1	
2	
3	
4	
5	Early initiation of polymyxin B hemoperfusion therapy for cancer patients with
6	refractory septic shock
7	
8	Short title: Early PMX-DHP initiation for septic shock
9	
10	
11	
12	
13	
14	
15	Jae Hoon Lee, Won Ho Han*
16	
17	Critical Care Medicine, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si
18	10408, Gyeonggi-do, Republic of Korea
19	
20	
21	
22	
23	
24	*Corresponding author:
25	E-mail. 13408 @ncc re kr (WHH) has not been certified by peer review and should not be used to guide clinical practice.

26 Abstract

Purpose: In this study, we analyzed correlations between 28-day mortality and 27 hemodynamic changes, measured using polymyxin B-immobilized fiber column direct 28 hemoperfusion initiation time, in patients with cancer with refractory septic shock. Materials 29 30 and methods: We retrospectively analyzed 45 patients with cancer who received polymyxin B-immobilized fiber column direct hemoperfusion due to refractory septic shock. Patients 31 were categorized into early (<12 h between refractory septic shock and initiation of 32 33 polymyxin B-immobilized fiber column direct hemoperfusion) and late (>12 h) initiation groups. Changes in vasoactive inotrope scores, sequential organ failure assessment scores. 34 35 and PaO₂/FiO₂ ratios before and 24 h after polymyxin B-immobilized fiber column direct hemoperfusion, were compared. Results: Univariable analysis showed that 28-day mortality 36 risk was associated with diabetes mellitus (odds ratio=3.081; 95% confidence interval 37 38 =1.290–7.360; p=0.011), lactic acid (odds ratio=1.010; 95% confidence interval =1.005– 1.014; p<0.0001), and sequential organ failure assessment score (odds ratio=1.190; 95% 39 confidence interval =1.044-1.357; p=0.009). Multivariable analysis showed that 28-day 40 mortality risk was associated with diabetes mellitus (odds ratio=2.718; 95% confidence 41 interval =1.013-7.291; p=0.047), early initiation (odds ratio=0.268; 95% confidence interval 42 43 =0.094–0.765; p=0.014), and lactic acid (odds ratio=1.009; 95% confidence interval =1.004– 1.014; p < 0.0001). Overall survival was slightly higher in the early than in the late initiation 44 group (p=0.0515). Comparisons of variables before and 24 h after polymyxin B-immobilized 45 46 fiber column direct hemoperfusion revealed that vasoactive inotrope scores decreased in both the early and late groups ($\Delta 318 \text{ vs. } \Delta 114$; p=0.001 and p=0.005, respectively), whereas the 47 PaO_2/FiO_2 ratio slightly increased ($\Delta 127.5 vs. \Delta 95.6$; p=0.350 and p=0.390, respectively) 48 49 over time. Conclusions: In patients with cancer with refractory septic shock, early initiation

50 of polymyxin B-immobilized fiber column direct hemoperfusion reduced inotrope-

51 vasopressor requirement and 28-day mortality.

52

53 Keywords: sepsis; 28-day mortality; risk factors; hemodynamics; respiratory function; organ
54 failure

55

56 Introduction

Sepsis causes life-threatening organ dysfunction through dysregulation of host 57 responses to infection [1]. Eleven million of the 49 million people that contract sepsis 58 59 globally each year die, equivalent to a total global mortality of 19.7%. However, sepsis-60 related mortality has shown a decreasing trend with an increase in early detection and improvements in therapeutic strategies [2]. Sepsis is a significant risk factor in 61 62 immunocompromised patients with cancer undergoing treatment, as well as in those with a known poor prognosis. The incidence of sepsis is 3- to 5-fold higher in patients with cancer, 63 at 16.4 cases per 1.000 persons, than in those without. Furthermore, the proportion of sepsis-64 related mortality is approximately 3-fold higher than that of annual cancer deaths (10% vs. 65 37.8%), although mortality rates vary across cancer types [3]. 66

Polymyxin B-immobilized fiber column direct hemoperfusion (PMX-DHP) is a
potential therapy developed in 1994 to reduce blood endotoxin levels and treat septic shock,
which effectively enhances hemodynamics and respiratory functions in patients with septic
shock, caused by intra-abdominal infection [4]. However, whether it contributes to survival
and prevents organ failure is controversial, and there are no established guidelines on the best
time to perform PMX-DHP [5-8].

To date, studies on PMX-DHP have mainly targeted patients with no cancer, and
there is a scarcity of literature on patients with cancer. This prompted the present

investigation, in which we analyzed the correlation between PMX-DHP initiation time and
28-day mortality in patients with cancer with refractory septic shock. Additionally, we aimed
to verify whether hemodynamics, sequential organ failure assessment (SOFA) scores, and
oxygenation levels improve following PMX-DHP treatment.

79

80 Materials and methods

This single-center, retrospective study was conducted in 45 patients with cancer aged 81 \geq 18 years, who received PMX-DHP to treat septic shock, at the intensive care unit of our 82 institution between October 2019 and March 2023. Septic shock was identified based on the 83 84 criteria established for identification of sepsis and septic shock (Sepsis-3), including the requirement of vasopressors to maintain a mean arterial pressure (MAP) of \geq 65 mm Hg and a 85 serum lactate level of $\geq 2 \text{ mmol/L}$ in the absence of hypovolemia according [1]. PMX-DHP 86 87 was administered to patients who voluntarily consented to the treatment. Refractory septic shock was defined as the requirement of $\geq 0.5 \,\mu g/kg/min$ of norepinephrine or an additional 88 dose of vasopressin to maintain MAP of >65 mmHg [9]. We administered IV hydrocortisone 89 at a dose of 200 mg/d, provided as 50 mg intravenously every 6 hours, to all patients 90 diagnosed with refractory septic shock. 91

92 For PMX-DHP, the blood flow rate was set at 100 mL/min and controlled by the attending physician depending on the patient's state to maintain a steady rate. For 93 anticoagulation, 20–40 mg/h of nafamostat mesylate, a synthetic serine protease inhibitor, 94 95 was administered. The duration of PMX-DHP was 2 h or more; the infusion time and frequency were determined by the attending physicians [10,11]. Patients who received PMX-96 DHP treatment within 12 h from the diagnosis of refractory septic shock were assigned to the 97 98 "early initiation" group, while those who were treated after 12 h or more had elapsed since their diagnosis were assigned to the "late initiation" group. 99

100	The following	g patient cha	aracteristics	were entered a	as variables	for the ana	lvses: age.
							- <i>j</i> = = =

- sex, underlying disease (diabetes mellitus (DM), hypertension, cerebrovascular accident,
- 102 chronic kidney disease, and chronic obstructive pulmonary disease), cancer type (intra-
- abdominal/genitourinary/lung/others), pre-PMX-DHP laboratory data (absolute neutrophil
- 104 count, platelet count, C-reactive protein, lactic acid levels, procalcitonin, creatinine levels,
- 105 PaO₂/FiO₂ ratio), severity (acute physiology and chronic health evaluation III (APACHE
- 106 III)), SOFA score, PMX-DHP frequency, vasoactive inotrope scores (VIS), primary infection
- site (lung, abdominal, genitourinary, others), microbiological culture, mechanical ventilator,
- 108 intervention, surgical intervention, and 28-day mortality.
- 109 VIS were measured as follows [12]:

110

- $\begin{array}{l} \textit{VIS} = \textit{dopamine dose} \left(\mu g/kg/min \right) + \textit{dobutamine dose} \left(\mu g/kg/min \right) + 100 \\ \times \textit{epinephrine dose} \left(\mu g/kg/min \right) + 10 \times \textit{milrinone dose} \left(\mu g/kg/min \right) \\ + 10,000 \times \textit{vasopressin dose} \left(\textit{units/kg/min} \right) + 100 \\ \times \textit{norepinephrine dose} \left(\mu g/kg/min \right) \end{array}$
- Using patient data, correlations of the aforementioned variables with PMX-DHP
 initiation time (early initiation group <12 h; late initiation group >12 h) were assessed by
 calculating differences in values reported before and 24 h after PMX-DHP. This study was
 approved by the Institutional Review Board of the National Cancer Center (Approval No.:
 NCC2023-0170). The data access period for the manuscript is from July 3, 2023, the date
 IRB approval, to July 21, 2023. The requirement for the acquisition of informed consent from
 patients was waived owing to the retrospective nature of this study.

118

119 Statistical analysis

120 Continuous variables are expressed as mean \pm standard deviation or median

121 (minimum-maximum or range). Categorical variables were compared between groups using

- the Pearson χ^2 and Fisher's exact test, and continuous variables were compared using *t*-tests
- 123 for parametric and the Wilcoxon rank sum test for nonparametric data. Statistical significance

124	was set at $p < 0.05$. The final set of variables in the multivariable model were selected via
125	backward elimination in the univariable analysis, with $p < 0.1$. All statistical analyses were
126	performed using SAS® version 9.4 for Windows® (SAS Institute, Cary, NC, USA).
127	

128 **Results**

129 Characteristics of the patient group undergoing PMX-DHP

130 treatment

A total of 45 patients received PMX-DHP for refractory septic shock. Patients' mean 131 age was 64.4 years, and 24 patients (53.5%) died within 28 days due to multi-organ failure 132 caused by septic shock. The most frequent type of cancers were genitourinary (53.3%), intra-133 abdominal cancers (31.1%), and lung cancer (8.9%). The most frequent primary infection site 134 was the abdomen (64.4%), followed by the lung (20.0%), and the genitourinary tract (11.1%). 135 136 Gram-negative bacteria were the most common microorganism (62.5%). The median inotropes-vasopressor requirement (VIS) to maintain an MAP \geq 65 mmHg was 289.7 (9–913). 137 The mean APACHE III score before PMX-DHP was 93.9±29.2, while the mean SOFA score 138 139 was 13.2±3.3. Additionally, 41 patients underwent mechanical ventilation (91.1%) and the median PaO₂/FiO₂ ratio was 141.2 (20.2–534.3) (Table 1). 140

141

142 Table 1. Characteristics of patients treated with PMX-DHP.

	Patients (N=45)	Percentage (%)	
Sex			
Male	19	42.2	
Female	26	57.8	

 64.4 ± 11.7

Underlying disease

Diabetes mellitus	13	28.9
Hypertension	21	46.7
Cerebrovascular accident	6	13.3
Chronic kidney disease	2	4.4
Chronic obstructive pulmonary	1	2.2
disease		
Type of cancer		
Intra-abdominal	14	31.1
Genitourinary	24	53.3
Lung	4	8.9
Others	3	6.7
APACHE III	93.9 ± 29.2	
SOFA	13.2 ± 3.3	
No. of PMX-DHP* treatment		
#1	38	84.4
>#2	7	15.6
VIS	289.7 ± 220.5	
Primary infection site		
Lung	9	20
Abdominal	29	64.4

5

2

11.1

4.4

7

Genitourinary

Others

Laboratory values

ANC (/uL)	1575.5 (0–30589)	
Platelet count (10 ³ /uL)	107 (2–299)	
CRP [#] (mg/dL)	15.5 (0.1–30.5)	
Lactic acid (mg/dL)	95 (13.6–353.4)	
Procalcitonin (mg/mL)	30.2 (0.4–526.6)	
Creatinine (mg/dL)	1.5 (0.3–7.7)	
P/F ratio	141.2 (20.2–534.3)
Positive culture		
G(-)	25	62.5
G(+)	11	27.5
Mixed	4	10
Mechanical ventilation	41	91.1
Intervention	14	68.9
Operation	16	64.4
28-day mortality		
Alive	21	46.7

143 ANC: absolute neutrophil count; APACHE III: Acute Physiology and Chronic Health

144 Evaluation III (APACHE III); CRP: C-reactive protein; G(-): Gram-negative bacteremia;

145 G(+): Gram-positive bacteremia; P/F ratio: ratio of arterial oxygen partial pressure to fraction

24

53.3

146 of inspired oxygen (PaO₂/FiO₂); PMX-DHP: polymyxin B-immobilized fiber column direct

147 hemoperfusion; SOFA: sequential organ failure assessment; VIS: vasoactive inotrope score

148 (dopamine dose ($\mu g/kg/min$) + dobutamine dose ($\mu g/kg/min$) + 100 × epinephrine dose

Death

(μg/kg/min) + 10 × milrinone dose (μg/kg/min) + 10,000 × vasopressin dose (units/kg/min) +
 100 × norepinephrine dose (μg/kg/min))

151

152	When patients were divided into two groups-early and late -based on the PMX-
153	DHP initiation time, the most frequent cancer type in both groups was genitourinary cancer
154	(early vs. late, 55.0% vs. 52.0%, respectively). The disease severity indices (i.e., median
155	APACHE III and SOFA scores) did not vary significantly between the two groups (APACHE
156	III score: 95.5 (41–144) vs. 94 (36–159), p=0.427; SOFA score: 13 (6–18) vs. 14 (7–21),
157	p=0.270). The VIS was higher in the early group than the late group (372.5 [15–913] vs. 213
158	[9-847], $p=0.020$). In both groups, the abdominal area was the most frequent primary
159	infection site (60% vs. 68%). Gram-negative bacteremia was the most commonly detected
160	bacteria on microbiological culture in both groups (64.7% vs. 60.9%, p=0.309). Compared to
161	that of the early initiation group, the late initiation group showed a slightly higher rate of
162	gram-positive bacteremia (17.6% vs. 34.8%), a higher rate of intervention to infection source
163	control (15% vs. 44%, p=0.037), a lower frequency of surgical intervention (45% vs. 25%,
164	<i>p</i> =0.237), and a higher level of 28-day mortality (30% vs. 60%, <i>p</i> =0.045) (Table 2).

165

	Early (N=20)	Late (N = 25)	<i>p</i> -value
Sex			
Male	9 (45.0%)	10 (40.0%)	0.736
Female	11 (55.0%)	15 (60.0%)	
Age	66.2 ± 11.2	62.9 ± 12.0	0.362

166 Table 2. Baseline characteristics of the early *vs.* the late initiation treatment group.

Underlying disease

	10 ((5 00))	10 (5 (00 ()	0.410
Diabetes mellitus	13 (65.0%)	19 (76.0%)	0.419
Hypertension	11 (55.0%)	10 (40.0%)	0.316
Cerebrovascular accident	5 (25.0%)	1 (4.0%)	0.074
Chronic kidney disease	1 (5.0%)	1 (4.0%)	1
Chronic obstructive pulmonary	1 (5.0%)	0 (0.0%)	0.444
disease			
Type of cancer			
Intra-abdominal	5 (25.0%)	9 (36.0%)	0.792
Genitourinary	11 (55.0%)	15 (52.0%)	
Lung	2 (10.0%)	2 (8.0%)	
Others	2 (10.0%)	1 (4.0%)	
APACHE III	97.8 ± 30.8	90.7 ± 28.1	0.427
SOFA	12.6 ± 3.2	13.7 ± 3.4	0.27
No. of PMX-DHP treatment			
#1	17 (85.0%)	21 (84.0%)	1
>#2	3 (15.0%)	4 (16.0%)	
VIS	365.9 ± 207.2	228.8 ± 215.5	0.02
Primary infection site			
Lung	3 (15.0%)	6 (24.0%)	0.411
Abdominal	12 (60.0%)	17 (68.0%)	
Genitourinary	4 (20.0%)	1 (4.0%)	
Others	1 (5.0%)	1 (4.0%)	
Positive culture			
G(-)	11 (64.7%)	14 (60.9%)	0.309

G(+)	3 (17.6%)	8 (34.8%)	
Mixed	3 (17.6%)	1 (4.3%)	
Mechanical ventilation	19 (95.0%)	22 (88.0%)	0.617
Intervention	3 (15.0%)	11 (44.0%)	0.037
Operation	9 (45.0%)	7 (28.0%)	0.237
28-day mortality			
Alive	14 (70.0%)	10 (40.0%)	0.045
Death	6 (30.0%)	15 (60.0%)	
ANC (uL)	1191 (0–22568)	2266 (0-30589)	0.097
Non-Neutropenia (ANC>1500)	9 (45%)	15 (62.5%)	0.246
Neutropenia (ANC<1500)	11 (55.0%)	9 (37.5%)	
Platelet count (10 ³ /uL)	117.5 (13–299)	96 (2–246)	0.289
CRP (mg/dL)	14.9 (0.1–27.3)	15.8 (1.1–30.5)	0.173
Lactic acid (mg/dL)	90.3 (13.6–353.4)	95 (26.1–262.9)	0.807
Procalcitonin (mg/mL)	44.5 (0.4–144.2)	20.7 (1.3–526.6)	0.34
Creatinine (mg/dL)	1.4 (0.3–7.7)	1.5 (0.4–4)	1
P/F ratio	121.8 (20.2–524)	156 (48.1–534.3)	0.576

167 ANC: absolute neutrophil count; APACHE III: Acute Physiology and Chronic Health

168 Evaluation III (APACHE III); CRP: C-reactive protein; G (-): Gram-negative bacteremia; G

169 (+): Gram-positive bacteremia; P/F ratio: ratio of arterial oxygen partial pressure to fraction

170 of inspired oxygen (PaO₂/FiO₂); PMX-DHP: polymyxin B-immobilized fiber column direct

171 hemoperfusion; SOFA: sequential organ failure assessment (SOFA); VIS: vasoactive

172 inotrope score

173

174 Overall survival in the early vs. late group

175	The number of deaths within 28 days from the initiation of PMX-DHP was compared
176	for both groups; six deaths were recorded in the early and 15 in the late initiation group
177	(Table 2). The survival rate was \geq 50% in the early group, and the median survival was 7 days
178	in the late group. While the 28-day overall survival was slightly higher in the early compared
179	to the late group, no significant difference was found ($p=0.0515$) (Fig 1).
180	
181	Fig 1. Estimation of overall survival according to initiation of polymyxin B-immobilized
182	fiber column direct hemoperfusion (PMX-DHP).
183	
184	Univariable and multivariable analyses of 28-day mortality
185	Our univariable analysis of 28-day mortality in patients with cancer with refractory
186	septic shock after PMX-DHP showed that DM (odds ratio (OR)=3.081; 95% confidence
187	interval (CI)=1.290-7.360; p=0.011), lactic acid levels (OR=1.010; 95% CI=1.005-1.014;
188	<i>p</i> <0.0001), and SOFA scores (OR=1.190; 95% CI=1.044–1.357; <i>p</i> =0.009) were correlated
189	with 28-day mortality. A multivariable analysis was performed using backwards selection
190	and the univariable analysis results; the results indicated that 28-day mortality was correlated
191	with DM (OR=2.718; 95% CI=1.013-7.291; <i>p</i> =0.047), early initiation (OR=0.268; 95%
192	CI=0.094–0.765; <i>p</i> =0.014), and lactic acid levels (OR=1.009; 95% CI=1.004–1.014;
193	<i>p</i> <0.0001) (Table 3).
10/	

195 Table 3. Univariable and multivariable analysis of 28-day mortality.

	Univariable ar	Univariable analysis		e analysis
	OR (95% CI)	<i>p</i> -value	OR (95% CI)	<i>p</i> -value
Sex	1.294 (0.549–3.049)	0.555		

Age	1.001 (0.065–1.038)	0.974		
Underlying disease				
Diabetes mellitus	3.081 (1.290–7.360)	0.011	2.718 (1.013-7.291)	0.047
Hypertension	1.098 (0.466–2.587)	0.83		
Cerebrovascular	1.206 (0.3555–4.097)	0.765		
accident				
Chronic kidney	4.025 (0.898–18.042)	0.069		
disease				
COPD	3.126 (0.409–23.917)	0.272		
Initiation of PMX-DHI				
Late				
Early	0.423 (0.163–1.093)	0.076	0.268 (0094–0.765)	0.014
Type of cancer				
Intra-abdominal	2.171 (0.274–17.166)	0.463		
Genitourinary	0.948 (0.119–7.578)	0.96		
Lung	2.205 (0.229–21.199)	0.494		
Others				
APACHE III	1.002 (0.988–1.017)	0.77		
SOFA score	1.190 (1.044–1.357)	0.009		
VIS	1.002 (1.000–1.004)	0.093		
Primary infection site				
Lung	1.258 (0.151–10.46)	0.832		
Abdominal	0.696 (0.090-5.362)	0.728		
Genitourinary	0.697 (0.063-7.694)	0.768		

medRxiv preprint doi: https://doi.org/10.1101/2023.09.21.23295886; this version posted September 25, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . Mechanical 5.373 (0.303-95.258) 0.252 ventilation Intervention 1.138 (0.459–2.821) 0.78 Operation 0.474(0.173 - 1.298)0.146 ANC (/uL) Non-Neutropenia (ANC>1500) Neutropenia 0.560(0.223 - 1.408)0.218 (ANC<1500) **Platelet count** 0.996 (0.990-1.002) 0.194 $(10^{3}/uL)$ CRP (mg/dL) 0.992 (0.938-1.049) 0.769 Lactic acid (mg/dL) 1.009 (1.004–1.014) <0.0001 1.010 (1.005-1.014) < 0.0001 Procalcitonin 0.990 (0.973-1.008) 0.281 (mg/mL) Creatinine (mL/dL) 1.165 (0.911-1.490) 0.223 **P/F** ratio 0.998(0.005 - 1.002)0.343

196 ANC: absolute neutrophil count; APACHE III: Acute Physiology and Chronic Health

197 Evaluation III (APACHE III); COPD: chronic obstructive pulmonary disease; CRP: C-

198 reactive protein; P/F ratio: ratio of arterial oxygen partial pressure to fraction of inspired

199 oxygen (PaO₂/FiO₂); PMX-DHP: polymyxin B-immobilized fiber column direct

200 hemoperfusion; SOFA: sequential organ failure assessment (SOFA); VIS: vasoactive

201 inotrope score; OR: odds ratio; CI: confidence interval.

203 Changes in values of variables after PMX-DHP treatment (early

vs. late initiation)

205	Comparison of variables before and 24 h after PMX-DHP showed that, in both
206	groups, VIS (p=0.001 vs. p=0.005, respectively) and creatinine levels (p=0.016 vs. p=<0.001)
207	significantly decreased after PMX-DHP. However, the decrease in the VIS was higher in the
208	early initiation group (Fig 2).
209	
210	Fig 2. Changes in variables associated with initiation of polymyxin B-immobilized fiber
211	column direct hemoperfusion (PMX-DHP): vasoactive inotrope score (VIS)
212	
213	In both groups, the platelet count ($\Delta 62.0 vs. \Delta 25.5$; $p=0.007 vs. p=0.061$,
214	respectively), lactic acid levels ($\Delta 37.5 vs. \Delta 33.2$; p=0.080 vs. p=0.083), and SOFA scores
215	($p=0.230$ vs. $p=0.022$) significantly decreased after PMX-DHP. After 24 h, the PaO ₂ /FiO ₂
216	ratio was higher in both groups ($\Delta 127.5 vs. \Delta 95.6$; $p=0.350 vs. p=0.390$, respectively), with
217	the degree of increase being slightly higher in the early initiation group (Table 4).
218	
210	Table 4 Changes in variables often DMV DHD treatment

Table 4. Changes in variables after PMX-DHP treatment.

	Before HP	After HP	<i>p</i> -value
Early initiation			
ANC (/uL)	1191 (0–22568)	3158.5 (0-23000)	0.083
Platelet count (10 ³ /uL)	117 (13–299)	55 (16 -165)	0.007
CRP (mg/dL)	14.5 (0.1–27.3)	18.5 (8.2–38)	0.015
Lactic acid (mg/dL)	73.7 (13.6–353.4)	36.2 (17.3–278.5)	0.080
Procalcitonin (mg/mL)	44.5 (0.4–144.2)	54.7 (19.1–307.3)	0.400

	Creatinine (mg/dL)	1.3 (0.3–6.6)	1.1 (0.3–2.6)	0.016
	P/F ratio	160 (20.2–524)	287.5 (37.2–498)	0.350
	SOFA score	11 (6–17)	10 (4–15)	0.230
	VIS	336 (15-736)	18 (0-693)	0.001
I	ate initiation			
	ANC (/uL)	2214.5 (1-30589)	11110.5 (4–35040)	0.830
	Platelet count $(10^3/uL)$	116 (3–246)	90.5 (0-138)	0.061
	CRP (mg/dL)	17.6 (4.4–30.5)	18.4 (2.3–39)	0.920
	Lactic acid (mg/dL)	82.4 (26.1–234.8)	49.2 (13–287.5)	0.083
	Procalcitonin (mg/mL)	22.7 (1.3–526.6)	19.7 (0.1–238.7)	0.110
	Creatinine (mg/dL)	1.5 (0.5–3.7)	1 (0.5–1.8)	< 0.0001
	P/F ratio	164.9 (48.1–134.3)	260.5 (66.6–544.4)	0.390
	SOFA score	13 (7–21)	12 (3–18)	0.022
	VIS	124 (9–496)	10 (0-451)	0.005

ANC: absolute neutrophil count; CRP: C-reactive protein; P/F ratio: ratio of arterial oxygen
 partial pressure to fraction of inspired oxygen (PaO₂/FiO₂); PMX-DHP: polymyxin B immobilized fiber column direct hemoperfusion; SOFA: sequential organ failure assessment
 (SOFA); VIS: vasoactive inotrope score

224

225 **Discussion**

This study was conducted to analyze the correlation between PMX-DHP initiation time and 28-day mortality in patients with cancer with refractory septic shock and to verify whether hemodynamics, SOFA scores, and oxygenation levels improve after PMX-DHP. A mortality rate of 53.3% related to refractory septic shock was observed in this study, which did not significantly differ from that of a previous meta-analysis of patients with cancer after

sepsis treatment (48–62%) [13]. However, the earlier reported mortality has been found to be 231 slightly higher than the 28-day mortality related to septic shock observed in our patients with 232 cancer who received PMX-DHP (19–37.7%) [7,8,14]. This may be due the 233 immunosuppressed nature of our patients which resulted in higher disease severity (APACHE 234 III score; SOFA score) than those in studies performed at other centers. Another possible 235 explanation could be that the treatment initiation in the present study occurred at a 236 237 comparatively more severe stage, as the initiation of PMX-DHP follows the diagnosis of refractory septic shock. 238

239 The results of this study demonstrate that the requirement for a vasoactive inotrope agent to maintain hemodynamics after PMX-DHP decreased in the early initiation group, 240 which led to a fall in 28-day mortality. The inotropes-vasopressor requirement decreased 241 242 (VIS, $\Delta 318 vs. \Delta 114$, p=0.001 vs. p=0.005) after PMX-DHP in both the early and the late group; however, the decrease was larger in the early than the late group. Before the treatment, 243 the requirement for a vasoactive inotrope agent to maintain hemodynamics was higher in the 244 early than the late group; this enabled a relatively faster detection of refractory septic shock 245 by the attending physician and thereby the administration of PMX-DHP, which reduced 28-246 day mortality. This implies that rapid administration of PMX-DHP within 12 h could improve 247 hemodynamics and prevent life-threatening organ failure, thereby contributing to a reduction 248 249 in mortality.

Through the modulation of activated mononuclear cells and neutrophils, PMX-DHP improves pulmonary oxygenation by suppressing inflammatory mediators and systemic inflammation [15]. In the current study, the PaO₂/FiO₂ ratio was higher in both groups after PMX-DHP, with a slightly larger increase in the early initiation group, although the difference was not statistically significant ($\Delta 127.5 vs. \Delta 95.6$; *p*=0.350 *vs. p*=0.390). The PaO₂/FiO₂ ratio was assessed 24 h after PMX-DHP in the current study; this fact might

explain the differences between ours and the findings of previous studies, where the target
was acute respiratory distress syndrome or acute lung injury and the PaO2/FiO2 ratio was
evaluated 72–96 h after PMX-DHP [5,10,15].

259 Studies have shown that PMX-DHP prevents acute kidney injury and renal tubular cell apoptosis by maintaining the acid-base balance and lowering the plasma concentrations 260 of lactate, creatinine, IL-6, and IL-10 [16]. In the current study, likewise, the creatinine level 261 decreased in both groups after PMX-DHP (early group, p=0.016 vs. late group, p<0.001). 262 However, this could not be confirmed to be an outcome of PMX-DHP, as most patients 263 264 (78%) also underwent continuous renal replacement therapy. In addition, studies where continuous renal replacement therapy and PMX-DHP were concurrently applied did not 265 report a reduction in mortality [17]. Moreover, creatinine levels did not significantly affect 266 267 28-day mortality in our patient sample, which corresponds with the results of previous studies. 268

Conventionally, the duration of PMX-DHP is 2 h; however, recent studies have reported that, in the event of endotoxin adsorption saturation, extending its duration to >2 h could enhance pulmonary oxygenation and hemodynamics, thereby reducing 28-day mortality [18–20]. The PMX-DHP duration in the current study was 15 h on an average. One or two additional treatments were performed by the attending physician; however, no significant correlation was found between the treatment frequency and 28-day mortality (OR=1.640; 95%CI=0.598–4.499; p=0.036).

The most common adverse effects of PMX-DHP are thrombocytopenia, transient hypotension, and allergic reactions [21]. Accordingly, the platelet count after hemoperfusion in the current study decreased in both the early and late initiation groups ($\Delta 62 vs. \Delta 25.5$; p=0.007 vs. p=0.061). The patients in our sample did not have transient hypotension or allergic reactions.

281	This study has certain limitations. First, this was a single-center, retrospective study
282	with a small sample size, which limits the generalizability of our findings. Second, we
283	focused on patients with refractory septic shock without initial measurements of endotoxin
284	levels, which limited our analysis of endotoxemia-targeted PMX-DHP treatment effects.
285	However, PMX-DHP is known to induce the absorption of endogenous cannabinoids,
286	activated neutrophils, and monocytes, modify the monocyte surface marker expression, and
287	be an effective treatment option for gram-positive bacteremia [15,22]. We can therefore infer
288	that PMX-DHP provides beneficial effects for both gram-negative and positive bacteremia.
289	Despite these limitations, this is the first study to assess the effects of PMX-DHP in
290	patients with cancer with refractory septic shock, and our findings confirm that the early
291	initiation of PMX-DHP, compared to its late initiation, can reduce 28-day mortality and the
292	inotropes-vasopressor requirement for maintaining hemodynamics. In the future, a
293	multicenter, large-scale, randomized, controlled study should be conducted to determine the
294	optimal initiation time.

295

296 **Conclusions**

In our sample of patients with cancer with refractory septic shock, the early initiation of PMX-DHP, compared to its late initiation, was effective in reducing 28-day mortality and the inotropes-vasopressor requirement for maintaining hemodynamics. Based on these findings, the optimal initiation time should be determined in a follow-up study.

301

302 Acknowledgements

303		The author thanks Dr. Jee hee-Kim for invaluable help and advice throughout the
304	study	and Ms. Mira Han for assistance with bioinformatics and statistics; and Editage for
305	Englis	h language editing.
306		
307	Data	a availability
308		All data generated or analyzed during this study are included in this published article.
309		
310	Ref	erences
311	1.	Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et
312		al. The third international consensus definitions for sepsis and septic shock (Sepsis-3).
313		JAMA. 2016;315: 801-810. doi: <u>10.1001/jama.2016.0287</u> .
314	2.	Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al.
315		Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for
316		the Global Burden of Disease Study. Lancet. 2020;395: 200-211. doi:10.1016/S0140-
317		<u>6736(19)32989-7</u> .
318	3.	Williams MD, Braun LA, Cooper LM, Johnston J, Weiss RV, Qualy RL, et al.
319		Hospitalized cancer patients with severe sepsis: analysis of incidence, mortality, and
320		associated costs of care. Crit Care. 2004;8: R291-R298. doi:10.1186/cc2893.
321	4.	Shimizu T, Miyake T, Tani M. History and current status of polymyxin B-
322		immobilized fiber column for treatment of severe sepsis and septic shock. Ann
323		Gastroenterol Surg. 2017;1: 105-113. doi:10.1002/ags3.12015.
324	5.	Cruz DN, Antonelli M, Fumagalli R, Foltran F, Brienza N, Donati A, et al. Early use
325		of polymyxin B hemoperfusion in abdominal septic shock: the EUPHAS randomized
326		controlled trial. JAMA. 2009;301: 2445-2452. doi: 10.1001/jama.2009.856.

327	6.	Payen DM, Guilhot J, Launey Y, Lukaszewicz AC, Kaaki M, Veber B, et al. Early
328		use of polymyxin B hemoperfusion in patients with septic shock due to peritonitis: a
329		multicenter randomized control trial. Intensive Care Med. 2015;41: 975-984.
330		doi: <u>10.1007/s00134-015-3751-z</u> .
331	7.	Dellinger RP, Bagshaw SM, Antonelli M, Foster DM, Klein DJ, Marshall JC, et al.
332		Effect of targeted polymyxin B hemoperfusion on 28-day mortality in patients with
333		septic shock and elevated endotoxin level. The Euphrates randomized clinical
334		trial. JAMA. 2018;320: 1455-1463. doi:10.1001/jama.2018.14618.
335	8.	Fujii T, Ganeko R, Kataoka Y, Furukawa TA, Featherstone R, Doi K, et al.
336		Polymyxin B-immobilized hemoperfusion and mortality in critically ill adult patients
337		with sepsis/septic shock: a systematic review with meta-analysis and trial sequential
338		analysis. Intensive Care Med. 2018;44: 167-178. doi:10.1007/s00134-017-5004-9
339		[published correction appears in Intensive Care Med. 2018 January 16].
340	9.	Bassi E, Park M, Azevedo LCP. Therapeutic strategies for high-dose vasopressor-
341		dependent shock. Crit Care Res Pract. 2013;2013: 654708. doi:10.1155/2013/654708.
342	10.	Mitaka C, Kusao M, Kawagoe I, Satoh D, Iba T, Ronco C. Impact of extended
343		duration of polymyxin B-immobilized fiber column direct hemoperfusion on
344		hemodynamics, vasoactive substance requirement, and pulmonary oxygenation in
345		patients with sepsis: an observational study. Blood Purif. 2022;51: 62-69.
346		doi: <u>10.1159/000515685</u> .
347	11.	Mitaka C, Tsuchida N, Kawada K, Nakajima Y, Imai T, Sasaki S. A longer duration
348		of polymyxin B-immobilized fiber column hemoperfusion improves pulmonary
349		oxygenation in patients with septic shock. Shock. 2009;32: 478-483.
350		doi:10.1097/SHK.0b013e3181a2a978.

- 12. Gaies MG, Jeffries HE, Niebler RA, Pasquali SK, Donohue JE, Yu S. Vasoactive-
- inotropic score (VIS) is associated with outcome after infant cardiac surgery: an
- analysis from the pediatric cardiac critical care consortium and virtual PICU system
- registries. Pediatr Crit Care Med. 2014;15: 529-537. doi:
- 355 <u>10.1097/PCC.00000000000153</u>.
- 13. Nazer L, Lopez-Olivo MA, Cuenca JA, Awad W, Brown AR, Abusara A, et al. All-
- 357 cause mortality in cancer patients treated for sepsis in intensive care units: a
- 358 systematic review and meta-analysis. Support Care Cancer. 2022;30: 10099-10109.
- doi:<u>10.1007/s00520-022-07392-w</u>.
- 360 14. Klein DJ, Foster D, Walker PM, Bagshaw SM, Mekonnen H, Antonelli M.
- 361 Polymyxin B hemoperfusion in endotoxemic septic shock patients without extreme
- 362 endotoxemia: a post hoc analysis of the Euphrates trial. Intensive Care Med. 2018;44:
 363 2205-2212. doi:10.1007/s00134-018-5463-7.
- 364 15. Tsushima K, Kubo K, Koizumi T, Yamamoto H, Fujimoto K, Hora K, et al. Direct
 365 hemoperfusion using a polymyxin B immobilized column improves acute respiratory
- distress syndrome. J Clin Apher. 2002;17: 97-102. doi:10.1002/jca.10019.
- 16. Mitaka C, Masuda T, Kido K, Uchida T, Abe S, Miyasho T, et al. Polymyxin B
- hemoperfusion prevents acute kidney injury in sepsis model. J Surg Res. 2016;201:
- 369 59-68. doi:<u>10.1016/j.jss.2015.10.020</u>.
- 17. Lee JM, Baek SD, Kim TH, Jeon HR, Han JH, Chang JW. Uncertain clinical effect of
- polymyxin B hemoperfusion in patients with septic acute kidney injury requiring
- continuous renal replacement therapy. Shock. 2021;56: 551-556.
- doi:<u>10.1097/SHK.00000000001752</u>.
- 18. Yamashita C, Hara Y, Kuriyama N, Nakamura T, Nishida O. Clinical effects of a
 longer duration of polymyxin B-immobilized fiber column direct hemoperfusion

376	therapy	for severe	sepsis and	septic shock.	Ther A	pher Dial.	2015:	19:316-323
							,	

- doi:<u>10.1111/1744-9987.12339</u>.
- 19. Miyamoto K, Kawazoe Y, Kato S. Prolonged direct hemoperfusion using a
- polymyxin B immobilized fiber cartridge provides sustained circulatory stabilization
- 380 in patients with septic shock: a retrospective observational before-after study. J

381 Intensive Care. 2017;5: 19. doi:<u>10.1186/s40560-017-0214-3</u>.

- 382 20. Kawazoe Y, Sato T, Miyagawa N, Yokokawa Y, Kushimoto S, Miyamoto K, et al.
- 383 Mortality effects of prolonged hemoperfusion therapy using a polymyxin B-
- immobilized fiber column for patients with septic shock: a sub-analysis of the
- 385 DESIRE trial. Blood Purif. 2018;46: 309-314. doi:<u>10.1159/000491744</u>.
- Ronco C, Klein DJ. Polymyxin B hemoperfusion: a mechanistic perspective. Crit
 Care. 2014;18: 309. doi:10.1186/cc13912.
- 22. Kawamata T, Imaizumi H, Yoshida M, Kaneko M. Polymyxin B-immobilized fiber
- improves hyperdynamic state in MRSA septic patients. Intensive Care Med. 1997;23:

390 130-131.

Figure 1

Figure 2