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Abstract
One of the biggest complication in diabetes patients is chronic kidney disease (CKD), mak-
ing it a tremendous burden on the country’s public healthcare system. We have developed
HealthVector Diabetes (HVD), a digital twin model that leverages generalized metabolic
fluxes (GMF) to proficiently predict the onset of CKD and facilitate its early detection.
Our HVD GMF model utilized commonly available clinical and physiological biomarkers
as inputs for identification and prediction of CKD. We employed four diverse multi-ethnic
cohorts (n=7072): one Singaporean cohort (EVAS, n=289) and one North American cohort
(NHANES, n=1044) for baseline CKD identification, and two multi-center Singaporean
cohorts (CDMD, n=2119 and SDR, n=3627) for 3-year CKD prediction. We developed one
identification model and two prediction models (with complete or incomplete parameters).
The identification model demonstrated strong performance with an AUC ranging from 0.80
to 0.82. For prediction, with incomplete parameters, we achieved an AUC of 0.75, while the
complete parameter model achieved an improved AUC of 0.86. Our model also effectively
stratifies patients into low, moderate, and high-risk categories, with the high-risk category
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having the highest proportion (53.3-62.9%) of patients with CKD. Our method also reveals
metabolic health profile differences among patient subgroups at baseline, indicating that
patient subgroups who develop future CKD exhibit more deteriorated profiles compared to
future non-CKD patients. Furthermore, we also show that GMF-based clustering reveals
distinct metabolic profile differences that act as drivers for CKD progression, and the dis-
tance between different patient clusters can be used to map patient health trajectories. Our
HVD GMF digital twin model has the ability to identify patients with baseline CKD and
predict future CKD within a 3-year time frame. Furthermore, our approach enables risk
stratification, sub-grouping and clustering based on metabolic health profiles, positioning
our model as a valuable clinical application tool for healthcare practitioners.

Keywords: digital twins, generalized metabolic fluxes, chronic kidney disease, type 2 diabetes
mellitus, predictive model, clustering, distance metric, correlation, risk stratification, digital health,
machine learning, chronic kidney disease, metabolic health, metabolism.

1 Introduction
Diabetes has emerged as a prominent global health crisis in the 21st century, with the lifespan
of patients estimated to be reduced by 12 years due to vascular complications [1]. In a multi-
ethnic population as Singapore, the prevalence of diabetes has experienced a twofold increase
over the past four decades, and it also has the highest global prevalence of diabetic kidney
failure [2]. Among non-fatal complications of diabetes, end-stage renal disease requiring
dialysis stands out as a significant driver of healthcare costs [3]. It is therefore crucial to detect
chronic kidney disease (CKD) early in its course, before reaching a non-reversible state.

A digital twin can be defined as a direct digital representation of an individual based on
the individuals own comprehensive biological data [4]. Using this concept, a virtual replica
of the vascular system in the individual can be represented based on a mechanistic model [5].
These digital twin models can then be used to simulate progression of chronic diseases and to
predict probable trajectories of disease development [6]. Moreover, these models can inform
clinicians how altering specific mechanistic components could change disease trajectories,
thereby leading patients towards less severe disease states.

In recent years, digital twin technology has gained popularity in the healthcare sector,
where, a PubMed trend search on the keyword "digital twin" revealed a ten-fold increase in
the last 5 years. Different techniques, measurements and applications can be used to build a
patient’s digital twin. In this paper, we utilize generalized metabolic fluxes (GMFs) to construct
personalized digital twins of patients and study the trajectory of microvascular complications
leading to chronic kidney disease (CKD) [6]. We termed this proprietary technology as
HealthVector Diabetes (HVD). The HVD GMF analysis allows us to represent the long-
term changes in the rates of metabolic processes in the body as a mathematical model of
personalized metabolic rates. The parameters of the model are obtained as a best fit to the
observed clinical and physiological measurements of an individual patient. Our GMF-based
digital twin model is used here to identify the disease states of patients at baseline and predict
the occurrence of CKD within a three-year period.
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2 Results
2.1 Data set characteristics
The table below provides a detailed summary of the main characteristics of each data set (Table
1). Although the four data sets shared many similarities, several differences were observed.
Notably, the EVAS dataset included younger patients (54 [11.1]) with higher levels of glycated
hemoglobin (HbA1c) (8.6 [1.8]) compared to those in the CDMD dataset (57 [12.4], 8.0
[1.8]), NHANES dataset (59 [11.9], 7.6 [1.9]), and SDR dataset (61 [11.0], 7.4 [1.6]). The
NHANES data set had slightly lower systolic blood pressure (SBP) (130.3 [18.6]), higher
serum creatinine (85.0 [56.3]), and body mass index (BMI) (32.5 [7.5]) values compared to
the EVAS dataset (133.2 [14.8], 27.7 [5.0], 74.2 [26.9]), the CDMD data set (133.8 [17.9],
26.8 [5.6], 74.0 [22.7]) and the SDR data set (132.1 [15.1], 26.6 [5.5], 70.8 [23.3]).

2.2 GMF digital twins for the identification and prediction of CKD
To determine the accuracy and robustness of our generalized metabolic flux (GMF) based
digital twin model, we first sought to investigate its performance in identifying CKD, predicting
CKD and finally to stratify patients based on CKD risk (Figure 1). For the identification of
CKD, our model achieved an AUC of 0.80 in the EVAS data set and an AUC of 0.82 in
the NHANES data set (Figure 2a and b). To confirm the robustness of our model, we also
performed another CKD identification analysis with a reduced set of input parameters and
achieved reasonable performance (AUC 0.75 in EVAS and 0.73 in NHANES) (Supplementary
Fig. 2). For the prediction of CKD within a 3 year time horizon, we achieved AUCs between
0.75 and 0.86 (Figure 2c and d). With incomplete parameters in the CDMD data set, we
achieved an AUC of 0.75, whereas with complete parameters in the SDR data set, we achieved
an AUC of 0.86. The full performance metrics with complete parameters in the SDR data set
(AUC, Sensitivity (SN), Specificity (SP), Negative Predictive Value (NPV), Positive Predictive
Value (PPV)) is shown below (Table 3). We achieved the same AUC values in both the testing
sets, Testing-1 and Testing-2.

After establishing the predictive capabilities of our model, we wanted to determine if it
was also capable of stratifying patients into three different risk groups (high, moderate, low)
accurately. The distribution of patients across the three risk groups (CDMD and SDR datasets)
are presented in Table 4.. Most patients who developed CKD in 3 years came from the high
risk group. In the CDMD data set, 53.3% of patients developed CKD in the high-risk group,
17.3% developed CKD in the moderate-risk group and 9.8% developed CKD in the low-risk
group. Whereas in the SDR data set, 62.9% of patients developed CKD in the high-risk group,
19.3% developed CKD in the moderate-risk group and 5.4% developed CKD in the low-risk
group. The observed frequencies in both data sets align with the expected risk frequency
intervals reported in previous studies. [7, 8].

2.3 Characteristics of patient GMF profiles and their association with
future CKD development

We first looked at the correlation between the input parameters (clinical and physiological)
used to create GMF with the GMF values itself using the CDMD data set. The input parameters
show strong correlation with the relevant GMFs (Figure 3). Serum creatinine which is an
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indicator for CKD, has a strong positive correlation with individual GMF fluxes related to the
circulation-respiratory pathways, the reactive oxygen species and HbA1c production pathways
and negative correlation to the albumin-ACR pathways. Furthermore, the parameters LDL,
Cholesterol, BMI, HbA1c and Glucose seem to cluster together, where LDL, Cholesterol and
BMI also show strong positive correlation to the GMF fluxes related to lipid metabolism. To
determine factors that could predict future categorization into CKD positive or negative groups,
we studied the baseline GMF profiles used for this prediction. We conducted two subgroup
analyses: one comparing metabolic profiles of future CKD (CDMD) and future non-CKD
patients (CDMD), and another comparing baseline CKD (EVAS) and future CKD patients
(CDMD) (Figure 4). Future CKD patients exhibited elevated fluxes associated with circulation,
blood pressure, glucose metabolism, and kidney function (Figure 4, Supplementary Table 4).
This clearly shows that future CKD patients exhibit a more deteriorated health state (GMF
profile) compared to future non-CKD patients. When then compared patients who develop
CKD in the future with patients with CKD at baseline. Patients who develop CKD in the future
displayed decreased fluxes in glucose and lipid metabolism pathways, as well as pathways
related to kidney function, respiration, and circulation, compared to patients who had CKD at
baseline, (Figure 4, Supplementary Table 4). As expected, the health state (GMF profile) of
future CKD patients were less deteriorated compared to baseline CKD patients.

2.4 Distance between patient profile clusters indicates the rate of future
CKD development

We found that among CKD-negative patients at baseline, some profiles resembled CKD
patients while others did not. Thus, we sought a metric to distinguish these profiles and
predict CKD development. We conducted patient clustering in the CDMD data set using
two sets of variables: the first set consisted of GMF values, while the second set utilized
input parameters. The GMF-based patient cluster with the highest fraction of future CKD
outcomes was the most distinct cluster from all other clusters (Figure 5a). In this cluster, the
fluxes related to circulation-respiratory pathways as well as the reactive oxygen, creatinine
and HbA1c production pathways were increased whereas the fluxes related to the albumin-
ACR pathways were decreased. To analyze the relationship between GMF profiles and CKD
development, we ordered the clusters by increasing CKD outcome rates. We picked the cluster
with the lowest fraction of positive CKD outcomes as the starting point. For all other clusters,
we computed the Euclidean distance from their centers to the starting point. We examined
the dependence of the CKD outcomes rate in each cluster on this distance metric. There is
a significant positive correlation (𝜏 = 0.6, p = 0.017) between the distance metric and CKD
outcome rates when we used GMF to cluster patients (Figure 5b). The cluster with the highest
fraction of positive CKD outcomes was the furthest away from the cluster with the lowest
fraction of positive CKD outcomes. By contrast, we found no distinct cluster profiles and no
significant associations between the distance metric and CKD outcome rates when we used
input parameters for clustering (Supplementary Fig. 4).

4

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 24, 2023. ; https://doi.org/10.1101/2023.09.22.23295944doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.22.23295944
http://creativecommons.org/licenses/by/4.0/


3 Discussion
Here, we developed a generalized metabolic fluxes (GMF) based digital twin model called
HealthVector Diabetes (HVD) [6] to identify CKD and to predict the occurrence of CKD
within 3 years in T2DM patients. The HVD GMF digital twin model describes the current
health state of a patient and predicts their future health trajectory. In retrospective clinical data
sets, our model achieved a high performance (AUC=0.8-0.82) in describing CKD patients by
their metabolic states at baseline. Remarkably, our model also performed well at predicting
CKD within a 3 year time horizon (AUC 0.75-0.86) in two scenarios, with imcomplete and
complete parameters.

Our model identified metabolic health profile differences at baseline showing that patients
who develop future CKD have more deteriorated health profiles compared to patients who
do not. Our model also stratified the patients into high, moderate, and low-risk groups. The
highest percentage of patients who developed CKD was found in the high-risk group (53.9-
62.9%), followed by the moderate-risk group (17.3-19.3%), and finally the low-risk group
(5.4-10.7%). These results lay the groundwork for future clinical applications of this model
for CKD risk assessment and personalized care planning in T2DM populations.

There are several machine learning models that have been developed for detection or
prediction of CKD. One detection model using simple screening parameters (age, gender,
BMI, waist circumference, and urine dipstick) achieved moderate performance (AUC = 0.76)
[9]. Another detection model detected CKD from retinal images (AUC=0.93), using a deep
learning algorithm [10]. Despite the high performance of this model, retinal imaging introduces
added costs and time, thereby diminishing the feasibility of this procedure. In contrast, our
model utilizes readily available parameters obtained from routine patient blood screening
(Table 1), while achieving AUCs of 0.80-0.82. Our model is better at CKD prediction than
most published models that use single time point readings (biochemical or otherwise) as their
inputs [8, 11–15]. Other published models have lower AUC values and they use non-routine
measurements as inputs (Supplementary Table 5). Compared to these models, our model
was evaluated in diverse cross-country multi-center and multi-ethnic cohorts emphasizing its
applicability.

Our incomplete parameter prediction model using the CDMD data set utilized 11 common
input parameters to construct the GMF digital twins. Given the inherent characteristics of this
EMR data set, a significant proportion of missing data had to be addressed. Strictly adhering
to complete data points would have substantially reduced our sample size. To strike a balance,
we allowed for data points with up to one missing parameter. Despite the presence of missing
parameters, this model exhibited reasonable performance with an AUC of 0.75. Subsequently,
in another data set (SDR), we exclusively worked with complete data points and explored the
inclusion of additional input parameters. Comparatively, our complete parameter prediction
model employed 14 common inputs and demonstrated superior performance (AUC=0.86).
Notably, complete data points are not always attainable in clinical settings, and most models
struggle to handle missing data. Our GMF model demonstrated good performance in both
the complete and the incomplete input data scenarios, validating their suitability for real
world clinical applications. Currently, routine clinical follow-ups fail to detect patients at risk
of developing CKD due to their kidney health indicators (ACR or eGFR) typically falling
within normal ranges and below diagnostic thresholds. In a clinical context, understanding the
metabolic GMF profiles of at-risk patients would guide clinical decisions aimed at preventing
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future disease states or potentially reversing current disease states. Leveraging our GMF
model, clinicians can identify and stratify T2DM patients before CKD manifestation, enabling
targeted personalized care for the patients at risk.

The GMF digital twin model informs the long-term rates of metabolic changes and pre-
dict the evolution of metabolic characteristics of CKD [6]. The model can identify early
indicators of health deterioration to predict future health states by highlighting key pathways
involved in dysfunctions leading to kidney failure. Our analysis reveals that patients who will
develop CKD in the future exhibit an overall deteriorated metabolic profile, as indicated by
elevated individual GMF or metabolic rates for fluxes related to glucose production and kid-
ney function compared to patients who do not develop CKD (Figure 4, Supplementary Table
4). Furthermore, our model effectively differentiates between the health states of patients with
CKD at baseline and those who develop CKD in the future. Patients who only develop future
CKD have a considerably healthier metabolic profile as indicated by reduced metabolic rates
for fluxes related to glucose production and kidney function compared to patients already
diagnosed with CKD (Figure 4, Supplementary Table 4). Consistent with the results of our
predictive analysis, patients with CKD at baseline exhibited more deteriorated health profiles
compared to patients without CKD at baseline (Supplementary Fig. 3).

GMF profiles are also able to cluster patients according to their metabolic characteristics
which in turn reflect the degree of health deterioration. These metabolic changes in the GMF
profiles drive the increased rate of future CKD outcomes. The fluxes related to respiratory-
circulation, glucose metabolism and kidney function were distinctly elevated in the cluster
with the highest CKD outcome rates. These fluxes overlap with those identified in the previous
analysis where we compared the GMF profiles of future CKD and future non-CKD patients.
The partial overlap is expected due to cluster heterogeneity, encompassing both future CKD
and future non-CKD patients in every cluster. Measuring the distance between cluster centers
reveals a positive correlation between cluster distance and CKD outcome rates. The cluster
with the highest positive CKD outcomes is farthest from the cluster with the lowest positive
CKD outcomes. This highlights GMF’s ability to map baseline health states to patient health
trajectories. While these clusters encompass a mixture of patients, including patients who
develop future CKD and those who do not, it is important to emphasize that our study focuses
on a 3-year time horizon. Future investigations considering a more extended time frame may
reveal an increased fraction of positive CKD outcomes in the clusters characterized by greater
health deterioration. Basic clinical and physiological input parameters failed to demonstrate
distinct patient cluster profiles and exhibited no correlation with cluster distances and CKD
outcome rates (Supplementary Fig. 4).

While our study has demonstrated promising results, it is important to acknowledge the
limitations that exist. Firstly, in the CDMD and SDR real world data sets, we applied data
aggregation to obtain the input parameter values. This involved taking the median values of
each parameter with repeated measurements over a single year. Since the measurements for
each parameter were not obtained on a single day, this led to less stringent control over the vari-
ables and introduced non-uniformity, particularly in parameters such as ACR (Supplementary
Fig. 1). It is also well known that ACR measurements can be highly variable in individuals
[10]. Consequently, ACR was not included in our final prediction model (SDR) (Table 2). We
also did not consider the impact of medications on patients health status and how this would
impact our GMF model. We know that treatment interventions can significantly influence
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patient’s health states. Therefore, utilizing our model to assess the effect of medication on
patient’s metabolic health profiles could offer valuable insights. These limitations highlight
areas for future research and improvement in our approach.

In conclusion, we have developed a digital twin GMF model named HealthVector Diabetes
(HVD) that successfully identifies existing metabolic pathways dysfunctional in CKD patients,
and predicts future CKD within a 3 year time horizon. Our model has great potential to be
adopted in the clinical setting as a predictive tool in the prevention of CKD amongst T2DM
patients.

4 Methods
4.1 Study design and data set characteristics
Our study included four populations: three multi-ethnic T2DM cohorts from Singapore and
one multi-ethnic T2DM North American cohort. Our first dataset (EVAS) was a multi ethnic
cohort of T2DM patients from Singapore’s Tan Tock Seng Hospital (TTSH) that were part
of a clinical study and were followed-up for 5 years between 2015 to 2020 [16]. The second
data set was obtained by selecting T2DM patients from data collected in the National Health
and Nutrition Examination Survey (NHANES) that were recruited between 1999 to 2018
(NHANES dataset) [17]. The third dataset (CDMD), the National Healthcare Group Chronic
Disease Management Datamart (NHG-CDMD) was obtained from the electronic medical
records (EMR) of TTSH, Singapore between 2008 to 2021. The fourth data set was a group
of T2DM patients extracted from a health database registry of Singapore Health Services
(SingHealth), the SingHealth Diabetes Registry (SDR) between 2013 to 2020 [18]. All patients
used in the four data sets were aged between 20 to 80 years and their baseline characteristics are
outlined below (Table 1). Baseline individual generalized metabolic flux (GMF) profiles were
calculated for each individual from the selected list of clinical and physiological parameters
relevant to CKD (Table 2). We conducted the following analyses: i) identification of CKD in
patients ii) prediction of future CKD within three years with risk stratification, iii) metabolic
profile characterization and correlation, and iv) patient clustering with either GMF or input
parameters. For the identification of CKD, we used the EVAS and NHANES data sets and
for the prediction of CKD and risk stratification, we used the CDMD and SDR data sets.
Subsequently, for the metabolic profile characterization analysis, we used the CDMD and
EVAS data sets and finally for the correlation and clustering analysis, we only used the
CDMD data set. Ethics approval was obtained from the Singaporean (NHG and SingHealth)
Institutional Review Board. This study was conducted in accordance to the principles of the
Declaration of Helsinki.

4.2 Generalized metabolic fluxes (GMF) digital twin generation and
model development

In this study, we utilized Generalized Metabolic Flux (GMF) models to create personalized
digital twins for each patient [6]. GMF models comprise a network of dynamic variables,
which represent the metabolic rates of the patient at a specific health state. We distinguished
two reference health states: A) T2DM without CKD and B) T2DM with CKD. At the baseline
time point, patients were either in state A or state B and using GMF, we described their health
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state at that time point. On the other hand, during the course of our prediction study, some
patients progressed from state A to state B within a defined period of time (i.e., 3 years), while
others remained in state A. For each patient, the progression occurred along a single health
state progression scale, which we termed a generalized extent, spanning between the two basic
states: A and B. This scale depicts a continuous change in the patient’s metabolic profile.
As a dynamic variable, a single GMF measures the rate of change of a specific metabolite
concentration or a physiological reading at any given state along the progression scale. The
collection of individual GMFs for a particular patient at a particular time point represents that
patient’s metabolic digital twin. The GMF methodology allows us to use both complete and
incomplete inputs to produce digital twins of patients and best fit models. We investigated the
performance of each (incomplete and complete) in the two separate data sets (CDMD and
SDR) for the prediction of CKD. The completeness of inputs in each data set is characterized
in the Supplementary Materials (Supplementary Table 2). These GMFs combined make up
the GMF profile for each patient in each studied cohort and represent the patient’s digital twin
(Figure 1, Supplementary Table 3). The detailed method of producing patients GMF digital
twins has been explained in our earlier technical paper [6]. HealthVector Diabetes (HVD) is
an identification and prediction model based on GMF digital twins.

For the identification of CKD, the GMF model employed 10 clinical and physiological
parameters as inputs and produced 21 informative GMF fluxes as outputs. The outputs were
combined with the patients’ age and gender information to build the logistic regression
model for identification of CKD cases in the EVAS and NHANES datasets. Similarly, for the
prediction of CKD, there were two models: i) the model with incomplete parameters and ii) the
model with complete parameters. For the incomplete parameters, the GMF model employed
11 parameters as inputs whereas for the complete parameters, the GMF model employed 14
parameters as inputs. The incomplete parameter model was tested in the CDMD data set
whereas the complete parameter model was tested in the SDR data set. The comprehensive
list of input parameters utilized in the analysis of each data set is shown below (Table 2).

4.3 Clinical definitions and parameter selection
Clinical measurements were taken at their point of recruitment (all data sets) and follow-up
(CDMD and SDR). In the EVAS, NHANES, and CDMD data sets, patients were identified
to have CKD if they fell under one of the following two categories: i) if they had an Albumin
to Creatinine Ratio (ACR) value of more than 3.3 mg/mmol (equivalent to 30 mg/g) ii) if
they had an estimated glomerular filtration rate (eGFR) value of less than 60 mL/min/1.73𝑚2

[19]. For the SDR data set, we used only the second criterion: the eGFR value of less than
60 mL/min/1.73𝑚2. This was due to the SDR data set being primarily composed of primary
care patients whereas the EVAS and CDMD data set were primarily composed of tertiary care
patients (Supplementary Fig. 1). For the EVAS and CDMD data sets, the eGFR value was
calculated using the New Asian Modified CKD-EPI formula because this was the equation
used by the clinician in charge of these data sets in TTSH. [20] Whereas for the NHANES
and the SDR data sets, the standard Chronic Kidney Disease Epidemiology Collaboration
(CKD-EPI) formula was used. [21]
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4.4 Logistic regression and risk stratification analysis
We first performed the analysis on the identification of CKD disease state at baseline to
determine the present health state of patients using two data sets, the EVAS and the NHANES
data sets. Subsequently, we predicted the CKD disease state within three years using two
separate models, the incomplete parameter model in the CDMD data set and the complete
parameter model in the SDR data set to assess the performance of our model in predicting
the health state of patients within 3 years. To this end, we developed a logistic regression
(LR) model using GMFs derived from basic parameter inputs (Table 2), age, and gender as
predictor variables, where we plotted the receiver operating characteristic (ROC) curve and
estimated the area under the curve (AUC). In the complete parameter prediction model, the
SDR data set was randomly split into the training set (50% of the population) and two testing
sets, Testing-1 (25%) and Testing-2 (25%). We trained the model on the training set to obtain
the parameters of the LR model, which was then used to predict the probability of CKD in the
Testing-1 and Testing-2 sets.

To evaluate the efficacy of our model in stratifying patients into high-risk, moderate-risk,
and low-risk groups for CKD, we compared the observed frequency of future CKD positive
outcomes in each risk group to the expected frequency of CKD positive outcomes investigated
in the CDMD and SDR data sets. The expected frequency of the risk groups was based on
previously published risk intervals [7, 8]. High risk is classified as having 30-100% CKD
patients, moderate risk as having 10-30% CKD patients and low risk as having 0-10% CKD
patients.

4.5 Metabolic profile characterization, correlation and clustering
analysis

We examined the correlation between the input parameters, GMFs, and demographic values.
Kendall’s 𝜏 correlation method was employed for this assessment. In cases of missing values,
we substituted them with the median values from the CDMD dataset. To identify groups of
correlated parameters, we utilized hierarchical clustering, using the Euclidean distance metric
and the complete linkage method on the resultant correlation matrix (Figure 3).

We then performed a metabolic profile subgroup analysis to explain the variation in the
GMF profiles in different groups of patients, based on inputs at baseline. First, we investigated
the GMF differences seen in patients who develop CKD in the future with respect to patients
who do not develop CKD in the future. Second, we looked at the GMF profile differences in
patients who develop CKD in the future with respect to patients with CKD at baseline. The
grouped median values of each individual GMF within the entire GMF profile were compared
in each of the subgroup analyses. The significant difference of GMF values between the groups
were evaluated using the Wilcoxon-Mann-Whitney U test with the two-sided null hypothesis
(Supplementary Table 4). The GMF profiles are visualized in a standard graphical form,
wherein each individual GMF within the entire GMF profile is represented as colored directed
edges (Figure 4). The color on the map corresponds to the ratio between the median value of
each individual GMF in a specific group and its median in the reference group. Elevated and
reduced GMFs that were significant in one subgroup vs the other subgroup are shown in red
and blue, respectively. The GMFs that do not vary are shown in black.
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We next investigated the relationship between future CKD outcomes and clusters of
patients. To reveal associations between the groups of patients and their metabolic features,
we applied k-means clustering. To determine the optimal number of clusters (k), we assessed
the Between Sum of Squares (BSS) metric over a range of k values from 5 to 20. The BSS with
50% was achieved with k = 10 and this k was selected as the optimal choice for our analysis.
The clusters were assigned numerical indices and ordered in ascending order of CKD outcome
rates. The cluster with the lowest fraction of future CKD-positive patients was designated as
index 1. For all indices, we computed the Euclidean distance between the centroid of the i-th
index and the centroid of the cluster with index 1. These distances were then plotted against
the fraction of future CKD positives in each cluster, and their correlation was evaluated using
Kendall’s 𝜏 with the two-sided null hypothesis that no correlation is present.

4.6 Statistical analysis and computational tools
All statistical analyses were performed using R version 3.6.3. For logistic regression analysis,
we utilized the glm.fit function within the core stats package in R [22]. The ROC curves were
generated using the pROC R package [23, 24]. The Wilcoxon-Mann-Whitney U test from the
core stats package in R was used to determine the significant difference of the grouped median
fluxes in the different patient subgroups [23]. For the correlation analysis, the cor function
was used within the core stats package [23]. Subsequently, the pheatmap package was used
to visualize correlation outputs [25]. The pheatmap package was also used to cluster patients
with k-means and to visualize the clusters [23, 25].
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5 Tables
Table 1 Study population characteristics of the EVAS, NHANES, CDMD and SDR data sets.

Analysis Identification of CKD Prediction of CKD
Type Identification model Identification model Incomplete inputs Complete inputs
Cohort EVAS NHANES CDMD SDR
Number of patients (Number of CKD positive patients at baseline/future) 289 (96) 1044 (360) 2112 (719) 3627 (1413)
Gender (M(%):F(%)) 144 (49.8):145 (50.2) 534 (51.1):510 (48.9) 1116 (52.8):996 (47.2) 1917 (52.9):1710 (47.1)
Age (Mean, SD) 54 (11.1) 59 (11.9) 57 (12.4) 61.24 (11.01)
Systolic Blood Pressure, mm/Hg (Mean, SD) 133.2 (14.8) 130.3 (18.6) 133.8 (17.9) 132.1 (15.3)
BMI, kg/m2, (Mean, SD) 27.7 (5.0) 32.5 (7.5) 26.8 (5.6) 26.6 (5.5)
Haemoglobin, g/L (Mean, SD) 13.3 (1.4) 13.8 (1.6) 13.1 (1.7) 13.2 (1.9)
HbA1C, % (Mean, SD) 8.6 (1.8) 7.6 (1.9) 8.0 (1.8) 7.4 (1.6)
FBG, mmol/L, (Mean, SD) 8.9 (3.2) 8.8 (3.6) 8.7 (3.2) 8.1 (3.3)
Cholesterol, mmol/L, (Mean, SD) 4.4 (1.1) 4.6 (1.1) 4.5 (1.0) 4.4 (1.2)
HDL, mmol/L, (Mean, SD) 1.1 (0.3) 1.3 (0.4) 1.2 (0.4) 1.4 (0.5)
LDL, mmol/L, (Mean, SD) 2.5 (0.8) 2.6 (0.9) 2.6 (0.8) 2.5 (1.0)
TG, mmol/L, (Mean, SD) 1.8 (2.2) 1.6 (0.8) 1.5 (1.0) 1.9 (1.4)
Serum Creatinine, umol/L, (Mean, SD) 74.2 (26.9) 85.0 (56.3) 74.0 (22.7) 70.8 (23.3)
ACR, mg/mmol, (Mean, SD) .. .. 1.3 (0.8) ..
Serum Albumin, g/L (Mean, SD) .. .. .. 40.1 (5.3)
ALT, U/L (Mean, SD) .. .. .. 33.4 (44.5)
AST, U/L (Mean, SD) .. .. .. 34.2 (45.7)
Haematocrit, %, (Mean, SD) .. .. .. 39.6 (5.2)
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Table 2 List of parameters used for GMF in the identification model (EVAS and NHANES),
incomplete input prediction model (CDMD) and complete input prediction model (SDR).

Parameters[Units] EVAS NHANES CDMD SDR
Fasting Blood Glucose (FBG) [mmol/L] ! ! ! !

Total Cholesterol [mmol/L] ! ! ! !

High density lipoprotein (HDL) [mmol/L] ! ! ! !

Low density lipoprotein (LDL) [mmol/L] ! ! ! !

Triglyceride [mmol/L] ! ! ! !

Serum Creatinine [µmol/L] ! ! ! !

Body Mass Index (BMI) [kg/m2] ! ! ! !

HbA1c [%] ! ! ! !

Haemoglobin (Hb) [g/dL] ! ! ! !

Systolic Blood Pressure (SBP) [mm/Hg] ! ! ! !

Albumin to Creatinine Ratio (ACR) [mg/mmol] X X ! X
Serum Albumin [g/L] X X X !

Alanine Aminotransferease (ALT) [U/L] X X X !

Aspartate Aminotransferase (AST) [U/L] X X X !

Haematocrit [%] X X X !
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Table 3 Performance metrics achieved in the complete inputs prediction model analysis of
the SDR data set

Metrics Testing-1 Testing-2
AUC 0.86 0.86
SN 80% 80%
SP 72% 74%
NPV 84% 85%
PPV 65% 66%

Table 4 Risk group classification using GMF with the incomplete inputs prediction model
(CDMD) and the complete inputs prediction model (SDR)

CDMD SDR Risk interval
Risk group no CKD CKD % CKD no CKD CKD % CKD Expected CKD %

High (>30%) 461 526 53.3 174 295 62.9 65% (30-100%)
Moderate (10-30%) 886 188 17.3 205 49 19.3 20% (10-30%)

Low (<10%) 46 5 9.8 174 10 5.4 5% (0-10%)
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Fig. 1: Study design. The scheme illustrates the data sets employed and how the generalized
metabolic fluxes (GMF) digital twins model was created and subsequently analyzed in this
study. From known biological relationships, the GMF processes are constructed to form the
GMF digital twin model. The performance and capabilities of this model were tested in three
main analyses, namely in the identification and prediction of chronic kidney disease (CKD),
metabolic profile characterization and finally the clustering analysis.
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Fig. 2: AUC-ROC curves for identification of chronic kidney disease (CKD) at baseline
and the prediction of CKD within 3 years.The identification of CKD yielded an AUC of
0.80 in the EVAS (a) and 0.82 in the NHANES (b) data sets. The prediction of CKD yielded an
AUC of 0.75 in the CDMD (c) and 0.86 in the SDR (d) data sets.The linear regression models
for AUC-ROC curve generations utilized the GMF model, age and gender as input parameters.
The SN values represent the Sensitivity, whereas the SP values represent the Specificity for
each of the four AUC-ROC analyses.
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Fig. 3: Correlation between input parameters and GMF. The correlation between clinical
and physiological input parameters with GMF is shown here. The numbers in each box
represent the Kendall’s 𝜏 correlation value between two variables, the inputs vs the GMFs.
Serum creatinine is correlated with a number of individual GMFs, particularly the GMFs
related to the respiration-circulation pathways, reactive oxygen species and HbA1c production
pathways and the albumin-ACR pathways. LDL, Cholesterol, BMI, glucose and HbA1c cluster
together, whereby LDL, Cholesterol and BMI are strongly correlated to the GMFs related to
the lipid metabolism pathways.
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Fig. 4: Metabolic profile characteristics in future non-CKD vs future CKD and baseline
CKD vs future CKD Two GMF profiles from 2 subgroup analysis of patients are shown here.
The GMF profile of patients who develop CKD in the future shows a poorer health profile
than the GMF profile of patients who do not develop CKD in the future (a). The GMF profile
of patients who develop CKD in the future shows a better health profile than the GMF profile
of patients who have CKD at baseline (b).
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Fig. 5: Patient clustering with GMF. The figure illustrates the clustering pattern of patients in
the CDMD dataset using GMF (a) and the relationship between the cluster distances and CKD
outcomes rate (b). N represents the number of patients within the specific cluster, and CKD
positive outcomes are calculated as the ratio of patients developing future CKD (within 3 years)
to the total number of patients in that cluster. The cluster with the highest CKD outcomes rate
has a distinct pattern with elevated flux values related to the respiration-circulation pathways,
reactive oxygen species and HbA1c production pathways and the albumin-ACR pathways.
There is a significant correlation (𝜏=0.6, p=0.017) between cluster distance and CKD outcomes
rate where the cluster with the highest CKD outcomes rate is furthest away from the cluster
with the lowest CKD outcomes rate. Standard error (SE) is denoted by the grey shaded area.
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