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Abstract 

Breast cancer remains a significant concern worldwide, with a rising incidence in Indonesia. This 

study aims to evaluate the applicability of risk-based screening approaches in the Indonesian 

demographic through a case-control study involving 305 women. We developed a personalized 

breast cancer risk assessment workflow that integrates multiple risk factors, including clinical 

(Gail) and polygenic (Mavaddat) risk predictions, into a consolidated risk category. By evaluating 

the area under the receiver operating characteristic curve (AUC) of each single-factor risk model, 

we demonstrate that they retain their predictive accuracy in the Indonesian context (AUC for 

clinical risk: 0.6744; AUC for genetic risk: 0.6742). Notably, our combined risk approach enhanced 

the AUC to 0.7015, highlighting the advantages of a multifaceted model. Our findings demonstrate 

for the first time the applicability of the Mavaddat and Gail models to Indonesian populations, and 

show that within this demographic, combined risk models provide a superior predictive framework 

compared to single-factor approaches. 
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Introduction 

Breast cancer is a pressing global public health concern. It has emerged as the most commonly 

diagnosed type of cancer worldwide, with its prevalence steadily rising in recent years. For 

example, in 2020 alone, an estimated 2.3 million cases were reported worldwide, resulting in 

approximately 685,000 deaths1. In Indonesia, breast cancer mirrors the global trajectory, 

establishing itself as a leading cause of mortality among women2. Specifically, in 2020, 

GLOBOCAN documented over 68,000 new diagnoses and 22,000 resultant deaths3. Thus, 

addressing the burden of breast cancer is crucial for improving public health outcomes. 

As with other cancers, prompt diagnosis and timely therapeutic interventions have been 

unequivocally associated with enhanced patient prognosis and diminished mortality rates. 

Specifically, survival rates for stage 1 breast cancer are estimated at 99% five years post-

diagnosis, but this figure quickly diminishes to 30% for advanced stages4. As a result, numerous 

countries have established population screening programs to promote early detection of breast 

cancer. Mammography remains the primary method for breast cancer screening and has been 

proven to decrease mortality rates5,6. Nonetheless, mammography is not devoid of challenges. 

Typically, it adopts a uniform approach, recommending all women within a certain age bracket to 

undergo the procedure6. Moreover, in Asian populations, women present higher breast tissue 

density, which complicates mammogram interpretation and can lead to false-positive diagnoses7. 

Compounding the challenges above, Indonesia has yet to incorporate breast cancer screening 

into its national health agenda, and the procedure remains unsupported by the national health 

insurance framework. This financial constraint dissuades women from pursuing mammographic 

screening, and compromises diagnostic rates when the disease is the most actionable8. For 

instance, a longitudinal analysis conducted over three decades at multiple academic hospitals 

found that a significant proportion of patients, ranging from 68-73%, only sought medical 

consultations during the advanced stages of the disease2. 

Collectively, the observations highlighted above underscore the need for refining breast cancer 

screening strategies, emphasizing both accessibility and diagnostic precision. Recently, risk-

based screening, which customizes recommendations according to individual risk profiles, has 

challenged the traditional one-size-fits-all screening paradigms, and is emerging as a promising 

approach for enhanced patient stratification9–12. A myriad of risk factors, encompassing clinical 

predispositions, familial history, and genetic markers, have been considered into these advanced 

screening methods. For example, the Gail model, a non-genetic risk assessment tool, offers 

insights into the probability of an individual developing breast cancer over a five-year span based 

on clinical risk factors, including age, reproductive history, and familial breast cancer incidence13. 

Similarly, pathogenic mutations in high-penetrance genes, such as BRCA1 and BRCA2, have 

long been recognised as pivotal risk determinants for breast cancer, and have been incorporated 

into routine clinical practice14. More recently, Polygenic Risk Scores (PRS) such as the Mavaddat 

model, which aggregate the effects of multiple low-penetrance genes, have been demonstrated 

to harbour predictive power comparable to their high-penetrance counterpart15,16. However, 

despite  advances  in  risk-based  screening,  most research and model development has been 

focused on Western populations17. This leaves a gap in understanding the applicability of these 
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models to Southeast Asian populations, such as Indonesia. Unique genetic, environmental, and 

clinical factors may affect breast cancer risk in these populations, so validating and adapting these 

models is essential. 

In the present study, we assess the applicability of two notable breast cancer risk assessment 

models to the Indonesian demographic, based on a case-control study involving 305 women. Our 

focus centers on the predictive accuracy of the Gail model, which evaluates clinical risk, and the 

Mavaddat model, which assesses polygenic risk. Additionally, we utilize a combined risk model 

to categorise patients into either elevated or average risk groups. Our objective is to address the 

current knowledge gap and offer a risk assessment instrument specifically designed for the 

Indonesian context. 
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Results 
 

Development and validation of a personalised breast cancer risk assessment 
workflow 

We have developed a personalized breast cancer risk assessment workflow that integrates data 

from multiple risk factors, including assessment of clinical risk based on the Gail model and 

evaluation of polygenic risk through the Mavaddat model (Figure 1). The process begins with a 

pre-test counselling session, during which eligible participants, upon providing informed consent, 

submit a buccal sample and complete a risk survey. This sample is then processed in a testing 

laboratory where it is genotyped using microarrays. Bioinformatic analyses are next employed to 

calculate ancestry-adjusted PRS and to translate these into 5-year absolute risk scores, 

leveraging localized breast cancer incidence and mortality data. Simultaneously, the responses 

from the clinical risk survey are analysed to derive 5-year absolute risk scores in accordance with 

the Gail model. In a final step, both the genetic and clinical risk scores are combined into a risk 

category, with participants receiving individualized risk reports during a post-test consultation. 

To validate the accuracy of the aforementioned reporting workflow, we assembled complementary 

datasets for both pre-clinical and clinical validation. The pre-clinical validation study utilized well-

characterized reference materials from the Genome In a Bottle (GIAB) project, encompassing 5 

samples tested in replicates, as well as a mock dataset simulating responses to the clinical risk 

survey. The clinical validation study involved a case/control cohort, consisting of female breast 

cancer patients (cases) and healthy females (controls), recruited from MRCCC Siloam Hospitals 

Semanggi and other locations (Figure 2). Following participant triage and biological sample 

quality control, 305 individuals remained eligible for final analysis, comprising 149 cases and 156 

controls (48.85% and 51.15% of the study population, respectively). The demographic breakdown 

revealed 114 participants of Indonesian Chinese ancestry and 191 from other Indonesian 

backgrounds (Supplementary Table 1), with mean ages of 47.86 years (± 8.20) for cases and 

44.26 years (± 7.88) for controls. 

 

Accuracy of the Gail clinical risk model in the Indonesian population 

Firstly, we evaluated whether the Gail model can be applied successfully to the local population. 

We first seeked to validate our tool by comparing answers from our data analysis pipeline to those 

from the NIH BRCAT tool18. We relied on simulated dataset with mock answers, which has been 

manually generated to cover a range of ethnicities and risk outcomes, and utilized Pearson 

correlation analysis to compare the clinical risk scores from both methods. We observed a very 

strong correlation (Pearson correlation 0.94, p-value 3.38×10-15) between the results of the NIH 

BRCA tool and the Bioinformatics pipeline used in our clinical workflow, supporting the validity of 

our software to calculate clinical risk. 

Next, we evaluated the predictive accuracy of the Gail model by applying it to our patient cohort. 

We calculated 5-year absolute risk scores for all study participants, and compared them between 

case and control groups. As expected, the case group exhibited higher scores (Figure 3A), with 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 24, 2023. ; https://doi.org/10.1101/2023.09.22.23295602doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.22.23295602


   

 

   
 

a mean of 0.76 (±0.44), compared to 0.54 (±0.31) for controls (p-value of 5.16×10-04). Notably, 

the difference in scores among groups persists when controlling for age and ethnicity as potential 

confounding factors in the study (p-value: 4.82×10-02). In addition, we observed an AUC of 0.67 

with 95% CI [0.61,0.74] (Figure 3B), which aligns with previously reported outcomes for Western 

and Asian ancestry populations15,19–23. Altogether, these findings support the applicability of the 

Gail model to Indonesian populations. 

Assessment of polygenic risk using the Mavaddat model 

We next aimed to assess the genotyping accuracy of our array workflow by evaluating our ability 

to obtain correct genotype calls at PRS loci. For this assessment, we relied on a set of cell lines 

with well-established variant truthsets (Genome In A Bottle)25, which we genotyped in-house. 

Assessing the accuracy of genotype calls in the 313 loci in the Mavaddat model indicated high 

analytical sensitivity and specificity (99.25 ±0.46 and 96.89±0.50, respectively; Table 1). 

Subsequently, we calculated PRS using PLINK, accounting for ancestry using established 

methods (see Methods). We compared ancestry-adjusted PRS distributions across cases and 

controls, and detected a significant difference across groups, with higher scores observed in the 

cases (0.63±0.97 vs. 0.24±0.88; p-value: 2.70×10-04), and an overall AUC of 0.63 

(Supplementary Figure 1). Since our final report includes absolute risk scores instead of the 

relative risk reported by PRS, we also analyzed the distribution of 5-year absolute risk scores 

between groups. Notably, the trend previously observed for PRS persisted, with cases exhibiting 

higher risk scores compared to controls (0.94±0.48 vs. 0.68±0.38; p-value: 3.48×10-07, Figure 

4A). Similar to previous observations for clinical risk, the difference among groups remained 

significant even after adjusting for age and ethnicity as potential confounding factors (p-value: 

1.20×10-03). In addition, we observed an AUC of 0.67 with 95% CI [0.61,0.73] (Figure 4B), with 

is aligned with ranges previously reported in Western and Asian populations16,26, indicating that 

the Mavaddat model can be applied with equivalent predictive accuracy in the Indonesian 

population. 

Lastly, we sought to compare the genetic risk predictions from our software with those from an 

established third-party tool by analyzing array results from a subset of samples in our patient 

cohort (N=32) using both platforms (Supplementary Table 2). As expected, we noted a 

significant correlation in PRS results across both tools (Pearson correlation coefficient: 0.95; p-

value: 6.11×10-12). However, we identified differences in the approaches each tool uses to 

interpret PRS into categorical risk outcomes. Our workflow translates PRS into a 5-year absolute 

risk, incorporating localized disease incidence and mortality rates, and utilizes a 1.7% threshold 

to distinguish between elevated and average risk. In contrast, the third-party tool categorizes PRS 

above the 91st percentile as high risk, equating to a ≥20% lifetime disease risk, and relies on a 

broader population reference to determine a patient's percentile score. Notably, when comparing 

the predictive accuracies of the risk categories defined by each platform, we observed higher 

concordance with phenotypic outcomes in our software compared to the third-party tool (59.38% 

vs. 37.50%). This finding underscores the importance of considering localized factors when 

determining categorical risk outcomes from PRS. 
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Performance evaluation of the combined risk model 

In the final stage of our data analysis workflow, we integrate clinical and polygenic risk predictions 

to determine an overall risk category. Initially, each single-factor 5-year absolute risk score is 

categorized as either elevated or average risk, using a 1.7% cutoff. Subsequently, a consolidated 

risk category is established by selecting the higher risk classification from the two inputs (Figure 

1). To assess the accuracy of our combined risk predictions, we examined the proportion of study 

participants classified as either average or elevated risk within the case and control groups. Our 

analysis revealed a higher proportion of elevated risk predictions in the case group compared to 

the controls (10% vs. 2%, respectively; Figure 5A). This trend was statistically significant, with an 

odds ratio of 5.46 and a p-value of 2.55×10-3. Importantly, the combined risk model displayed an 

AUC of 0.70 with 95% CI [0.64,0.76], outperforming the single-factor risk models (Figure 5B). 
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Discussion 
 

Early detection of breast cancer significantly enhances patient prognosis and reduces mortality 

rates, yet current screening strategies predominantly adhere to a one-size-fits-all approach. 

Notably, not all countries have established population screening programs to promote 

mammography screening, and even in countries that have, the uptake rate remains low. For 

instance, in Indonesia, breast cancer screening has not yet been integrated into the national 

health agenda. Meanwhile, in Singapore, where it has been established, only a mere 28% of 

primary educated women undergo screening, and 30% of diagnoses occur in women below the 

suggested screening age27,28. Emerging risk-based screening approaches promise better patient 

stratification and increased screening rates. However, the prevalent ancestry bias in the 

development of underlying risk models poses a significant challenge for their widespread 

adoption, particularly for PRS models, which rely on common genetic variants that can be 

markedly influenced by population-specific allele frequencies. While creating new models based 

on diverse ancestries is technically feasible, the scarcity of data presents a substantial barrier, 

making the evaluation of the applicability of existing models to various ancestries a critical task. 

In this context, our study aims to assess the clinical validity of two established risk prediction 

models, the Mavaddat and Gail models, for the Indonesian population. In addition, we propose a 

personalized breast cancer risk assessment workflow based on array genotyping as a first step 

towards the implementation of risk-based screening in the region. 

 

To validate the predictive accuracy of the Gail and Mavaddat models in the Indonesian context, 

we conducted a case-control study involving 305 participants of local descent. Our analysis 

revealed that the observed AUC of 0.67 for the Gail model aligns with the range documented in 

published studies15,19–23. For genetic risk, we observed an AUC of 0.63 for ancestry-adjusted PRS, 

indicating a slight regression in performance compared to the original study (AUC=0.64), which 

utilized samples from the UK Biobank16 (ref).. This observation suggests the potential for 

developing more accurate PRSs in the Asian population, a prospect that could become a reality 

as larger Asian cohorts become available to identify population-specific variants. Current 

population-genomic initiatives, such as the Biomedical and Genome Science Initiative (BGSi) in 

Indonesia, are poised to bridge this gap. It is also important to emphasize that our method of 

interpreting risk scores into categories relies on absolute risk, not relative risk. By incorporating 

localized data on disease incidence and mortality from Indonesian statistics, we have achieved 

improved performance in risk scores compared to solely interpreting PRS (AUC of 0.67 for 

absolute risk scores vs. 0.63 for ancestry-adjusted PRS). This localized approach demonstrates 

a more significant impact when comparing our risk prediction results with those from a third-party 

software that relies on a broader population reference to derive risk categories based on PRS 

percentiles, as demonstrated by the higher concordance with phenotypic outcomes in our 

software compared to the third-party tool (59.38% vs. 37.50%). Altogether, our observations 

show, for the first time, the applicability of the Gail and Mavaddat models in the Indonesian 

context, and highlight the potential for further enhancing performance through the creation of new 

models based on localized datasets. 
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While our study showcases the performance of both clinical and PRS models individually, it 

underscores that the best accuracy is achieved when these models are combined (AUC of 0.70 

for the combined risk model vs. 0.67 for single-factor models). This finding aligns with previous 

research, suggesting that a multi-faceted approach to risk prediction surpasses the efficacy of 

single-factor models. For example, research conducted by Hurson et al29 utilizing multiple 

datasets of European ancestry illustrated that integrating classical factors with PRS can enhance 

the detection of individuals at increased risk. Yang et al reported a comparable trend in a dataset 

encompassing various Asian populations, including Chinese, Japanese, Korean, Thai, 

Singaporean, and Malaysian groups30. Our research broadens these observations to include data 

from the Indonesian population, thereby contributing additional demographic variability into the 

analysis of risk factors across heterogeneous populations. In addition, emerging studies suggest 

that developing risk models with additional input data can substantially enhance predictive 

accuracy. In this context, the emergence of advanced models such as BRISK (Allman et al., 

2023), which aggregates mammographic density, polygenic risk, and clinical factors, and 

BOADICEA31, which incorporates a comprehensive range of inputs including detailed family 

history, genetic data, PRS, and lifestyle factors. Thus, there is potential to further enhance the 

accuracy of models in the Indonesian population through the inclusion of additional datasets. 

 

In addition to evaluating AUCs for risk models, our study also includes an assessment of the 

genotyping accuracy of our risk prediction workflow. To this end, we utilized GIAB reference 

materials and focused the performance evaluation on the markers required for calculating PRS 

under the Mavaddat model. We determined the analytical sensitivity and specificity of our array 

genotyping workflow to be 99.25% (±0.46) and 96.89% (±0.5), respectively. Such evaluation is 

vital in establishing a clinical-grade testing workflow, as it ensures the accuracy of results inputted 

into the risk calculation software. Most importantly, it should be conducted with the target loci in 

mind. Given that PRS models encapsulate common variants from numerous genomic loci, which 

can vary significantly in number and nature between models and considering that different models 

might encompass a larger representation of SNPs or INDELs, genome-wide evaluation alone may 

not necessarily be representative of the performance at selected loci. 

 

In conclusion, our study underscores the efficacy of the Gail and Mavaddat models in predicting 

breast cancer risk in the Indonesian population, demonstrating a performance comparable to 

studies conducted in other demographics. Furthermore, we illustrate that a combined risk model, 

which integrates both clinical and polygenic risk scores, excels in accuracy compared to single-

factor models. The study serves as a preliminary yet promising exploration, as larger sample sizes 

will be required to fully capture the rich genetic diversity in Indonesia. The emergence of novel 

datasets from population genomics initiatives like BGSi promises to facilitate further evaluation of 

risk models, and potentially foster the development of new models finely tuned to local 

populations. Beyond accuracy evaluations, the integration of personalized risk assessment into 

routine clinical practice requires a broader focus that also encompasses considerations of utility 

and cost-efficiency. Personalized knowledge of breast cancer risk could potentially foster 

behavioral changes, promoting risk-reducing behaviors among high-risk individuals, as evidenced 

by studies in other health domains32. This could in turn significantly reduce the incidence of 

advanced-stage breast cancer cases and the associated healthcare costs12,31,33. Moreover, this 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 24, 2023. ; https://doi.org/10.1101/2023.09.22.23295602doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.22.23295602


   

 

   
 

type of personalized risk assessment could be especially beneficial in regions with limited 

resources and where population-based screening is unavailable, aiding in the identification of 

individuals who would benefit most from more frequent monitoring. Current global initiatives, such 

as “Our Future Health”  in the UK34 and the Genomes2Veterans study in the US35, are leading the 

way in integrating personalized risk assessment in healthcare settings, thereby setting a 

precedent for further localized studies to emulate. Although still in its infancy, our collective efforts, 

in conjunction with others, mark the onset of a transformative era in risk assessment, steering 

towards a more personalized and proactive approach to healthcare. 
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Methods 
 

An end-to-end workflow for personalized breast cancer risk assessment 
 
As part of this study, we developed an end-to-end workflow for personalized breast cancer risk 

assessment. A visual representation of the workflow is provided in Figure 1, with details on the 

methods described below. 

 
Pre-test consultation 

 
Eligible female participants (women aged 25-75 who have never been diagnosed with breast 

cancer and have no known mutations in BRCA1 or BRCA2) initially undergo a pre-genetic 

consultation, either on-site or online, where they receive information about the test. After the 

consultation, they are asked to consent to the collection of buccal samples for genetic testing and 

to complete a questionnaire that gathers non-genetic breast cancer risk factors, as outlined in the 

Gail model (Supplementary File 1). Buccal samples are then collected using OraCollect (cat. no. 

DNA OCR-100, provided by DNA Genotek).  

 

Each buccal sample is paired with a distinct sample ID, serving as an exclusive identifier for the 

corresponding participant’s sample. These sample IDs are held in strict confidence and can only 

be accessed or recognized by the authorized research group.  

 

gDNA Extraction and genotyping 
 

Genomic DNA (gDNA) is extracted using the Monarch® Genomic DNA Purification Kit (cat. no. 

T3010 from NEB). The extraction procedure adheres to the manufacturer's instructions, 

incorporating an additional dry-spin step at maximum speed for 1 minute following the second 

buffer washing step. The quality and concentration of the gDNA extracts are measured using 

BioDrop-µLITE. The acceptance criteria for DNA quality adhere to the manufacturer's guidelines 

for the extraction kit, specifically requiring absorbance ratios of A260/230 and A260/280 to be 

greater than 1.7, and a DNA yield exceeding 500 ng. 

 

Array Genotyping 
 
Genotyping is conducted using standard processing on the Illumina GSA chip (Infinium Global 

Screening Array-24 Kit) by Genomic Solidaritas Indonesia. Raw data files (IDAT files) are 

converted to VCF format using iiap-cli & GTCtoVCF Illumina software (genome build GRCh37). 

Missing calls are inferred by performing imputation with Eagle236 and minimac437, using the 1000 

Genomes project as the reference panel. 

 

Calculation of clinical risk 

 
The calculation of clinical risk is based on the Gail model13. Five-year absolute risk scores are 

determined using responses from the pre-test consultation questionnaire, which includes 
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information on the patient's age, age at menarche and first full-term pregnancy, number of first-

degree relatives with breast cancer, history of breast biopsy, presence of breast biopsy with 

atypical hyperplasia, and ethnicity. 

 

Calculation of polygenic risk 

 
Genetic risk is assessed using the Mavaddat PRS model16. Initially, microarray results are 

subsetted to focus on the 313 markers specified in the model. Direct genotyping and imputation 

results are integrated, prioritizing microarray data, and supplementing with imputation results only 

when the INFO SCORE exceeds 0.8. 

 

Subsequently, genotype calls are utilized for PRS calculation through PLINK38. Briefly, this 

process involves computing a weighted average of alleles present in each individual's genetic 

profile across the 313 variants specified in the model. Missing variants are inferred using the --

read-freq option and allele frequency data from the GNOMAD database39. Next, the raw PRS 

scores from PLINK are standardized as Z-scores, using the mean and standard deviation from a 

Southeast Asian cohort (MEC study11). These standardized scores are then adjusted for 

population structure according to methods outlined by Hao et al., 2022, employing a linear 

regression model that incorporates the first four principal components derived from the 1000 

Genomes dataset 40. Ultimately, the ancestry-adjusted PRS are translated into 5-year absolute 

scores using established methods9, which factor in incidence and mortality data pertinent to the 

Indonesian population26. 

 

Calculation of combined risk 
 

Clinical and genetic risks are finally integrated into a unified risk category. Each 5-year absolute 

risk score is initially classified as either "elevated" or "average" using a 1.7% cutoff. Clinical and 

genetic risk categories are then consolidated by adopting the higher risk classification from both 

inputs; specifically, the combined risk category is labeled as "elevated" if either risk type is 

elevated, and "average" if both are average. 

 

Post-test consultation 

 
The risk assessment results are compiled into a personalized report that includes clinical and 

genetic risk scores and categories, combined risk categories, and customized health modification 

recommendations based on the test findings. Examples of these reports for both average and 

elevated risk individuals can be found in Supplementary Files 2 and 3. These risk reports are 

then presented to patients during a post-test consultation with an oncologist. 

 

Workflow validation 
 
To validate the accuracy of our risk prediction workflow, we conducted both pre-clinical and 

clinical validation studies. On the one hand, the pre-clinical validation study employed well-

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 24, 2023. ; https://doi.org/10.1101/2023.09.22.23295602doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.22.23295602


   

 

   
 

characterized reference materials from the Genome In a Bottle (GIAB) project, along with a mock 

dataset simulating responses to the clinical risk survey, to assess our ability to accurately 

genotype variants of interest and verify the correct implementation of the Gail model. On the other 

hand, clinical validation, executed as a case-control study, aimed to evaluate the predictive 

accuracy of the selected models (including both the clinical risk and PRS, as well as their 

combined risk assessment) specifically within the Indonesian population. 

 

Pre-clinical validation 
 

Confirming implementation of the Gail model 
 
A pre-clinical validation study was conducted to assess the accuracy of our clinical risk prediction 

algorithm, which was developed based on the Gail model. This validation employed a mock 

dataset created without any ties to actual patients or individuals. The dataset consisted of 

manually generated clinical survey responses, encompassing a wide range of ethnicities, clinical 

risk factors, and risk outcomes. Using this mock dataset as input, we proceeded to calculate a 

clinical risk score using our algorithm. Simultaneously, the mock dataset was also analyzed using 

the NIH Breast Cancer Risk Assessment Tool (BRCAT) to determine the anticipated clinical risk 

score. Upon completing both analyses, a comparison was undertaken using Pearson correlation 

analysis. 

 

Assessing genotyping accuracy in Mavaddat PRS markers 
 

A separate validation study was conducted to assess the performance of our genotyping 

algorithm. The validation process employed Genome in a Bottle (GIAB) samples (HG001-005), 

with each being genotyped in duplicate. Each sample underwent processing through our data 

analysis pipeline to derive genotype calls at each of the 313 target sites. Resulting VCF files were 

compared against their respective truth sets. The accuracy of the genotyping was assessed by 

calculating various metrics, including: 

• Callability: The percentage of loci successfully genotyped out of the 313 loci in the PRS model. 

• Genotype concordance: The percentage of genotyped sites with a correct call. 

• Analytical sensitivity: The percentage of variant sites correctly identified. 

• Analytical specificity: The percentage of non-variant sites correctly identified. 

• Precision: The percentage of variants correctly genotyped relative to the number of reported 

variants. 

• Systematic error: The percentage of sites that consistently fail to be called correctly across 

replicates. 

 

Comparative analysis of PRS against an established method 
 

Lastly, we validated the implementation of the Mavaddat PRS model in our algorithm through a 

comparative analysis with a genetic risk prediction tool from a third-party software company. We 

utilized a subset of the samples from the current study, which included 12 healthy individuals and 

20 breast cancer patients. The evaluation was based on two predefined criteria: first, we 
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measured the correlation between the polygenic risk scores; and second, we assessed the 

overlap in categorical outcomes with the phenotypes present in our cohort. 

 

Clinical validation study 
 

Study design and ethical approval 

 
To assess the accuracy of our risk prediction workflow in a real-world setting, we initiated a 

case/control study (TRIP), during which healthy participants and breast cancer patients were 

recruited over a span of two years (from May 2021 to February 2023). This study received ethical 

approval from the MRCCC Siloam Hospitals IRB, under the approval number 

005/EA/KEPKKRSMRCCC/X/2020. Amendments to the study protocol, including the inclusion of 

a larger sample size, have also been approved by the IRB, under the approval number 

005/EA/KEPKKRSMRCCC/X/2022. 

 

Sample size calculation  

 
Power analysis was conducted to determine sample size of the study using Python’s statsmodel 

module41. We estimated the sample size with power analysis based on t-test for two independent 

groups. The effect size is calculated using Cohen’s D formula: 

 

𝑑 =
𝑥�̅� − 𝑥𝑐̅̅̅

𝑆𝑝𝑜𝑜𝑙𝑒𝑑
 

𝑆𝑝𝑜𝑜𝑙𝑒𝑑 = √
(𝑛𝑡 − 1)𝑆𝑡

2 + (𝑛𝑐 − 1)𝑆𝑐
2

𝑛𝑡 + 𝑛𝑐 − 2
 

 

where 𝑑 is effect size, �̅� is the mean of the PRS, 𝑆 is the standard deviation, 𝑛 is the number of 

samples, and the subscript 𝑡 and 𝑐 refers to the treatment and control groups respectively. The 

mean and standard deviation are based on literature 26. This calculation provided us with an effect 

size of 0.396. The estimated sample size for two-tailed test is calculated using the following 

formula: 

𝑛 =
2 × (𝑍𝛼/2 + 𝑍𝛽)

2

𝑑2
 

 

where 𝑛 is the sample size for each group, 𝑍𝛼/2  is the critical value of 𝛼 and 𝑍𝛽 is the critical value 

of 𝛽. Based on this analysis, we estimated that the minimum sample size would be 101 samples 

for both case and control groups, or a total of 202 samples, assuming a power of 0.8. We recruited 

additional samples to minimize error and anticipate dropouts. 

 

Patient recruitment and enrollment 
 

The case/control study included both breast cancer patients and healthy individuals, provided 

they met the established eligibility criteria (see Supplementary Table 3). Breast cancer patients 
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were assigned to the case group, while healthy participants were categorized into the control 

group. Individuals not affiliated with Indonesian ethnic groups or of Chinese-Indonesian descent 

were excluded from the study to align with the research's specific population focus. Additionally, 

participants who did not provide informed consent for participation and subsequent follow-up were 

also excluded from the study cohort. 

 

Following the initiation of the recruitment process, we enlisted 191 female participants from 

MRCCC Siloam Hospitals Semanggi, both onsite and through online sessions via Zoom, to 

partake in the breast cancer risk prediction study. An additional 141 participants were 

incorporated from a baseline study, with consent for the utilization of their remaining DNA for 

further studies concerning breast cancer. Out of 332 participants, there were 158 (47.59%) cases 

and 174 (52.41%) controls. This dataset was later narrowed down to 314 participants after 

excluding 18 (5.42%) due to loss to follow-up (n=1), withdrawal (n=1), and failure to meet the 

inclusion criteria (n=16). This number was further revised to 305 participants after identifying 

samples that did not meet the quality control criteria for analysis (Figure 2). 

 

The final cohort comprised a total of 305 female participants, including 149 individuals (48.85%) 

diagnosed with breast cancer (cases) and 156 individuals (51.15%) without the condition 

(controls). Notably, the demographic distribution ultimately included 114 participants of Chinese 

lineage, consisting of 73 cases and 41 controls, as well as 191 participants of Indonesian heritage, 

encompassing 76 cases and 115 controls. 

 

Statistical analysis 
 

Comparing PRS and risk score distributions 
 

An independent samples t-test was conducted to compare the clinical score, adjusted PRS, and 

genetic score between cases and controls. This test was utilized to determine whether significant 

differences existed between the two groups. Additionally, logistic regression analysis was 

performed to examine the relationship between the categorical outcome variables and the 

variables of interest, while controlling for the effects of age and ethnicity. 

 

Calculation of area under the curve (AUC) 
 
Receiver Operating Characteristics (ROC) analysis was conducted to assess the predictive 

performance of the clinical score, adjusted PRS, genetic score, and combined risk. The ROC 

curve, generated using the R package “pROC” 42, provided the area under the curve (AUC) which 

was used to quantify the overall discriminative ability of our models. To calculate the AUC for 

combined risk, we first listed a set of possible thresholds using pROC. For each threshold value, 

we applied the threshold to both the clinical and genetic scores to infer a categorical combined 

risk. We then calculated the sensitivity and specificity of each threshold. Finally, we plotted the 

ROC curve and calculated the AUC based on the sensitivity and specificity values. 
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Calculation of odds ratio (OR) 
 

To assess the strength of the association between the dependent variable (cases and controls) 

and combined risk categories (elevated and average), a contingency table was created using the 

“epitools” package43. The odds ratio was then calculated based on the contingency table using 

the “oddsratio” function, providing a measure of the association strength between the variables of 

interest. 
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Figures  
 
 
 
 
 

 
 
Figure 1: Personalized breast cancer risk assessment workflow. During the pre-test 

consultation, participants provide informed consent, complete a risk questionnaire, and submit a 

buccal sample. This sample undergoes array genotyping, followed by bioinformatic analysis to 

calculate ancestry-adjusted Polygenic Risk Scores (PRS) using the Mavaddat model. 

Concurrently, responses from the clinical risk survey are analyzed according to the Gail model. 

The single-factor risk results are then combined to determine a categorical risk outcome, which 

is communicated to participants in a personalized risk report during the post-test consultation. 

  

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 24, 2023. ; https://doi.org/10.1101/2023.09.22.23295602doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.22.23295602


   

 

   
 

 
 
 
 

 

Figure 2: Participant recruitment and demographic breakdown in the clinical validation 

study. The clinical validation study employed a retrospective case/control cohort, consisting of 

female breast cancer patients (cases) and healthy females (controls), primarily recruited from 

MRCCC Siloam Hospitals Semanggi and other locations. Initially, 158 cases and 174 controls 

were enlisted. Following triage and biological sample quality control, 149 cases and 156 controls 

remained, totalling 305 eligible participants. The study maintained a balanced distribution with 

48.85% of the participants in the case group and 51.15% in the control group. Demographic 

analysis revealed a diverse participant pool, encompassing 114 individuals of Indonesian Chinese 

descent and 191 from other Indonesian backgrounds. The mean ages were 47.86 years (± 8.20) 

for cases and 44.26 years (± 7.88) for controls. 

 
 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 24, 2023. ; https://doi.org/10.1101/2023.09.22.23295602doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.22.23295602


   

 

   
 

 

Figure 3: Distribution curve and predictive accuracy of the 5-year clinical risk score. (A) 

Distribution curve of the clinical risk score in cases vs. controls. Higher scores (0.76±0.44) are 

observed in cases compared to controls (0.54±0.31), with the difference being statistically 

significant (p-value: 5.16e-04). (B) ROC curve for the clinical risk score. The observed AUC is 

0.674. 

 

 

Figure 4: Distribution curve and predictive accuracy of the 5-year genetic risk score. (A) 

Distribution curve of the genetic risk score in cases vs. controls. We observe higher scores in 

cases compared to controls (0.94±0.48 vs. 0.68±0.38; p-value: 1.28e-03). (B) ROC curve for the 

genetic risk score. The observed AUC is 0.6742. 
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Figure 5: Combined risk outcomes and comparison of AUCs. (A) Percentage of samples 

classified as average or elevated risk in cases vs. controls. We observe a higher proportion of 

elevated risk predictions in the case group compared to the controls, with a significant odds ratio 

of 3.90 (p-value: 0.04). (B) Comparison of ROC curves between combined, genetic and clinical 

risk models. The combined risk model outperforms the single-factor risk models, with an AUC of 

0.7015. 

 

 

Supplementary Figure 1: Distribution curve and predictive accuracy of ancestry-adjusted 

PRS. (A) Distribution curve of adjusted PRS in cases vs. controls. Higher PRS were observed in 

the case group compared to the controls (0.63±0.97 vs. 0.24±0.88; p-value: 2.20e-03). (B) ROC 

curve for adjusted PRS. The observed AUC is 0.6255. 
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Tables 
 
Table 1: Genotyping accuracy of Mavaddat PRS loci in GIAB samples. 

 

Metric MEAN SD MIN MAX 

Pre-sample 
assessment 

Callability 95.37 2.29 93.29 99.68 

Genotype concordance 97.81 0.33 97.38 98.18 

Analytical sensitivity 99.25 0.46 98.66 100 

Analytical specifity 96.89 0.5 96.3 97.6 

Precision 99.58 0.57 99.64 100 

No-call rate 3.86 1.91 0.32 6.07 

Per-site 
assessment 

% sites with systematic 
errors 

5.11 
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Supplementary Table 1: Detailed ancestry breakdown for participants in the clinical 

validation study. 

 

Ethnicity Case (n, %) Control (n, %) 

Chinese 73 41 

Indonesian 75 116 

Jawa 35 35 

Sunda 6 14 

Batak 6 14 

Bugis 0 6 

Flores 0 6 

Bali 0 4 

Minangkabau 3 1 

Manado 3 2 

Betawi 3 1 

Ambon 0 3 

Maluku 1 0 

Padang 1 2 

Tolaki 1 0 

Melayu 1 0 

Timor Leste 1 0 

Nias 1 0 

Aceh 0 2 

Kalimantan Tengah 0 1 

Other Sumatera* 2 4 

Madura 0 1 

Multi ethnicity** 9 16 

Others*** 3 3 

 

*Other Sumatera includes Palembang (1), Lampung (1), Komering Ulu (1), and others 

**Multi ethnicity refers to participants with more than one ethnicity, which includes Jawa-Sunda (6), Betawi-

Sunda (2), Jawa-Betawi (2), etc. 

***Others refers to participants who did not specify the specific Indonesian ethnicity they derived from
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Supplementary Table 2: Comparative analysis of genetic risk predictions with a third-party tool. 
 

Sample ID Phenotype PRS in-house 
Genetic risk category 

in-house 
PRS third-party tool 

Genetic risk category 
third-party tool 

41001901220129_BC CANCER 1.233911504 AVERAGE 1.328450579 AVERAGE 

41001901220150_BC CANCER 2.643061947 ELEVATED 2.315536285 ELEVATED 

41001901220153_BC CANCER 1.880442478 ELEVATED 1.261834573 AVERAGE 

41001901222079_BC CANCER 2.305097345 ELEVATED 2.205859718 ELEVATED 

41001901222094_BC CANCER 2.306477876 ELEVATED 0.986018963 AVERAGE 

41001901222177_BC CANCER -1.438454867 AVERAGE -1.733377778 AVERAGE 

41001901222179_BC CANCER 2.14980531 ELEVATED -0.465485248 AVERAGE 

41001901222199_BC CANCER 1.029750442 AVERAGE 0.308784296 AVERAGE 

41001901222200_BC CANCER 2.31539823 ELEVATED -0.469953448 AVERAGE 

41001901222272_bc CANCER 1.513437168 AVERAGE 1.308739488 AVERAGE 

41001901222278_BC CANCER 0.637667257 AVERAGE 0.693980954 AVERAGE 

41001901222285_BC CANCER 0.423437168 AVERAGE 0.251828443 AVERAGE 

41001901222296_BC CANCER 1.803911504 AVERAGE 1.885205009 ELEVATED 

41001901222389_BC CANCER 2.103327434 ELEVATED -0.305676435 AVERAGE 

41210853008755_BC NORMAL 1.431745133 AVERAGE 0.917035367 AVERAGE 

41210853008783_BC NORMAL 2.140548673 ELEVATED 1.881677965 ELEVATED 

41210853015045_BC CANCER 1.654389381 AVERAGE 0.9732685 AVERAGE 

41210853015093_BC NORMAL 0.177699115 AVERAGE -0.478522053 AVERAGE 

41210853015147_BC NORMAL 0.492143363 AVERAGE 0.581812225 AVERAGE 

41210853016184_BC NORMAL 2.28780531 ELEVATED 1.906911005 ELEVATED 

41210853016186_BC CANCER 1.83920354 ELEVATED 1.424638125 AVERAGE 

41210853016189_BC CANCER -0.361402655 AVERAGE -0.726921715 AVERAGE 

41210853016254_BC CANCER 2.133504425 ELEVATED 1.579791975 ELEVATED 

41210853016290_bc NORMAL -0.731976991 AVERAGE -0.628195591 AVERAGE 

41210853016297_BC NORMAL 2.261840708 AVERAGE 1.888042727 ELEVATED 

41210853016318_BC NORMAL -0.211773982 AVERAGE -1.888782596 AVERAGE 

41210853016330_BC NORMAL 1.495254867 AVERAGE 1.25358441 AVERAGE 
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41210853016336_bc NORMAL -0.290918053 AVERAGE -1.279861282 AVERAGE 

41210853016343_BC NORMAL 2.309681416 ELEVATED 2.371723913 ELEVATED 

41210853018000_BC CANCER 2.188743363 ELEVATED 1.054420291 AVERAGE 

41210853018727_BC CANCER 1.464444248 AVERAGE 0.873173875 AVERAGE 

41210853018768_BC NORMAL 0.148824779 AVERAGE -0.486573454 AVERAGE 
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Supplementary Table 3: Inclusion and exclusion criteria for the clinical validation study. 
 

 Control Group Case Group 

Gender Female 

Age 35 – 75 years old 

Breast 
cancer 
status 

• Had never ever been 
diagnosed with breast cancer 

• Did not experience any 
symptoms related to breast 
cancer 

• Without first-degree 
relationship with breast cancer 
case. 

• Had ever been diagnosed 
with breast cancer 

• With or without first-degree 
relationship with breast 
cancer case. 

Ovarian 
cancer 
status 

Without family history of ovarian 
cancer 

With or without family history of 
ovarian cancer 
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Supplementary Files 
 
Supplementary File 1. Clinical risk questionnaire. This questionnaire is administered to study 

participants after obtaining their informed consent. 

 

Supplementary File 2. Example of personalized risk report for an individual with average 

risk. Patients will be provided with a comprehensive report delineating their average risk of 

developing breast cancer. This report includes an analysis of both genetic and clinical risk factors 

and offers guidance on steps that can be taken after the risk assessment.  

 

Supplementary File 3. Example of a personalized risk report for an individual with elevated 

risk. Similar to Supplementary File 2, the following report is customized for individuals exhibiting 

an elevated risk. The interpretation of this report is to be conducted under the guidance of a 

medical professional.  

 

Disclaimer* 

Images of individuals included in the example report are models specifically incorporated as part 

of the report design for illustrative purposes. Furthermore, we emphasize that all patient 

information is entirely fabricated for similar reasons.  
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