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Highlights 

● Intensity values in CT scans and their corresponding spatial distribution convey 
important information. 

● A model to predict lesion-specific response to systemic treatment using image-derived 
features is proposed. 

● Up to a 5-fold increase in predictive capacity compared to a no-skill classifier was 
obtained, with AUPRC of 0.79 for the most precise model (FDR = 0.01). 

● Assessing treatment response on a lesion-level acknowledges biological diversity within 
metastatic subclones, which could facilitate management strategies involving selective 
ablation of resistant clones in the setting of systemic therapy. 
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Abstract 

Despite sharing the same histologic classification, individual tumors in multi metastatic patients 
may present with different characteristics and varying sensitivities to anticancer therapies. In 
this study, we investigate the utility of radiomic biomarkers for prediction of lesion-specific 
treatment resistance in multi metastatic leiomyosarcoma patients. Using a dataset of n=202 
lung metastases (LM) from n=80 patients with 1648 pre-treatment computed tomography (CT) 
radiomics features and LM progression determined from follow-up CT, we developed a radiomic 
model to predict the progression of each lesion. Repeat experiments assessed the relative 
predictive performance across LM volume groups. Lesion-specific radiomic models indicate up 
to a 5-fold increase in predictive capacity compared with a no-skill classifier, with an area under 
the precision-recall curve of 0.79 for the most precise model (FDR = 0.01). Precision varied by 
administered drug and LM volume. The effect of LM volume was controlled by removing 
radiomic features at a volume-correlation coefficient threshold of 0.20. Predicting lesion-specific 
responses using radiomic features represents a novel strategy by which to assess treatment 
response that acknowledges biological diversity within metastatic subclones, which could 
facilitate management strategies involving selective ablation of resistant clones in the setting of 
systemic therapy.  
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Introduction 

Cancer is a dynamic disease characterized by the development of rapidly-dividing abnormal 
cells and is a leading cause of death worldwide [1]. As cancer develops, subpopulations of cells 
emerge with distinct genotypes and phenotypes, harboring divergent biological behaviors [2]. 
The net result is increased cancer heterogeneity over time: individual patients, lesions, and cell 
populations with varying sensitivities to anticancer therapies[3]. Cancer heterogeneity as such is 
associated with inferior clinical outcomes. In this study we focus on inter-metastatic 
heterogeneity, which refers to the heterogeneity among different metastatic lesions of the same 
primary tumor. Widespread metastases are the primary cause of death in cancer patients[4]. 
The vast majority of patients with solid tumors die because of metastasis to the liver, brain, lung, 
or bone. Patients who relapse with a single metastatic lesion can occasionally be cured by 
surgery or radiotherapy, but single metastases are the exception rather than the rule [5], [6]. 
Unfortunately, metastatic sites develop unique phenotypes and genotypes [7], [8]. As such, 
eradicating a subset of metastatic lesions in a patient is not likely to provide adequate long-term 
disease control. From that perspective, identifying treatment resistant tumors may facilitate 
combination therapies to provide a more successful treatment outcome [5]. 
 
Radiological imaging has a critical role in cancer diagnosis and in evaluating treatment resistant 
tumors. In particular, radiomics has garnered much attention from the research community for 
its potential predictive power for treatment outcomes and cancer genetics [9], [10]. Radiomics 
has become an active field of research, allowing scientists to extract quantitative features from 
readily-available radiological images and assess their potential as non-invasive biomarkers [9], 
[10]. These features can provide information about intensity, shape, volume, and texture of 
tumor phenotypes [11]–[14]. In this study, we investigate the utility of radiomic-based 
biomarkers for prediction of lesion-level systemic treatment response, which could help to get a 
more comprehensive view on the overall patient status. This type of response prediction has 
been recently initiated within the context of imaging studies. Correlation between computed 
tomography (CT) textural features with pathological features and clinical outcome has been 
demonstrated in liver metastases [15], [16]. More recently, lesion level immunotherapy response 
prediction using image-derived or radiomic features has been explored across a range of 
metastatic sites with promising results [17], [18]. To the best of the authors’ knowledge however, 
there hasn't yet been a successful implementation of a predictive model that can accurately 
predict the response of individual lesions to standard systemic treatments for metastatic 
patients. 
 
Soft tissue sarcomas (STSs) are cancers of connective and supportive tissues in the body; they 
are rare, heterogeneous, and notoriously difficult to manage clinically. Patients presenting with 
locally advanced or metastatic disease have dramatically lower rates of survival than those with 
non-advanced localized disease [19]–[21]. In particular, leiomyosarcoma (LMS), one of the 
more common STS subtypes, tend to be biologically aggressive tumors with high metastatic 
potential and local recurrence rates; as a result, systemic therapy plays an important role in the 
multimodality treatment strategy [22]. Radiologic assessment of therapeutic efficacy then 
becomes a crucial task so that ineffective therapies can be switched out for alternative and 
potentially more active regimens. Radiomic features are particularly well-suited to interrogating 
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LMS, where the spatial clustering of enhancing and nonenhancing voxels map histologically to 
viable and necrotic tumor components [22], [23]. Identifying radiomic biomarkers of treatment 
response could help to identify LMS patients who could benefit from alternative and potentially 
more active regimens towards improved outcomes. To this end, we analyzed all visible 
pulmonary lesions to evaluate the predictive value of CT-derived radiomic biomarkers in 
metastatic LMS receiving cytotoxic chemotherapy. 

Methods 

Data Collection and Generation 

Participants  

Our patient cohort included those patients who participated in a randomized Phase III, 
multicenter, open label study comparing Doxorubicin Monotherapy (DM) versus Doxorubicin 
plus Evofosfamide (DE) in locally advanced, unresectable or metastatic soft-tissue sarcoma (TH 
CR-406/SARC021, NCT01440088). Full trial protocol and results were published by Tap et. 
al.[24]. A total of 640 patients were enrolled; the primary endpoint of the trial was overall 
survival. Contrast-enhanced CT obtained prior to treatment and after 2 cycles of systemic 
therapy were available for analysis in 180 leiomyosarcoma (LMS) patients. 

Image Segmentation  

A database of serial CT imaging was obtained from the Sarcoma Alliance for Research through 
Collaboration (SARC). Chest CT images at two time points (baseline/prior to treatment and after 
2 cycles of systemic therapy/at follow-up) were uploaded into the open-source software 3D 
Slicer (https://www.slicer.org/). All lung lesions which were identifiable on CT were segmented 
and subsequently reviewed by a radiologist with 10 years of experience. Lesions were 
considered identifiable if they were measurable at baseline as defined in RECIST 1.1 (minimum 
diameter of 10mm in the longest plane of measurement [25]) and confidently located at the 
second time point. Further, lesions that could not be accurately discriminated from surrounding 
tissues (ie, lung nodule adjacent or within atelectasis) or from other adjacent lesions at baseline 
or follow-up CTs (i.e., confluent metastases) were not delineated and excluded.  

Morphological Image Processing 

Imaging data and lesion segmentations were resampled to a common 1�×�1�×�1 mm3 voxel 
size using bi-linear and nearest neighbor interpolation, respectively. The original lesion 
segmentation denoting the lesion boundaries was analyzed as the intratumoral region (whole 
lesion). From this intratumoral mask, an additional three segmentations containing sub-volumes 
of interest were generated using standard morphological processing (Figure 1): the lesion core 
and internal and external rims. A ball-shaped structuring element, with a radius spatially 
equivalent to 2 mm, was used to perform the morphological operations.  
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Figure 1: Standard morphological processing to define sub-volumes of interest. Corresponding schematic
representations and examples are shown for illustrative purposes.  

The intratumoral mask was eroded to isotropically contract the lesion boundary; the remaining
voxels in the mask were analyzed as the lesion core. Voxels in the lesion core were eliminated
from the intratumoral mask, leaving a mask containing a ring of lesion analyzed as the internal
peritumoral region or internal rim. The intratumoral mask was dilated to isotropically expand the
lesion boundary. Voxels included in the original intratumoral mask were eliminated from the
dilated mask, leaving a mask containing a ring of lung parenchyma analyzed as the external
peritumoral region or external rim.  

Radiomic Feature Extraction  

Radiomic features were extracted per the process championed by the Imaging Biomarker
Standardization Initiative (IBSI) [13], which is implemented with the open-source software
package PyRadiomics (version 3.0.1) [12]. For each lesion and corresponding sub-volumes of
interest, a total of 1648 features were calculated; features include first-order statistical
measures, histogram, shape and size descriptions, Grey Level Co-occurrence Matrix (GLCM),
Grey Level Run Length Matrix (GLRLM), Grey Level Size Zone Matrix (GLSZM) and
Neighboring Grey Tone Difference Matrix (NGTDM) features.  

Data Analysis 

Response Categorization 

A lesion-wise evaluation of relative change in volume between baseline and follow-up was
performed using PyRadiomics (version 3.0.1); the shape descriptive radiomic feature
‘VoxelVolume’ of the intratumoral mask defined the lesion volume at baseline and after 2 cycles
of systemic therapy, respectively. Population-specific outliers were removed using a median
absolute deviation outlier detection method, based on the lesion volume at baseline [26].
Percent change in volume with respect to baseline was evaluated as a metric of treatment
response. A response threshold, Tr, was defined such that lesions that experienced a positive
volume change greater than Tr were labeled as ‘progressive’; all other lesions were labeled as
‘non-progressive’.  
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Response Prediction 

Firstly, features not robust with respect to the segmentation process were removed as 
previously described [27]. Briefly, each lesion segmentation was eroded and dilated isotropically 
by 1 mm (implemented with scikit-image module, version 0.16.2) and radiomic features that 
exhibited a concordance correlation coefficient below 0.8 between the original segmentation 
and each of the derived ones were dropped [28]. Then, a correlation analysis was performed: 
radiomic features were hierarchically clustered using the agglomerative unweighted pair group 
method with arithmetic mean (implemented with scipy version 1.7.1). A distance metric of 0.5 
was used to define the main clusters; from these clusters, the medoid of each cluster was 
selected as a representative feature. To eliminate potential confounding effects with lesion 
volume, correlation was assessed and cluster-generated features with an absolute volume-
correlation coefficient greater than 0.20 were removed [29]. 
 
From the reduced feature set, up to 4 radiomic features were selected for model inclusion using 
the SelectKBest method from the sklearn module (version 1.2.1) [30]. For classification tasks, 
this supervised method calculates the ANOVA F-values between the target and each feature, 
sorts them and selects the K best features. Logistic modeling was considered for the 
classification task. Five models were tested in total for each arm: one model with baseline 
volume only, one model with baseline volume plus one selected radiomic feature, and so on. To 
account for any potential class imbalance between response categories, we employed a 
stratified 10-fold cross validation to fit the data for each modeling strategy using sklearn’s 
RepeatedStratifiedKFold [31]. This procedure splits the dataset in such a way that preserves the 
same class distribution (i.e., the same percentage of sample of each class, in our case 
progressive and non-progressive lesions) in each subset/fold as in the original dataset. 
However, a single run of StratifiedKFold might result in a noisy estimate of the model's 
performance, as different splits of the data might result in very different results. As its name 
suggests, RepeatedStratifiedKFold allows improving the estimated performance of a machine 
learning model, by simply repeating the cross-validation procedure multiple times (according to 
the n_repeats value, which was set to 5 for this study), and reporting the mean result across all 
folds from all runs. This mean result is expected to be a more accurate estimate of the model's 
performance. The best performing model was defined as the model which minimized the 
negative log likelihood. Model performance was quantified using Area Under the Curve for the 
Receiver Operating Characteristic (AUROC) and Precision-Recall (AUPRC) curves as well as 
the evaluation of Matthew's Correlation Coefficient (MCC) [32]–[34]. A paired Wilcox test was 
used to test for differences in performance distribution for the model with volume alone versus 
the best performing model.     

Sensitivity Analysis 

The response prediction task was repeated for an additional two subgroups. A median absolute 
deviation (MAD) outlier detection method was applied to identify population-specific outliers, 
based on the lesion volume at baseline [26]. The first subgroup was isolated by removing the 
population-specific outliers and the second subgroup consisted of the outliers themselves. For 
the latter case where smaller sample sizes are expectedly smaller, fewer folds were considered 
for the cross-validation, on the condition that each train/test group of data samples was 
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representative of the broader dataset. A modified Z-score calculated using MAD is considered a 
robust measure to identify outliers. It replaces standard deviation or variance with median 
deviation and the mean with the median. The result is a method that isn’t as affected by outliers 
as using the mean and standard deviation. Lesions were considered outliers if their absolute 
modified Z-score was greater than 3 [35].  

Statistics 

Descriptions of the patient and lesion population are expressed in terms of median values and 
the interquartile range (IQR). Relative volume change was assessed as a continuous variable 
and converted into a binary response category by imposing the response threshold Tr; 
frequency and percentage are used to describe the response category distribution. Performance 
of the predictive models are expressed in terms of their mean with associated 95% confidence 
interval (CI); significance was evaluated by permutation tests (1000 data permutations) [36]. 
The False Discovery Rate (FDR) approach was used for multiple testing corrections [37]. 
 

Results 

Data Collection and Generation 

A total of 80 patients were found to have at least one lesion that met the inclusion criteria for our 
study. Of these patients, 33 received Doxorubicin Monotherapy (DM) and 47 received 
Doxorubicin plus Evofosfamide (DE). The number of contoured lesions per patient ranged from 
1-11, with 54/80 or 67.5% of patients with two or more lesions; a total of 202 contoured lesions 
were included in the analysis, of which 90 received DM and 112 received DE. Median volume of 
delineated lesions at baseline was 4.17 cc (IQR 2.26 to 9.68). Median time between baseline 
and follow-up CT was 1.67 months (IQR 1.47 to 1.87). 
 
Radiomic features were extracted from original images as well as from different image 
transformations including five Laplacian of Gaussian filters (σ = 1.0, 2.0, 3.0, 4.0, 5.0 mm), eight 
wavelets decompositions, and four non-linearities (exponential, square, square root and 
logarithm). This generated a set of 6,592 features (1,648 features per sub-volume of interest X 4 
sub-volumes of interest). After evaluating robustness to segmentation, 1,452 features (363 
features per sub-volume of interest X 4 sub-volumes of interest) were removed. Unsupervised 
feature selection using clustering identified 75 features representative of highly correlated sets 
of radiomics features. After removing radiomic features at a volume-correlation coefficient 
threshold of 0.20, 32 features remained. 

Data Analysis 

Using a response threshold (Tr) of 50%, the fraction of progressive lesions was 15.6% and 
24.1% for the DM and DE regimes, respectively (Figure 2). Of the patients with 2 or more 
lesions, 18.5% exhibited differences in individual lesion response. Significant differences in 
baseline volume were observed between lesion response categories (Figure 3).  
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Figure 2: Distribution of relative volume change by lesion volume at baseline. Lesions are colored by response
category as determined by Tr: blue indicates a progressive lesion; green indicates a non-progressive lesion. Lesions
are displayed in ascending order of baseline volume. 

 
Figure 3: Significant differences observed in lesion volume at baseline by treatment regimen. Population-specific
outliers in terms of baseline volume removed for visualization purposes. Annotation for FDR: {‘**’: 0.001 < p <= 0.01}. 
 

For response prediction, 5 models were cross-validated for each treatment regimen (i.e., 1
model with baseline volume, 1 model with baseline volume and 1 radiomic feature, and so on);
this process was repeated for 2 additional subgroups based on lesion volume on baseline. The
subgroups were determined using the Median Absolute Deviation (MAD) outlier detection
method: lesions that had an absolute modified Z-score less than 3 were considered as the first
subgroup. Lesions that had an absolute modified Z-score greater than 3 (i.e., outliers in terms of
baseline volume) were considered as the second subgroup. Given the distribution of lesion
volume included in this study, lesions were considered outliers if their volume at baseline was
greater than 16.05 cc.  
 
For both the DM and DE regimen, the best performing model consisted of 5 radiomic features,
fit using all lesions, irrespective of baseline volume (Table 1). While the model for the DM
regimen reached significance (FDR = 0.01), the model for the DE regimen only trended towards
significance (FDR = 0.07). Notably, the performance for the DE model was significantly different
from the volume-only model (p = 1.4X10-7 for AUPRC). Of the 5 features ultimately selected for
each model, 3 were the same for both models (lesion volume at baseline and 2 gray-level
dependance matrix features). Generally speaking, the AUROC was higher than the AUPRC, as
expected, given the class imbalance. The AUPRC suggests an approximate 4.7 and 2.4-fold
increase in predictive capacity compared to a no-skill classifier for the DM and DE models,
respectively. The MCC for the DM model indicates a moderate positive relationship between the
features and the classification target, whereas the MCC for the DE model indicates a negligible
relationship.  
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The MCC for the DM model was higher when outliers were removed, indicating a strong positive 
relationship. For outlier lesions in terms of baseline volume, it was not possible to fit a model 
within our cross-validation framework for lesions receiving DM, as the sample size and number 
of progressive lesions were too small. For the same subgroup of lesions receiving DE, there 
were 20 lesions (of which 3 were progressive); given this distribution, we attempted to fit a 
model with 3-fold cross-validation instead of 10-fold, such that each split would have at least 
one progressive lesion. The AUPRC for this result suggests a 5.5-fold increase in predictive 
capacity compared to a no-skill classifier. The MCC for this subset indicates a moderately 
positive relationship between the features and the response outcome. This should however be 
interpreted separately from the other models and with some caution due to the sample size and 
reduced number of folds for the cross-validation.  
 
Table 1: Summary of model performance for the prediction of pulmonary lesion-specific systemic treatment 
response. Model performance expressed with AUROC, AUPRC and MCC and associated 95% CI; significance 
indicated by the p-value (FDR) by permutation tests with n=1000 permutations. *For the outlier subgroup receiving 
DM, the number of progressive lesions was too small (1) to perform cross-validation; for the outlier subgroup of 
lesions receiving DE, cross-validation was performed with 3-folds as there were only 3 progressive lesions.  

 Subgroup 

All lesions |Z| <= 3 |Z| > 3 

DM 

Number of Features 5 4 n/a* 

Number of Lesions (% 
Progressive) 

90 (15.6%) 77 (16.9%) 13 (7.7%) 

Distribution 

   

AUROC [95% CI] 0.82 [0.77,0.87] 0.83 [0.78,0.89] n/a* 

AUPRC [95% CI] 0.74 [0.68,0.81] 0.79 [0.73,0.85] n/a* 

MCC [95% CI] 0.32 [0.23,0.40] 0.45 [0.36,0.54] n/a* 

p (FDR) 0.001 (0.01) 0.001 (0.01) n/a* 

DE 
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Distribution 

   

Number of Features 5 3 2 

Number of Lesions (% 
Progressive) 

112 (24.1%) 92 (26.4%) 20 (15.0%) 

AUROC [95% CI] 0.70 [0.67,0.74] 0.70 [0.67,0.74] 0.91 [0.87,0.97]* 

AUPRC [95% CI] 0.57 [0.53,0.61] 0.57 [0.53,0.61] 0.82 [0.72,0.93]* 

MCC [95% CI] 0.05 [0.01,0.10] 0 [-0.03,0.06] 0.33 [0.16,0.51]* 

p (FDR) 0.005 (0.072) 0.023 (0.294) 0.017 (0.227)* 

Discussion 

Monitoring size changes in a cancerous lesion is an important aspect of cancer management, 
as it can provide valuable information about the tumor's response to treatment and its potential 
for progression. Through careful evaluation of these changes in volume over time, healthcare 
professionals can make informed decisions about treatment strategies, including adjusting 
treatment doses or switching to alternative therapies [38]. Predicting these lesion-specific 
responses, however, represents a paradigm shift and could present an opportunity to augment 
existing clinical decision making criteria [39]. In this work, we investigated the utility of radiomic 
biomarkers for prediction of lesion-specific systemic treatment response in pulmonary 
metastases and achieved a strong predictive value for lesions receiving doxorubicin 
monotherapy. 
 
Most published radiomic studies extract radiomic features from only one lesion, even in multi 
metastatic patients. While analyzing a single lesion may be less time-consuming and involve 
simpler mathematical models, it may also lead to misevaluation of the cancer inter-lesion 
heterogeneity [7], [17], [40], [41]. This is especially consequential in the context of predicting 
patient-specific outcomes such as overall treatment response or patient survival; hence, we 
sought only to predict tumor response at a lesion level.  
 
Trebeschi et al developed a radiomics signature to do exactly this using a cohort of 203 patients 
receiving immunotherapy (123 patients with non-small cell lung cancer (NSCLC) and 80 
melanoma patients) [18]. In their study, although the radiomic biomarker on 303 lesions from the 
70 patients of the test reached significant performance (AUROC = 0.66 , p < 0.01), only a trend 
towards significance was obtained from the nodal metastases in melanoma patients (AUROC = 
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0.64, p = 0.05) and application of the signature was not significant for pulmonary and hepatic 
melanoma lesions (AUROC = 0.55). However, in their NSCLC cohort, significant performance 
was observed in pulmonary (AUROC = 0.83, p < 0.001) and nodal metastases (AUROC = 0.78, 
p < 0.001). Sun et al confirmed the association of their previously-validated radiomic score 
(CD8-Rscore) with response to immunotherapy at lesion level and patient level in 136 patients 
with advanced melanoma [17]. Notably, predictivity of lesion response using their CD8-Rscore 
was dependent on the tumor location, with moderate predictive value for subcutaneous lesions 
(AUROC = 0.65, p = 0.007), and large hepatic (AUROC = 0.70, p = 0.002) and nodal 
metastases (AUROC = 0.62, p = 0.03), but no significant association was found for pulmonary 
lesions.  
 
In terms of model performance, our predictive value (AUROC) values align quite closely with 
these studies. It is important to note, however, that due to the class imbalance in our dataset, 
AUROC is not the most appropriate measure of model performance. We were most interested 
in predicting progressive lesions, and the fraction of these were less than 0.5 (i.e., the classes 
were not balanced). For this, the AUPRC is more informative, as this measure concerns itself 
with finding all the progressive lesions (recall) without accidentally marking any non-progressive 
as progressive (precision). The baseline for this metric is equal to the fraction of progressive 
lesions. For example, the set of lesions receiving DM consists of 16.9% progressive examples 
and 83.1% non-progressive examples, which sets the baseline AUPRC at 0.169. Obtaining an 
AUPRC of 0.79 represents a 4.7-fold increase from baseline or a no-skill classifier. This is 
further reflected in the MCC measure, which takes into account true and false positives and 
negatives and is generally regarded as a balanced measure. The stark difference observed 
between the metrics presented here underscore the need for thoughtful choice when it comes to 
assessing model performance [34]. 
 
The aforementioned studies that perform lesion level response prediction align with existing 
response criteria in that a relative change in diameter was evaluated between baseline and 
follow-up [38]. In our study, we evaluated a relative change in volume to define lesion level 
response where, to our knowledge, no such response criteria currently exist. Results from the 
literature agree that volume measurement is a method with superior performance in lung tumor 
sizing, as well as in assessing tumor growth [42], [43]. However, measuring tumor volume is not 
always straightforward, as tumors can have irregular shapes and may be difficult to accurately 
measure using imaging techniques [44]. Reported volume measurement errors in lung lesions 
vary between 20% and 25%; therefore, any relative change in volume beyond this could be 
considered to define a significant growth [45]–[47]. In our study, we implemented a conservative 
response threshold of 50%.  
 
Using this threshold, we observed that in patients with 2+ lung metastases, 18.5% of patients 
had a mixed response (at least 1 progressive lesion and 1 non-progressive lesion). This is 
consistent with the study from Trebeschi et al, which also found that combined predictions made 
on individual lesions was associated with OS with a significant survival difference at 1 year of 
25% (77% vs 52%, log rank p = 0.02). Mixed response has been linked with poorer outcomes in 
several advanced cancer types [18], [48]–[51]; as such, it would not be unexpected to observe 
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the same in our dataset. Curiously, the model for lesions receiving DM was able to achieve 
significant performance, especially compared to the model for lesions receiving DE. It is 
possible that there is an underlying biological effect which could explain lesion response to DE 
that imaging is simply not as sensitive to. The differential performance observed between the 
models for the DM and DE regimens is again consistent with Trebeschi et al; predictive 
performance for lesion level response prediction was evaluated and variation in AUROC was 
observed between intervention types (immunotherapy versus chemotherapy)[18]. 
 
Baseline lesion volume was significantly different between response categories, irrespective of 
treatment. Specifically, we observed that progressive lesions were smaller in size compared to 
non-progressive lesions. Evofosfamide becomes activated in hypoxic, low pH environments 
which have been shown to be present in sarcoma but is usually associated with larger 
sarcomas or sarcomas with more tumor heterogeneity related to differences in blood perfusion 
and/or tumor necrosis[24]. It is possible that smaller and/or more homogeneously enhancing 
lesions would not contain the type of environment leading to activation of evofosfamide, which 
may explain our observation in the DE regimen. Mathematical models for tumor growth kinetics 
have been widely used in precision oncology. One of the main findings from early studies is that 
tumor growth is not entirely exponential; over time, left unperturbed, the specific growth rate of a 
tumor can slow down[52]. The lesion growth in our study was perturbed in the sense that an 
intervention was given, hence it is unclear if our observation can be fully explained theoretically. 
 
Given the difference in baseline volume between response categories, we removed volume-
correlated radiomic features from our analysis. Previous work has shown that removal of these 
volume-dependent features can negatively affect model performance in the setting of patient-
level risk stratification. Although removing these features may have ultimately affected our 
model performance, we believe that machine learning methods should have a good trade-off 
between transparency, performance and quality of fit. Both models included a feature calculated 
from a derived sub-volume of interest (the lesion core and interior rim). To this end, our results 
align with Sun et al, as 3 features in their validated signature are sourced from a peripheral ring 
[53]. While we would not expect the features to be the same as the task is different (predicting 
immunotherapy versus chemotherapy response), the inclusion of peritumoral features is 
nonetheless interesting and likely worth further exploration in future radiomics studies.  
 
Our study has potential limitations. While our model achieved strong performance to predict 
lesion-specific systemic treatment response in pulmonary metastases, relying solely on volume 
changes at one site may not provide a comprehensive picture of the tumor's behavior. Cancer is 
a complex disease that can spread to other areas of the body, and metastatic lesions may 
behave differently with respect to one another and the primary tumor. We chose to focus on the 
lung as it was the most common metastatic site in our patient population and therefore 
represented the most populous lesion population which was therefore less prone to produce 
statistical issues related to overfitting and multiple testing. The lung is also a common metastatic 
site in many other cancers, including but not limited to colorectal, head and neck, breast and 
urologic cancers [54]. Conducting prospective validation studies in LMS and other sarcomas will 
provide important evidence regarding the clinical utility and generalizability of your signature 
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across different tumor types. It will help assess the performance of the model in real-world 
settings and validate its ability to predict lesion-level response accurately. Furthermore, 
monitoring multiple sites within a patient's tumor can provide valuable insights into the 
heterogeneity of treatment response. Tumors can exhibit spatial variation in their response to 
therapy, with some sites showing a positive response while others may not. By monitoring 
multiple sites, it is possible to gain a more comprehensive understanding of the tumor's overall 
response to treatment. We leave prospective validation, extension to other sarcomas, and 
monitoring of multiple sites for future work. 

Conclusion 

In this work, we present a radiomic-based model to predict lesion-level response to standard 
systemic treatments for metastatic LMS patients. This novel approach has the potential to 
contribute to personalized treatment approaches and facilitate more effective decision-making in 
the management of metastatic patients towards improved patient outcomes and optimized 
treatment strategies. Continued research and validation efforts can further strengthen the 
evidence base and potentially translate our findings into clinical practice for the benefit of 
patients. 
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Selected Features 

 
Table S1: Summary of radiomic features included in best performing models for the prediction of pulmonary lesion-
specific systemic treatment response.  

Group 

Radiomic Feature 

Filter Class Name 

DM 

Wavelet-HHH GLDM Large Dependance High Gray Level Emphasis 

LOG (� = 4mm) GLCM Cluster Tendency (lesion core) 

Wavelet-HHL GLDM Large Dependence Emphasis 

Wavelet-LLH First Order Average Intensity (lesion core) 

- Shape Voxel Volume 

DE 

Wavelet-HHH GLDM Large Dependance High Gray Level Emphasis 

Wavelet-HHL GLDM Large Dependence Emphasis 
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Logarithm GLCM Sum of Squares (lesion core) 

LOG (� = 5mm) First Order Variance (interior rim) 

- Shape Voxel Volume 
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