E variables modifying the effects of independent loci. Scenario 2 can be 942 

conceptualized as modifying pathways which aggregate the genetic effects of many loci, 943 

resulting in a scaling of genetic effects. Finally, Scenario 3 can be conceptualized as modifying 944 

the total genetic liability.  945 

 946 
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 947 

Figure S7 Phenotypic correlations of diet variables used to construct a composite Diet 948 

variable. Each cell in the heatmap shows the correlation between the measured diet variable on 949 

the X axis and the measured diet variable on the Y axis. All correlations are significant at a 950 

Bonferroni corrected p-value threshold of 0.05. 951 

 952 

Supplementary Table 1 Numerical results of Detecting and distinguishing between 3 953 

Scenarios of GxE interaction in simulations. For each statistical approach and scenario, we 954 

report the proportion of significant tests and standard deviation across replicates. 955 

 956 

Supplementary Table 2 Simulations showing bias induced by correlated G and GxE effects. 957 

We tested the impact of correlated G and GxE effects on variance component estimates when 958 

assuming that G and GxE effects are not correlated. We set the true variance of G effects to 0.1 959 

and the true variance of GxE effects to 0.1. We varied the correlation of the G and GxE effects 960 
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and simulated values for 100,000 individuals. We estimate the variance explained by G and GxE 961 

using ANOVA in R and report the bias (estimated effect - true effect).  962 

 963 

Supplementary Table 3 Description of the 33 UK Biobank traits analyzed. For each trait we 964 

report a detailed name, the GWAS sample size (including number of cases for binary traits), the 965 

SNP-heritability (liability scale for binary traits), and the PRS accuracy (R2; observed scale for 966 

binary traits).  967 

 968 

Supplementary Table 4 SNP-heritability of E variables studied here. We estimated SNP-969 

heritability using LDSC. For the composite diet variable, we report the SNP-heritability for each 970 

of the underlying variables that make up the composite diet variable. P-values test against a null 971 

of zero SNP-heritability.  972 

 973 

Supplementary Table 5 Numerical results of Detecting, quantifying, and distinguishing 974 

between 3 Scenarios of GxE interaction across 33 traits and 10 E variables. For each trait-E 975 

pair (A, B), we report (C) the excess variance explained by PRSxE and (D) the associated q 976 

value, (E) the difference in heritability between the top and bottom bins of the E variables and 977 

(F) the associated q value, (G) the genetic correlation between the top and bottom bin of the E 978 

variable and (H) the associated q value. We also assign each trait-E pair to the three scenarios (I, 979 

J, K). 980 

 981 

Supplementary Table 6 P-values using robust regression in PRSxE regression analysis 982 

compared to P-value from the main PRSxE regression analysis. For each trait-E pair, we 983 

report (A) p-value and (B) effect size for the main PRSxE regression and (C, D) using the Huber-984 

White variance estimator (robust regression). 985 

 986 

Supplementary Table 7 Comparison of disease and quantitative trait variance explained 987 

for Scenario 2 GxE. For 3 matched pairs of disease and quantitative traits, we compared the 988 

variance explained on the observed scale for diseases and quantitative trait scale for quantitative 989 

traits. 990 

 991 

Supplementary Table 8 SNP-heritability differences for trait-E pairs with no PRSxE 992 

interaction. For each trait-E pair with a significant difference in SNP-heritability and no 993 

significant PRSxE interaction we report the SNP-heritability difference and q-value at 5% FDR 994 

control.  995 

 996 

Supplementary Table 9 Numerical results of Examples of 3 Scenarios of GxE interaction. 997 

We report detailed results for 3 trait-E pairs reported in Figure 4. For each trait-E pair (A, B), we 998 

report (C) the genetic correlation and (D) p-value, (E) PRSxE regression coefficient and (F) p-999 

value, (G, H, I, J, K) SNP-heritability across bins of the E variable with associated standard error 1000 

and (L) the p-value testing for a difference between the top and bottom bins of the E variable. 1001 

 1002 

Supplementary Table 10 Numerical results of Detecting, quantifying, and distinguishing 1003 

between 3 Scenarios of GxSex interaction across 33 traits. For each trait  (A, B), we report 1004 

(C) the excess variance explained by PRSxSex and (D) the associated q value, (E) the difference 1005 

in heritability between males and females and (F) the associated q value, (G) the genetic 1006 
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correlation between males and females and (H) the associated q value. We also assign each trait-1007 

E pair to the three scenarios (I, J, K). 1008 

 1009 

Supplementary Table 11 SNP-heritability differences for trait-sex pairs with no PRSxSex 1010 

interaction. For each trait-sex pair with a significant difference in SNP-heritability and no 1011 

significant PRSxSex interaction we report the SNP-heritability difference and q-value at 5% 1012 

FDR control.  1013 

 1014 

Supplementary Table 12 Comparison of disease and quantitative trait variance explained 1015 

for Scenario 2 GxSex. For 3 matched pairs of disease and quantitative traits, we compared the 1016 

variance explained on the observed scale for diseases and quantitative trait scale for quantitative 1017 

traits. 1018 

 1019 

Supplementary Table 13 Numerical results of Examples of 3 Scenarios of GxSex 1020 

interaction. We report detailed results for 3 trait-sex pairs reported in Figure 4. For each trait (A, 1021 

B), we report (C) the genetic correlation and (D) p-value, (E) PRSxE regression coefficient and 1022 

(F) p-value, (G, H, I, J, K) SNP-heritability across sex  with associated standard error and (L) the 1023 

p-value testing for a difference between the top and bottom bins of the E variable. 1024 

 1025 

Supplementary Table 14 Average variance explained by binary and quantitative traits. For 1026 

each scenario, we report the average trait variance explained by binary, quantitative, and all traits 1027 

for both GxE and GxSex interactions.  1028 

 1029 

Supplementary Table 15 PRSxE regression results including a non-linear E term. For each 1030 

trait-E pair, we report (A) P-value and (B) effect size including E2 as a covariate and (C, D) not 1031 

including E2 as a covariate.  1032 

 1033 

Supplementary Table 16 Trait variance explained by GxE interactions with multiple E 1034 

variables. For traits with multiple marginally significant E variable interactions, we report the 1035 

variance explained by a joint model with all marginally significant E variables. 1036 

 1037 

Supplementary Note for “Distinct explanations underlie gene-environment interactions in 1038 

the UK Biobank”  1039 
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